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Introduction: Human locomotion is a�ected by several factors, such as growth

and aging, health conditions, and physical activity levels for maintaining overall

health and well-being. Notably, impaired locomotion is a prevalent cause of

disability, significantly impacting the quality of life of individuals. The uniqueness

and high prevalence of human locomotion have led to a surge of research

to develop experimental protocols for studying the brain substrates, muscle

responses, and motion signatures associated with locomotion. However, from a

technical perspective, reproducing locomotion experiments has been challenging

due to the lack of standardized protocols and benchmarking tools, which impairs

the evaluation of research quality and the validation of previous findings.

Methods: This paper addresses the challenges by conducting a systematic

review of existing neuroimaging studies on human locomotion, focusing

on the settings of experimental protocols, such as locomotion intensity,

duration, distance, adopted brain imaging technologies, and corresponding brain

activation patterns. Also, this study provides practical recommendations for future

experiment protocols.

Results: The findings indicate that EEG is the preferred neuroimaging sensor for

detecting brain activity patterns, compared to fMRI, fNIRS, and PET. Walking is

the most studied human locomotion task, likely due to its fundamental nature

and status as a reference task. In contrast, running has received little attention

in research. Additionally, cycling on an ergometer at a speed of 60 rpm using

fNIRS has provided some research basis. Dual-task walking tasks are typically

used to observe changes in cognitive function. Moreover, research on locomotion

has primarily focused on healthy individuals, as this is the scenario most closely

resembling free-living activity in real-world environments.

Discussion: Finally, the paper outlines the standards and recommendations

for setting up future experiment protocols based on the review findings. It

discusses the impact of neurological and musculoskeletal factors, as well as the

cognitive and locomotive demands, on the experiment design. It also considers

the limitations imposed by the sensing techniques used, including the acceptable

level of motion artifacts in brain-body imaging experiments and the e�ects

of spatial and temporal resolutions on brain sensor performance. Additionally,

various experiment protocol constraints that need to be addressed and analyzed

are explained.
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1. Introduction

About 28% of American adults older than 50 in the general
community presented with impaired locomotion and its prevalence
increased with age (p < 0.001) (Mahlknecht et al., 2013). The
causes of impaired locomotion are divided into neurological
(e.g., Parkinson’s disease, stroke, Multiple Sclerosis, and dementia)
(Allali et al., 2018; Buckley et al., 2019) and/or musculoskeletal
drivers, such as arthritis and cardiovascular conditions (Blyth
et al., 2019; Andonian and Huffman, 2020; Minetto et al., 2020).
Among these neurological and musculoskeletal impacts, previous
research has identified different patterns of gait disorders, such
as parkinsonian (De Bartolo et al., 2020; Guayacán and Martínez,
2021), frontal (Hülser et al., 2022), or spastic gait (Muñoz-Lasa
et al., 2019; Norbye et al., 2020). Furthermore, researchers have
argued that locomotion should be defined as a syndrome for
pre-clinical outcomes, such as motoric cognitive risk syndrome
for pre-dementia (Xiang et al., 2021; Li et al., 2022a). Because
of the neurological and musculoskeletal correlates of locomotion,
rehabilitation treatments have been explored to utilize locomotion
training, such as treadmill gait exercise, to improve patients’
musculoskeletal ability and further induce neurological benefits
(Smania et al., 2011; Hornby et al., 2016; Bassiri et al., 2022).
Therefore, each human locomotion contains unique features
of neural and musculoskeletal drivers, clinical conditions, the
complexities of human development and aging, and signifiers of
physical activity for health and wellness (Runge and Hunter, 2006;
Pons et al., 2013; Kerkman et al., 2018).

Understanding the neurological and musculoskeletal correlates
of locomotion is a pivotal need to pave the way for successful
rehabilitation, improve performing locomotion tasks, especially
in older adults, or create a digital twin of humans while
doing a locomotion task (Dai et al., 2022). Various techniques,
such as electroencephalography (EEG), functional near-infrared
spectroscopy (fNIRS), and magnetic resonance imaging (MRI),
have been developed and deployed to study age-related changes and
specific diseases in the neurological and musculoskeletal correlates
(Lewis et al., 2019). These various techniques enable us access to
the movement phenotypes, such as brain structures (Chenausky
and Tager-Flusberg, 2022), the functional substrates (Magrinelli
et al., 2021), and motion signatures (Klibaite et al., 2022),
in locomotion control during different experimental settings.
However, these neuroimaging techniques present advantages and
limitations, such as sensitivity to motion artifacts (Abtahi et al.,
2020; Bonnal et al., 2022), portability (Sejdić et al., 2019), and
spatial and temporal resolutions (Martini et al., 2020; Kumar and
Michmizos, 2022). These limitations set up constraints on the
design of the experimental protocols. For instance, MRI studies
mainly investigated imagined locomotion rather than real-world
locomotion (Stolbkov et al., 2019; Skinner et al., 2022). Although
the sensitivity of fNIRS and EEG to artifacts has been improved,
still most existing studies focus on low-intensity movement (e.g.,
walking) rather than high intensity, such as running.

To overcome these challenges and limitations of traditional
brain imaging techniques, most recent research argued that brain-
body imaging techniques that enable simultaneous measurements
of dynamics of brain activities and body movements could be a

promising method to reveal the profound relationship between
brain, body, and behavior (Makeig et al., 2009; Gramann et al.,
2010; Gwin et al., 2010; Wagner et al., 2012). The brain/body
imaging techniques integrated portable devices, reliable sensing
methods against motion artifacts, and capable of monitoring brain
activities and locomotion with appropriate temporal and spatial
resolutions, and sophisticated data analysis approaches for multi-
modal data preprocessing and curation. Thus far, some specialized
centers and clinics such as GE HealthCare (HealthCare, 2023),
SCL Health (Group, 2023), Stratus (Stratus, 2023), Zeto (Zeto,
2023), CMS (CMS, 2023), CNS (Calyx, 2023), NordicNeuroLab
(NordicNeuroLab, 2023), and NIRx (NIRx, 2023) have adopted
these brain/body imaging tools. With multiple-channel EEG (more
than 64) capturing brain activities, these tools track spatial
information of brain correlates of humanmotion and provide high-
precision data at a sampling rate of 200–5,00 Hz (Cortney Bradford
et al., 2019). Simultaneously, they utilized standard locomotion
tools, such as optical motion capture systems (Divya and Peter,
2022), inertial measurement units (Khaksar et al., 2021), and
EMG sensors (Hallett et al., 2021) to capture the locomotion data
at the same sampling rate as brain activity data. As a result,
sophisticated data analysis approaches have been developed to
study the relationship between brain, body, and behavior, such as
cognitive-motor interference and coherence (Zhu et al., 2022).

However, before these brain-body imaging tools can truly
be adopted for clinical use, their effectiveness must be carefully
assessed. From a technical point of view, reproducing human
locomotion experiments has been problematic due to the
lack of protocols, standardization, and benchmarking tools,
which ultimately impairs the evaluation of previous research
quality and validation of prior understandings (Parmentier
et al., 2020; Kameli et al., 2021). Notably, only a few studies
focused on developing standard protocols and related design
methodology as an open research issue. Therefore, this paper
focuses on reviewing the settings of existing experiment protocols,
such as locomotion intensity, duration, distance, brain sensor
technologies, and corresponding brain activation expressions.
First, we develop a conceptual framework to identify the
design methodology of experiment protocols. Limitations of
each brain-body imaging technique and the corresponding
constraints on protocol design are then characterized and
mapped into the scope of the systematic review approach.
Next, we review existing studies that implement various types
of experiment protocols, demonstrating the current gaps in
design methodology. Finally, metrics for evaluating the research
quality and implications for reproducing prior knowledge
are proposed.

Overall, we aim to provide a roadmap for the future
development of locomotion analysis methods based on brain-
body imaging techniques, including highlighting current progress,
identifying various constraints, and suggesting potential research
directions. The main contributions of this review paper are to:

• Establish intrinsic links between neurological and
musculoskeletal correlates of locomotion characteristics
and quantifiable measures that brain-body imaging tools
can capture;
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FIGURE 1

The design methodology of experimental protocols is based on comprehensive considerations of cognitive and locomotive demands, observation

constraints by the sensing technology, and energetic costs determined by the human subjects.

• Review existing experimental protocols for studying
neurological and musculoskeletal correlates of locomotion;

• Examine the feasibility of replicating the experiments in the
laboratory systems, and finally,

• Identify gaps and lay out a roadmap for the design
methodology of experiment protocols.

2. Methodology

The design methodology of experimental protocols for
studies on neurological and musculoskeletal correlates of human
locomotion is based on careful considerations of cognitive and
locomotive demands, observation constrained by the sensing
technology, the pathology derived from the research interests,
and energetic costs invested by the human subjects. Ideally,
the cognitive and locomotive demands are designed in specific
thresholds to stimulate certain intertwined relationships between
neurological and/or musculoskeletal activities. However, the
sensing technology’s thresholds of these demands are constrained,
including sensitivity to motion artifacts, portability in different
environments, and spatial and temporal resolutions for capturing
dynamics. For instance, current sensing techniques, such as
EEG and fNIRS, claim they have lowered their sensitivity to
motion artifacts. Still, most researchers design low-intensity
locomotion (e.g., slow walking) to avoid difficulty in denoising
efforts. Sometimes, in high-intensity locomotion experiments
(e.g., running), the data become useless due to a high amount
of movement artifacts (Gwin et al., 2011). Figure 1 illustrates
the conceptual framework of the design methodology of
experimental protocols.

We developed a systematic search of existing studies based
on the conceptual framework. To find the papers, these
keywords were searched for in Google Scholar: human brain
locomotion/locomotion, OR EEG, OR nirs, OR MRI/ Brain-Body
Imaging. Then, all the papers were examined, and the related papers
were added to the tables of this paper. The criteria for a paper
to be reviewed are: 1) it must examine the brain’s signals while
the participants perform a locomotion task. 2) The experiment
participants should be healthy; the results of this systematic search
are shown in Figure 2. Although exploring walking disorders is
highly valuable, there are thorough reviews for each locomotion
disease. Then, the critical information on protocol design has
been extracted and inserted into the tables. In this respect, these
parameters in each protocol have been extracted: the type of the
surface or the device used for experimenting (e.g., overground
and treadmill), the speed of performing the task, the distance that
participants have moved, the duration of the task, the type of the
sensors used in the experiment (it is more focused on the sensors to
read the brain’s data), number and age of the participants, special
conditions of each research, and the contribution of the research.

All the results were converted to the same units to make the
protocols comparable. Accordingly, the distance is stated in meters
(m), the speed is in kilometers per hour (km/h), and the duration
of the task is in minutes (min); otherwise, the unit is stated.

3. Locomotive and cognitive demands

To examine neural activities during human locomotion, single
tasks without cognitive demands (e.g., walking) and dual tasks with
cognitive demands (e.g., talking while walking) are examined. In
this paper, the tasks are divided into walking, running, cycling, and
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FIGURE 2

Mobile body imaging study selection: Preferred items for systematic reviews and meta-analyzes (PRISMA) flow diagram.

TABLE 1 Abbreviation table.

Abbreviation Term Abbreviation Term

B Board with pedals deoxyHb De-Oxygenated Hemoglobin

EEG Electroencephalogram EMG Electromyography

Erg Ergometer IM Imaginary locomotion

M1 Primary Motor Cortex min Minute

MRI Magnetic Resonance Imaging NIRS Near-Infrared Spectroscopy

OA Older Adults OG Overground

oxyHb Oxygenated Hemoglobin PET Positron Emission Tomography

PFC Pre-Frontal Cortex PMC Pre-Motor Cortex

rpm Revolution Per Min s Second(s)

S1 Primary Sensorimotor Cortex SMA Supplementary Motor Area

SMC Sensorimotor Cortex SVM Support Vector Machine

SW Single Walking T Tesla

Tr Treadmill YA Younger Adults

Dual-Task-Walking (DTW). The abbreviations used in this paper
are explained in Table 1.

• In the participant section, M shows the number of male
participants and the rest are Females.
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• a± b is used to describe the participants’ age statistics in which
a is mean and b is standard deviation.

• If participants are older than 60, they are considered as OA.

3.1. Type 1: Walking

Walking has been examined in different forms: actual walking,
imaginary walking, and simulated walking. Nonetheless, the
common point between these studies is the activation of the brain
and involvement of higher cognition control areas (Al-Yahya et al.,
2011). The studies that have investigated the walking as the human
locomotion are shown in Table 2.

3.2. Type 2: Running

Only one paper was found that merely focused on
examining running as a locomotion task and studying
brain activities. This paper’s information is described
in Table 3.

3.3. Type 3: Cycling

Cycling is another locomotive task to study the brain correlates
of locomotion. The locomotive demands span from low to high
intensity, with various cycling speeds, while few studies gave
self-paced instructions to participants. Most studies expected to
utilize the locomotive demands to stimulate the dynamics of brain
activities for identifying neurological and musculoskeletal benefits.
The research studies related to the cycling are demonstrated
in Table 4.

3.4. Type 1-2: Walking-running

In this section, three research were found that have investigated
both walking and running their studies, which meet the defined
criteria for research selection in this review. These studies are
investigated in Table 5.

3.5. Type 1–2: Walking-cycling

Only one paper shown in Table 6 was found that has examined
both walking and cycling.

3.6. Type 4: Dual walking task-spontaneous
locomotive and cognitive demands

By switching from single tasks to dual tasks, the age-
related gait changes are more distinguished (Beurskens and Bock,
2012) the reason roots in the fact that the cognitive resources

should compensate for the motor impairments (Mirelman et al.,
2017). Because of this reason, in this type of locomotion
task, usually both young adults (YA) and old adults (OA)
are examined. The Dual task walking studies are presented
in Table 7.

4. Results

4.1. Task analysis

The filtered papers based on the mentioned criteria are 102
papers. Most of the papers, 65, conducted research on low-intensity
locomotion, walking, only 4 papers examined running, 17 papers
examined cycling, and 18 papers conducted the experiment on
dual task, which considers the locomotive and cognitive demands
simultaneously. Figure 3 shows the visualization of the tasks,
the surface that the experiment has been conducted on, and
the brain sensor that has been employed for the experiment.
In this regard, the most outer layer of the circle shows the
investigated locomotion tasks (walking, running, cycling, and
dual-task walking). The middle circle demonstrates the type of
the surface (Tr: treadmill, IM: imaginary, OG: overground, Erg:
Ergometer bicycle, B: on a board). The type of brain sensor used in
the research are shown in the most inner circle (EEG, NIRS, MRI,
and PET).

4.2. Analysis of locomotive intensity

Among the researches that have declared the intensity (e.g.,
speed) that locomotion has been performed, the papers that
have stated their speed (or an average of speed) have been
compared with each other. However, the researches that the
speed was not defined quantitatively and constant (e.g., the speed
was dependent on the length of the participants’ feet length
Wagner et al., 2012, 2014; Seeber et al., 2014) were excluded
from the visualization. Accordingly, the rotational velocities when
the brain-body imaging experiment is using an ergometer or a
pedaling board are visualized in Figure 4. The experiment using
60 rpm in cycling has been considered a reference speed for
most researchers. Besides the rotational velocities of Figure 4, the
linear speed for SW and DTW on different surfaces (i.e., Tr
and OG) for YA and OA are shown in Figure 5. The bigger the
bulb, the more repetition on reported speed. For example, walking
at the speed of 2 Km/h is the main standard for researchers
on the treadmill when the participants are YA. In addition, in
each experiment surface, a trend of using a higher speed for
YA compared to the speed used for OA can also be observed
in the reviewed papers in this figure. For instance, in DTW
OG, the maximum speed reported for YA is 4.6 Km/h, although
the maximum speed reported for OA in DTW OG is about
3.8 Km/h.
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TABLE 2 Brain-body imaging in walking.

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Vitorio et al. (2018) Treadmill - Self-paced 5 min: 5 trials of 30
s SW and 30 s
rhythmic auditory
cueing walking

40-channel fNIRS 15 YA Range:
20–40, 15 OA Older
than 60

A digital metronome was used to create
rhythmic auditory cueing with preferred
frequency

In OA, rhythmic auditory cueing
enhances walking, which is achieved
through increased activity in multiple
cortical areas (PMC, SMA, and M1). In
OA, cortical response reduction with
repeated exposure indicates OA’s ability
to adapt to a new task.

Kurz et al. (2012) Treadmill - 1.62 5 min: five blocks
consisting of 30 s
standing still and 30
s walking

24-channel fNIRS 13, 23.7± 1.4 Forward or backward walking condition
is placed in five alternating blocks of
standing still or walking. Backward
walking needs more SMC and increases
the variability of the stride time
compared to forward walking.

Amount of oxyHb during forward
walking is correlated with the variability
of stride time in forward walking in the
pre-central gyrus and SMA of the brain.

Khan et al. (2018) Treadmill - Self-paced 10 s walking and 20
s for rest intervals

12-channel fNIRS, 4
detector and 5
sources

9M (30± 3) The fNIRS data were collected fromM1
only on the left hemisphere

Initiation and stopping commands
received fromM1 in the left hemisphere
obtained by fNIRS are classified with
different ML algorithms.

Berger et al. (2019) Treadmill - 2.8 One block of each
walking condition
consisted of 5 trials
and each trail lasts
for 1 min with 1
min interval.

fNIRS with 16
optodes (8×8) and
ground reaction
forces

12 right-handed
(3M), 25±4

Two conditions of unassisted walking
and robot assisted walking are
compared. Body weight support is
adjusted to 30%.

Using robot assisted walking causes an
increase in gait variability, which is
correlated with increasing brain activity
in SMC.

Suzuki et al. (2008) Treadmill - 3 Two walking tasks
and total duration
of each task was 240
s

fNIRS (42 channels)
with 28 optodes,
consisting of 12
light-source fibers
and 16 detectors

7 right-handed
(4M), 31.3± 4.8

Duration of rest period was selected
randomly (10, 15, 20, and 25). The
walking tasks were repeated 4 times.

When walking triggers with a verbal
instruction (“ready”), the brain’s frontal
activation during the preparation,
execution, and walking performance
improves.

Miyai et al. (2001) Treadmill - 1 Each task or rest
period lasted 32 s (8
scans). each series
contained 80 scans
with a complete
duration of 5 min
20 s.

NIRS (21 optodes),
which consist of
nine light source
fibers and 12
detectors

8 (4M), 35± 8,
Range: 24–46

Performing each of these tasks for 30 s
(1) walking on the treadmill at 1.0 km/h
and rest, (2) alternating arm swing
without walking and rest in standing
position, (3) alternating dorsiflexion and
plantar flexion movement of the feet at a
pace of 1 Hz and rest in sitting position,
and (4) motor imagery of gait in
standing position

Using local oxyHb measured by NIRS
topography, cortical activation patterns
of human gait is visualized. Total and
increased level of oxygenated
hemoglobin in the medial S1 and SMA
are coupled with walking activities.

Harada et al. (2009) Treadmill - High gait capacity:
3.6± 1, 5.8± 1, 6.9
± 1 Low gait
capacity: 3.1± 1,
4.4± 1, 5.2± 0.7

20 s rest, 60 s
walking, 20 s rest

NIRS (42 channel)
with 28 optodes
consisting of 12
light sources and 16
detectors

15 (2M), 63± 4 Dividing the participants to two groups
based on incremental walking test: 1-
low gait capacity (n = 8) 2-high gait
capacity (n = 7)

In higher speeds, left PFC and the SMA
consists of higher oxyHb. The degree of
medial SMC and SMA activations are
associated with the locomotor speed and
cadence. Heart rate is only depended on
left PFC. Left PFC, SMA, and SMC
control gait speed, and that the
involvement of the left PFC may rely on
reduction of gait capacity in elder adults.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Sipp et al. (2013) Treadmill
(customized
by adding a
beam to
evaluate the
stability)

- 0.792 25 min, two times EEG (256
channels), Vicon
motion capture
with 28 reflective
markers

26 (14M), 23± 5,
All of them
right-handed and
right footed

To avoid the effect of fatigue on the
experiment, participants could walk
whenever they wanted. Accordingly, the
time of experiment could last between
60 to 120 min.

Walking involves baseline theta band
activity that significantly increases with
loss of balance. Also, in the
right-handed and footed participants,
the left SMC plays a larger role in
sensing loss of balance during walking
than the right SMC.

Gwin et al. (2011) Treadmill - 2.88 (slow walking)
and 4.5 (fast
walking)

5 min standing 10
min slow walking
10 min fast walking

EEG (248 channel),
force measuring on
the treadmill with
25 reflective
markers

8 (1M) range: 21–31 The experiments start with 5 min
standing followed by three random
conditions: slow walking, fast walking,
or running. Collected data from
running was not used because of large
mechanical artifacts

Alpha and beta band spectral power
increase around sensorimotor and
dorsal anterior cingulate cortex at the
end of the stance phase. But, their
increase around the sensorimotor
during the push off is more noticeable.
Changes in anterior cingulate, posterior
parietal, and SMC were pronounced in
intra-stride high-gamma spectral power.

Bruijn et al. (2015) Treadmill
(split-belt)

- 3.6 30 min EEG (64 channel),
ground force
sensors, 2 pairs of
bipolar EMG,
cluster-markers and
Optotrack

10 (7M), 31.4± 6.6 The experiment consists 5 conditions:
Sitting with open eyes (1 min), sitting
while receiving stimuli to the medial
nerve (7 min), normal walking on
treadmill (10 min), supported walking
on treadmill (10 min), walking while
receiving stimuli (10 min)

During stabilized walking, beta band
increases in the left M1 indicating the
role of the part in steady state gait
stability. Confirming that medio-lateral
foot placement is determined during
push-off to some degree.

Bradford et al.
(2016)

Treadmill - 2.7 30 min walk at 0%
grade

EEG (264 channel),
EMG (6 channel),
ground forces

22 (12M), 23.1±
3.9

Subjects walked for a total of 1 h at 0.75
m/s. Subjects alternately walked in
7.5-min blocks of time at 0% grade and
at 15% grade, for a total of 30 min at
each condition

Comparison of walking with 0% and
15% grades shows greater gamma power
during level walking in the left
sensorimotor and anterior cingulate
clusters. Also, comparison of frequency
activation of the artifacts during walking
conditions shows that the differences
between walking conditions were
cortically driven rather than a residual
artifact of the experiment.

Salazar-Varas et al.
(2015)

Treadmill - 2 12 min
combination of
different reactions
to the appeared
obstacles.

EEG (32 channel), 7
IMU

5M, range: 24–29 To create obstacles, in one scenario a
line laser is projected over the treadmill
to simulate the appearance of the
obstacle. In the second scenario, a
screen placed in front of the treadmill
changes its color to simulate the
appearance of the obstacle

EEG role can be developed to detect the
unexpected obstacles as EEG potential
over the fronto-central area of the
subjects’ brain change. An accuracy of
79.5% was reported for obstacle
detection.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Bulea et al. (2015) Treadmill - 3.24 (slow walking)
5.4 (fast waking)
and self- adjusted
speed

1 min data
collection by EEG
cap in two modes of
passive and active.

EEG (64 channels),
Vicon MX motion
capture system

10 (4M) 28.9± 6.3 The experiment consists of passive
walking (defined speed) in which the
speed periodically changes. Or active
walking (self-adjusted). In the active
mode, combination of feedforward and
feedback controllers were implemented.
Each participant completed 6 trials

Gamma band power increases during
double support and early swing phases.
This indicates that pre-frontal and
posterior parietal networks are engaged
to leverage lower limb control during
walking. The cortical network
engagement evoked by active treadmill
indicates the possibility of enhancing
neuroplasticity for more effective motor
training.

Yokoyama et al.
(2018)

Treadmill - 2 7 min and 30 s 64-channel EEG
and 13-channel
EMG also 3D
ground reaction
forces

12M, Range: 23–31 The last 7 min of walking and 30
channels’ data of EEG cap were used for
analysis

During walking cerebral cortex controls
multiple muscles hierarchically through
a few muscle synergies. Locomotor
muscle synergies activation can be
decoded from slow cortical waves.

Presacco et al.
(2011)

Treadmill - Self-paced 5 min to find the
comfort speed, 2
min rest, 5 min
precise walking,
then normal
walking

EEG (60 channel),
EMG, infrared
optical motion
capture system

6 (3M), Rang:
18–45

To increase attentional demand during
precision walking condition,
participants were instructed to avoid
stepping on the white stripe (2 in. wide)
glued diagonally on the treadmill’s belt
by using the monitor’s video to keep
track of foot placement relative to the
white stripe

Confirming that a plurality of cortical
brain areas controls the walking.
Decoding human walking using EEG
data in two conditions: 1- walking while
providing foot placement guide visually
(precise walking) 2- normal walking

Presacco et al.
(2012)

Treadmill - Self-paced 5 min to find the
comfort speed, 2
min rest, 5 min
precise walking,
then normal
walking

EEG (60 channel),
EMG, infrared
optical motion
capture system

6 (3M), Rang:
18–45

To increase attentional demand during
precision walking condition,
participants were instructed to avoid
stepping on the white stripe (2 in. wide)
glued diagonally on the treadmill’s belt
by using the monitor’s video to keep
track of foot placement relative to the
white stripe

Activation of ankle, knee, and hip
during walking on treadmill are
decoded by recording 12 EEG signal
channel placed on pre-frontal, motor,
parietal, and occipital areas.

Castermans et al.
(2014)

Treadmill - 1.5, 3, and 4.5 About 12 min EEG (32 channel),
piezoelectric
accelerometer, 6
infrared cameras to
record lower limb
movements

7 (5M), Range:
25–33

The piezoelectric accelerometer was
fixed firmly on top of the participants’
head

The role of cortical origin of low-delta
and high-gamma bands during walking
may not be valid. Depending on the
electrodes’ locations, motion artifacts in
phase with walking frequency can affect
the EEG data up to 15 Hz.
Accelerometer and EEG data have
similar time-frequency characteristics
during walking.

Petersen et al.
(2012)

Treadmill - Self-paced between
3.5 to 4

5 min epochs of
continuous
treadmill walking
and 2 min of static
contraction

EEG (28 electrode),
EMG

9 (4M), 23.4± 4.1 additional walking with speed of 1 km/h
(slow walking) and static dorsiflexion
for seven of the participants

Rhythmic cortical activity in the 24–40
Hz frequency band is transmitted via the
corticospinal tract to the active muscles.
In steady state treadmill walking, motor
cortex and corticospinal tract contribute
directly to the muscle activities.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Quiroz et al. (2017) Treadmill - 4.83 and 8.05 5 min EEG (9 channels) 3 Each participant repeated the
experiment 10 times: 1 min low speed, 1
min higher speed, then 1 min low speed
also 1 min between transitions

Compared to imager locomotion,
during lower limb control, neural
activity in cortical sensorimotor areas
increases. Also, pre-motor and
sensorimotor areas’ show high neural
activities compared to resting.

Artoni et al. (2017) Treadmill - 2.5 and 3.5 20 min (10 min for
each speed) and
also 5-min rest
between the tasks

EEG (64 Channels),
EMG (6 channels)

11, 30± 4 3-min preliminary walking was
performed for the purpose of
acclimation

A significant casual unidirectional drive
from contralateral motor cortex to
muscles in the swing leg and control of
muscles during stereotyped treadmill
locomotion is found using SVM.
Highest accuracy was reported as 0.78±
0.04.

Tortora et al. (2020) Treadmill - 2.5 and 3.5 20 min (10 min for
each speed) and
also 5-min rest
between the tasks

EEG (64 Channels),
EMG (6 channels)

11, 30± 4 3-min preliminary walking was
performed for the purpose of
acclimation. A specific set of channels
was removed for each of the 11
participants.

Decoding swing and stance of both legs
together, or of each leg independently by
deep learning and using the method of
LSTM recurrent and EEG signals of
motor cortex. An average accuracy of
90.4±1.4% is reported.

Wei et al. (2021) Treadmill - 1.4, 2 and 2.6 7.5 min: walking at
three speed in 15
30-s blocks

24-channel EEG,
8-channel EMG,
motion capture,

9 (7M), Range:
23–26

To divide the gait cycle, 3D markers in
five positions were employed

Activation of cerebral cortex during gait
phases is examined. During pre-swing
and terminal-stance, cerebral cortex is
more actively involved in the control of
eight examined muscles.

Nordin et al.
(2019a)

Treadmill - 1.8, 3.6, 5.4, 7.2 3 min for each
speed and
considering rest
between each
experiment

Dual layer EEG and
8-channel EMG

9 (6M), 27± 4 As the speed is close to running, the
subjects were asked to walk even in high
speeds. A standing baseline trial was
recorded prior to changing speed
experiments.

Dual-layer EEG isolates the changes in
sensorimotor electrocortical dynamics
across walking speeds. Also, dual-layer
EEG is beneficial to remove residual
artifacts while gait speeds change. In
addition, a correlation between different
walking phases and alpha/beta spectral
power is drawn.

Luu et al. (2017b) Treadmill - 1.6 2 min rest, 15 min
Gonio-ctrl walking,
5 min BCI-ctrl
walking, 2 min rest

64-channel EEG 8 (3M), Range:
19–29

Goni-ctrl: the avatar was driven by a
goniometer. goniometer sensor placed
at hip, knee, and ankle joint angles.
BCI-ctrl: the avatar was controlled by
BCI. The participants could see the
avatar on the 52-inch TV.

In closed-loop walking using BCI and
avatar, cortical involvement during
walking increases as α/µ are subdued in
the posterior parietal cortex and inferior
parietal lobe. Low γ modulations in the
anterior cingulate cortex and superior
temporal gurus may show the increasing
voluntary control of human gait.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Lin et al. (2014) Treadmill - 1.6, 3.2, 4.8 Less than 30 min 14-channel EEG 17 (14M), Range:
22–32 Mean age:
26.76

Each subject participated in four
sessions (standing and three speeds).
Each session repeated a run 10 times
analysis.

The centro-parietal was not covered
with the sparse 14-channel electrodes
and no spectral changes were observed
in SMC. steady-state visual-evoked
potential-based BCI can be used to
mimic natural walking using
consumer-level EEG.

Úbeda et al. (2014) Treadmill - 2,3, and 4 24 min 32-channel EEG,
IMU

3M, 26.3± 3.8
Range: 22–29

Each participant performed 8 runs. Each
run includes walking at three speeds and
each for 1 min

Using the linear regression model, a
correlation between EEG signal
recorded from central and parietal
cortex and knee angle during walking
has been found

Severens et al.
(2012)

Treadmill - 2.8± 0.2 10 min 62-channel EEG,
EMG channel,
occipital channel

6, 21.6± 2.3 Range:
20- 26

To help the subject to synchronize the
step frequency, a metronome was used
for 15 s. The step frequency was about
1.4 Hz.

ERD has been examined and measured
during walking. Beta ERD is strongest
above the lateral motor cortex, with mu
at the central motor cortex. Also,
desynchronization is strongest in the
swing phase of the contralateral leg
above the motor cortex.

Wagner et al. (2016) Treadmill 12 trials
of 10
blocks
of 120
steps

Self-paced between
3.0 and 3.7

- 108-channel EEG,
EMG channel

18 (10M), 29.1±
2.7 (Wagner et al.,
2019a), Range:
22–35

the walking was synchronized with a
series of cue pacing cue tones and thus
the step rate and length were changed
based on the pacing cue tempo

Analyzing beta band power in the right
dorsolateral prefrontal cortex shows two
recognizable patterns. One pattern may
help in starting and executing the
movement and the other one has
control and inhibition functions
(Wagner et al., 2016). Also, in the
posterior medial frontal cortex, an EEG
step-cue delay negatively is generated
with a peak at 250 ms after anomalous
cue tone onsets (Wagner et al., 2019b).

De Sanctis et al.
(2023)

Treadmill - Self-paced 28 min (eight
3.5-min blocks)

160-channel EEG,
optitrack motion
capture with 9
cameras

26 (12M), 74.9 High and low cognitive impairment risk
is defined by Montreal Cognitive
Assessment battery (MoCA, range: 0-
30): high (22–26) and low (27+)

Characterizing the neural signature of
walking: an increase in frontomedial
theta in high-risk cognitive impairment
individuals was observed. Left
sensorimotor beta in low-risk cognitive
impairment individuals decreases when
visual perturbation is used during
walking.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Wagner et al. (2012) Treadmill/
robotic gait
orthosis

- Speed = 0.54 (leg
length in cm)/ 27.8
The speed varied
between 1.8 to 2.2

6 min for walking
session; 3 min
resting session

Combining four
32-channel
amplifiers for
recording data from
120 sites using EEG
and EMG data

14 (8M), 24.3± 2.7,
Range: 22–28

Each participant completed 8 runs of
robot-assisted walking (four in each of
two active/passive walking conditions)
and three runs of upright standing.

To compensate for the differences
between active and PW in robot-assisted
walking, cortical activities related to
lower limb movements were shown.
Depending on the gait cycle, the power
in the mu and beta bands decreases
during active walking. Also, depending
on the gait cycle, cortical activity was
localized in the M1 in the lower gamma
band. (passive walking: participants let
the robot move their legs)

Seeber et al. (2015) Treadmill/
robotic gait
orthosis

- Speed = 0.54(leg
length in cm)/ 27.8
The speed varied
between 1.8 and 2.2

6 min for the
walking session (4
times); 3 min
standing (3 times)

Combining four
32-channel
amplifiers for
recording data from
120 sites using EEG
and EMG data

10 (5M), 25.6± 3.5,
Range: 22–28

Each participant completed 4 runs of
robot-assisted walking (each 6 min), 3
runs of standing (each 3 min)

When high gamma oscillations are
increased artificially by transcranial
alternating current stimulation (tACS)
in the central sensorimotor cortex,
motor performance during walking
enhances.

Seeber et al. (2014) Treadmill/
robotic gait
orthosis

- Depending on the
leg length, ranging
from 1.8 to 2.2

4 runs (6 min each)
of active walking
and 3 runs of
upright standing (3
min each).

EEG (120 channel),
EMG

10 (5M), 25.6± 3.5 Participants completed Body weight
support adjusted to less than 30%

µ (10–12 Hz) and β (18–30 Hz)
oscillations in active walking is
significantly less than upright standing.
Depending on the gait phase, supported
µ and β ERD indicate a
movement-related state change of
cortical excitability. While generated
frequencies in µ and β have overlaps,
the center of generations is different.

Wagner et al. (2014) Treadmill/
robotic gait
orthosis

- Speed = 0.54 (leg
length in cm)/27.8.
The speed varied
between

Participants walked
4 min in each of the
five conditions and
walking was
repeated two times
during the
experiment

EEG (61 channel),
EOG (3 channel)
electrodes by two
32-channel
amplifiers

11 (7M), 26± 2 Walking in five different conditions:
1-looking at a black mirror 2- looking at
white graphical objects 3- watching their
mirrored walking 4- 3rd person in
Virtual environment 5-1st person in a
virtual environment

In conditions that require adjusting the
steps based on the visual input, µ, β ,
and lower γ frequencies in pre-motor
and parietal cortices are reduced, which
shows these brain areas’ activation
increase. This activation is higher
compared to mirror feedback and a
visual attention task, which may
indicate additional motor planning and
visuomotor processing.

Alchalabi et al.
(2019)

Treadmill
real
walking/
imagining/
observing

- - 8.5 s for each trial 19-channel EEG
and 15 rigid body
reflective
motion-capture and
12-camera Vicon
optoelectronic
motion capture
system

20 (7M), 23.3±
3.93

The participants performed the
experiments in three conditions of 1-
controlling an avatar in virtual reality 2-
imagining the avatar 3- observing the
avatar. Each condition consisted of 240
trials.

It is shown that it is feasible to use
pre-motor, motor and parietal areas’
EEG data to measure the level of
embodiment during physically or
mentally controlling an avatar’s walking.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Severens et al.
(2014)

Treadmill/
imaginary

- 3 48 s for the task 62-channel EEG 12, 29± 5.6 Four tasks’ EED data: forward walking
and backward walking in actual and
imaginary manners were recorded on a
treadmill.

Although walking is automatic, brain
signals, especially the cortical area, can
be classified to walking and non-walking
signals reliably with high speed. Also,
actual waking classification has a higher
accuracy compared to imaginary
walking.

Nojiri and Iwane
(2014)

Imaginary - - 2 min: 30 s walking,
standing, turning
left, and turning
right

11-channel EEG 1 participant For imagination, a movie shows three
kinds of arrows and stop sign

Providing a method to estimate walking
direction using power spectrum density
data of motor area’s EEG signals.

Malouin et al.
(2003)

Imaginary - Qualitat-ively: fast
and slow

Each subject
experienced eight
PET scans within a
single session that
took approximately
2 h

PET. EMG and
ECG were recorded
for 1 min just
before and during
each scan. ANOVA
to record heart rate

6 right-handed
(1M) Range: 41–70,
Mean age: 55.9

Brain scanning while participants
imagine Standing, initiating gait,
walking, walking with obstacles. The
results of these conditions were
compared to a rest (control) condition

When the cognition demand of the task
and the need for processing sensory
information increase, the higher brain
centers become more engaged.

Iseki et al. (2008) Imaginary - Observa-tion of
virtual walking with
the speed of 3.2–3.6

Duration of each
clip was 5 s, with
the frame rate of
29.97 frame/s

3-Tesla MRI with
an 8-channel
phased-array head
coil

16 healthy,
right-handed
(13M), 34.3± 4.6

Tasks: observation of 1- Gait movement
2- normal stepping in a standing
position 3- standing still 4- scrambled
gait 5- virtual walking 6- scrambled
virtual walking

During imagine of walking (first person)
or observing other people’s walking
(third person), the planning center of
gait, including SMA and dorsal M1 are
activated.

Labriffe et al. (2017) Imaginary - 120 step/min 5 min and 42 s MRI-compatible
Korvit simulator
and EMG

18 (11M), 27± 4.7,
Range: 20–40

The experiment has two modes: 1-
organized: sequential activation of
muscles related to walking 2-chaotic:
non-gait-like pattern activation of
muscles. Each experiment repeated 9
times.

There is no difference between
activation of chaotic and organized
patterns of stimulation. Activation
pattern of mental imagery and gait-like
plantar stimulation are similar especially
in SMA-proper bilaterally and right
pre-SMA.

Wang et al. (2009) Imaginary - - 3 min and 40 s for
each session

fMRI 21 right-handed
gender-balanced,
21.5± 1.2, Range:
20–25

The experiment includes ten fMRI
sessions consisting of three blocks.
Walking and stand positions were
randomly shown.

In major gait-related task especially at
initiation of a gait, SMA is activated.
During termination and stepping over
an obstacle, a significant visuomotor
network is required.

Sacco et al. (2006) Imaginary - 90 step/min 12 s for each active
condition

fMRI 12 right-handed
and right-footed
(7M), Range:
20.8–34.9, mean:
27.5

Each participant completed 25 blocks:
13 rest and 12 active conditions

Imagery training expands active bilateral
motor areas and reduces visuospatial
activation in the posterior right brain.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Kline et al. (2020) 1)Imagining
walking 2)
using board
and pedals
connected
to the fMRI
board

- 50 step/min 90 s: 10 blocks
consisting 5 rest
block and 5 display
of walking block.
Each block: 18 s

fMRI: T2*-weighted
echo planar
imaging

16M healthy,
right-handed 24.7
± 3.31, Range:
19–31

The visual stimulus was generated by
Daz 3D. Before starting experiment,
high-resolution structural brain scan
obtained for anatomical structure of
fMRI data

The executed task is coupled with more
activation in M1 and the medial
cerebellum while imagined task has
higher activation in somatosensory
cortex, M1, and lateral cerebellum.

Ikeda et al. (2016) Horizontal
free
walking on
a board/
treadmill

- 60 step/min 500 s: treadmill gait
for 100 s and 25 s
gait-like motion
repeated four times

fMRI and EMG for
five muscles
treadmill gait

8M, 24.0± 0.82 The difference between gait-like motion
and real walking which is intention for
moving lower extremities and biceps
femoris.

It is shown that lower-extremity motion
simulator by providing gait-like motion
incites motor sensation in cerebellum,
brainstem, and spinal.

Sahyoun et al.
(2004)

Board (a
purpose-
built
wooden
apparatus
in MRI
device)

- - 12.5 min for a total
experiment

3T Varian INOVA
MRI, EMG

12 (7M) healthy
right-handed. Mean
age: 25.4 Range:
20-31

Only one degree of freedom for foot
movement is studied: extension-flexion
at the ankle joint

Anterior pre-frontal regions are
involved in the decision making for
moving forward.

Takahiro et al.
(2013)

On board - 1.8 s for each gait Four reparations of
25-s rest and 25-s
gait-like motion

fMRI 1 subject Three degree of freedom were created
on the board for each leg.

The activation of the brain’s area in
sensory motor is higher in PW
compared to active walking due to
processing of the unanticipated sensory
feedback and not-imaged movement

Wieser et al. (2010) Board with
adjustable
tilt angle

- 44 step/min 7 min rest at α=0
and 30 min
stepping at α=76
and again 7 min rest
at α=0

64-Channel EEG
and record of EMG
for Four muscles

20 (9M), 28.6± 8.3 Task: Stepping (gait -like), the
experimental board was vertical (α=0)
and then tilted (α=76◦)

S1, M1 and SMA mainly control the
human’s gait. Also, most of the cortical
capacity is used for changing the
direction between flexion and extension
phase.

Xu et al. (2017b) OG 4.4 m Qualitat-ively: Low/
medium/ high

About 4.5–6 s 22-channel fNIRS 30, 21± 1 To train the algorithm 15 individuals’
data was used and 15 individuals’ data
was used for validation.

Decoding the walking speeds
categorized in three speeds based on
PFC, M1, frontal eye cortices, and SMA
by oxyHB data and SVM algorithm.

Xu et al. (2017a) OG 4.4 m Qualitat-ively: Low/
medium/ high

- 22-channel fNIRS 21, 21± 1 12 set of data is used for training and 9
for validation

Classification of walking speed based on
oxyHB characteristics using SVM.

Lacerenza et al.
(2021)

OG - Self-paced 20 s standing then
20 s performing the
task and 20 s
recovery for five
times

Single channel
fNIRS

3M (age 30, 55, and
50 years)

The task is combination of standing still,
forward walking, and backward walking

Time domain fNIRS during freely
walking is measured. Diverse cortical
response during forward and backward
walking can be related to the different
motor cortex involvement.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Li et al. (2020) OG 10.5
self-
paced,
10.5
gait

adjusted,
(two
times)

- - 20-channel fNIRS 30 (16M), 21± 1 Gait adjusted walking included: speed
increase, speed reduction, strep increase,
and step reduction

Showing the feasibility of decoding the
walking intention from a motion state
using M1, PFC, and supplementary
motor areas by fNIRS system.

Peters et al. (2020) OG 10
mactive
and 10
m PW

- 51.4±5.2 (Active) to
52.8±3.6 (Passive)
seconds

54-channel fNIRS
and EMG

14 (7M) 34±8 In PW, participants were instructed to
be relax so that the exoskeleton could
perform the walking.

Finding the partial activation of parietal
cortex during passive robotics
exoskeleton gait

Brantley et al.
(2016)

OG, and
stairs

7.92 self-paced - EEG (64 channel),
surface EMG (12
electrodes)

1M, 31 The subject has performed 20 trials.
Each trial consists of 26ft level ground
walking followed by an 8-step staircase
(13.4 cm height)

During level ground walking, EEG-led
coupling between electrodes and sEMG
(tibialis anterior) in the frequency band
of (3–5 Hz) indicates the command
signal is sent from cortex to peripheral
motor neurons. A higher coherence was
observed for frequencies less than 2 Hz
during stair ascent in which EMG was
the leading signal for biceps femoris and
gastrocnemius.

Mehra et al. (2021) OG, and
stairs

- Self-paced One-min data
recording

EEG (60 channels),
EOG (4 channels),
EMG (6 channels),
IMU sensors.

6 (5M) Each participant completes 20 trials of
level ground walking, slope descends,
and stair ascends, then 180◦ return to
the starting point and resting.

Decoding the transition of walking
conditions 3.0± 1.63 s in advance using
EOG signals. This decoding is faster
than decoding reported by Luu et al.
(2017a) using occipital EEG signals.

Luu et al. (2017a) OG, and
stairs

- Self-paced One-min data
recording

EEG (60 channels),
EOG (4 channels),
EMG (6 channels),
IMU sensors.

6 (5M) Each participant completes 20 trials of
level ground walking, slope descends,
and stair ascends, then 180◦ return to
the starting point and resting

Decoding the transition of walking
conditions 1.27 s in advance by
observing the changes in the cortical
dynamics

Velu and de Sa
(2013)

OG 1.5 - - 64-channel EEG
data and two EOG
electrodes and
8-channel EEG

9 (7M)
right-handed
subjects, Range:
18–27

The experiment consisted of 60 trials for
6 conditions (standing still, pointing left
or right, walking left or right or front).

Walking, pointing, and standing can be
classified using EEG data. Spatial and
spectral contributions were from areas
related to motor planning and mostly
from low frequency cortical activity.

Budde et al. (2016) OG 10 Self-paced 2 min 64-channel EEG
and
OptoGait-System

12 (6M), Range:
20–28

The experiments had three conditions:
1- normal walking 2- cognitive interface
task: press a button based when a
high-pitch sound is heard and ignore
the low-pitch sound 3- motor interface
task: preventing connection of the rings
placed on a stick

Doing tasks that involve the brain’s
motor interface reduces gait velocity and
stride length and increases the stride
time and temporal-spatial variability.
These changes don’t occur in tasks
require cognitive interface involvement.

(Continued)
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TABLE 2 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

do Nascimento
et al. (2005)

OG - Self-paced 6 s for each task.
Each task was
repeated 60 times

40-channel EEG
and 4-channel EMG

8 right-handed
(4M), 23.5± 4,
Range: 21 to 33

The experiments’ tasks are oriented
stepping toward: forward, backward,
lateral, right side, and forward-oriented
gait initiation, backward-oriented gait
initiation.

Variations in the directional orientation
of gait and stepping (especially
backward-oriented tasks) are coupled
with changes in movement-related
potentials, according to recorded data
from cortical motor areas.

Li et al. (2016) OG - Self-paced - 62-channel EEG
2-channel EOG
4-channel EMG

7M, 23.57± 1.51 The experiments were performed in free
walking, using exoskeleton with and
without applying assistive torque

The activation pattern during walking
when the exoskeleton is used and when
it is not used is different, which can
affect the rehabilitation procedure and
further orthosis development. Though
somewhat similar in spatial pattern
distribution in the medium occipital
cortex and parietal cortex, and the
lateral temporal cortices, assistive
walking shows higher activation in the
frontal part compared to two other
conditions

Li et al. (2019) OG 21 Self-paced - 62-channel EEG,
1-channel EOG,
4-channel EMG

27M, 4± 2.32 The participants performed four
overground walking: free walking,
walking with exoskeleton without
applying force and with low and high
applied load force

Power spectral density is different in
sensorimotor and posterior parietal
areas in four different walking
conditions. Power spectral density of the
brain in conditions of walking while
wearing the exoskeleton have more
similarities together than free walking.

Nakagome et al.
(2017)

OG - Self-paced - 64-channel EEG,
6-channel EMG, 17
IMU

6 (5M) Level ground walking, stair descent,
stair ascent, ramp ascent, and ramp
descent are the activities that
participants performed. Each
participant performed the tasks for 20
times.

Unscented Kalman Filter was used to
predict limbs activation using EEG
signals.

Weersink et al.
(2019)

OG 150 Self-paced - 32-channel EEG 20 (7M), 64.95±
7.2

The participants performed two
experiments with 10 min in between: 1-
walking normal (with swinging arm)
2-walking without swinging arm.

The relation between arm swing in
walking and a step ERD-ERS pattern in
high-beta/low-gamma band with the
SMA shows the SMA’s role in
integration of cyclic anti-phase
movement of upper and lower limbs.

Hasan et al. (2019) - - Self-paced 1.5 s before the
event and 0.5 s of
post event

8-channel EEG and
one-channel EMG
and 9 IMU sensors

7 (5M), 27.4± 3.1 Each participant completed 140 trials,
which consists of rest, start walking,
stop walking and rest again.

Classification of walking intention
(active) and non-intention (in-active) by
SVM
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4.3. Analysis of participants’ age

To analyze the age of the participants, when the age of the
participant is unknown, the research is excluded in the visualization
of Figure 6. In this regard, there is a significant gap in the ages
between 40 and 60 years old as only studies had participants in this
range of age.

4.4. Analysis of locomotion duration

The duration of locomotion task varies from seconds to hours
(Figure 7). In this regard, when it comes to single walking, the
experiment on the treadmill with a duration of 12 min is the
primary source for experiments. To make the results of studies with
different duration comparable, the effect of fatigue on the muscles
needs to be studied, and one solution could be recording the data
after the locomotion task for a specific time.

4.5. Analysis of locomotion distance

Besides the duration, another parameter for assessing the
locomotion demands is the distance when the participants were
asked to walk overground. The walk distance falls in a range of 1
to 150 meters. For better demonstration, only the distances up to
30 meters are shown in Figure 8.

4.6. Brain activation in brain-body imaging
experiments

In this section, the corresponding brain activation to the
locomotion is presented. Comparison of the brain activation areas
for the locomotion tasks are shown in Figure 9. In this figure,
we have only shown the results of the reviewed papers that have
specifically mentioned the brain regions’ activation sources and
their effects. However, if a study generally describes the cortex
area is excluded from this visualization. In this figure, ∝ is the
proportional symbol, ↑ shows increasing, and ↓ shows reduction of
an item. For instance, when the OA’s walk speed increases, oxyHB
in the Supplementary Motor Area increases.

5. Discussion

In this section, the configurations of locomotive and cognitive
demands, the research interests regarding neurological and
musculoskeletal drivers, and the observational constraints from the
sensing techniques are discussed concerning the impact of brain-
body imaging sensors on the design methodology of experimental
protocols for measuring dynamics of brain, body, and behavior.
Since few papers in the field have adopted a conceptual framework
to evaluate the quality of the neurological and musculoskeletal
correlates of human locomotion extracted using variousmethods, it
is not easy to compare these state-of-the-art methods. Therefore, in
this section, we focus on establishing the elements of the proposed
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TABLE 4 Brain-body imaging in cycling.

References Surface Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Billaut et al. (2013) Ergometer cycle 128.7± 12.5 Fifteen 5-s cycling
sprints interspersed
with 25 s of rest

2 pairs of NIRS and EMG
from three muscles.

10M athlete 22.8±
4.4

All of the participants are from sports
clubs and have cycling experience

According to PFC data recorded by
fNIRS, during intermittent, short,
sprints, central; nervous system
regulates quadriceps muscle recruitment
and limits the development of muscle
fatigue.

Keramidas et al. (2011) Ergometer cycle Self-paced (60–90) 30 min for the
constant power
testing

3-pairs of NIRS 8, 23.9± 4.6 The experiments consisted of three
parts: 1- maximal oxygen uptake 2- a
control constant power test 3- a
constant power test

Performing respiratory work before an
exercise test affects the oxygenation of
the legs and respiratory muscles but not
the frontal cortex.

Radel et al. (2017) Ergometer cycle - The participants
performed 10 min
or 60 min exercising

2-channel NIRS 22 (15M), 21.27±
2.07

Attentional focus as assessed three times
during performing exercise by
indicating a point in an analog range of
completely on task to completely off
task.

Based on oxyHb in right dorsolateral
PFC and right medial frontal cortex, the
brain’s region associated with mental
effort is disengaged with the brain’s
region linked to resting activity in order
to keep mental resources for the
maintenance of exercise.

Racinais et al. (2014) Ergometer cycle Not below 70 - 2-channel NIRS and
4-channel EMG

25 cyclists, 37± 8
years

The workload was increased by 25
W/min until the cycling rate drops
below 70

Metabolic and ventilatory events may
affect both muscle and cerebral
oxygenation levels, and in turn, muscle
employment

Smith and Billaut
(2010)

Ergometer cycle Qualitat-ively: Low/
medium/ high

Ten set of 10-s
cycling with 30 s of
rest

2-channel NIRS and EMG
electrodes

13M soccer and
rugby players, 23.6
± 3.7

Subjects were exposed to a gas for
10-min while sitting on the ergometer.
The gases used in this experiment were:
normoxia, and hypoxia

During repeated short sprint cycling,
although O2 availability influences the
PFC, it doesn’t affect the muscles.

Shibuya et al. (2004) Ergometer cycle 90 to find the
maximal oxygen
uptake

147.2± 3.4 s NIRS 5M, 24.6± 0.4 Subjects breathed through mask
connected to hot wire flow meter to
measure the respiratory flow.

Exhaustive exercise induces the decrease
of cerebral function. Fatigue resulting
from dynamic exercise decreases the
cerebral cortex activity.

Subudhi et al. (2007) Ergometer cycle Above 50 Until the
participants get
exhausted

2-channel NIRS 13M cyclist, 30± 7 Subjects inhaled gas for less than 2 min
before the experiment. Gas: normoxic or
hypoxic

NIRS study on athletes show that
incremental exercise performance under
normoxic conditions is not possible to
be limited by changes in cerebral
oxygenation.

Subudhi et al. (2009) Ergometer cycle - Until the
participants get
exhausted

Multi-channel NIRS 25 (23M) For the experiments two gases of
normoxic and hypoxic were used

During high-intensity, cortical
deoxygenation is not restricted to the
brain’s pre-frontal part. It is possible
that deoxygenation in pre-motor and
motor cortices contribute to fatigue
and/or decision to stop exercising.

(Continued)
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TABLE 4 (Continued)

References Surface Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Thomas and Stephane
(2008)

Ergometer cycle Above 60 13.3± 0.3 min 2-channel NIRS and EMG 13M right-handed,
24.9± 1.5

All participants had 6.1± 0.9 h/week
training

During progressive maximal cycling
exercise, a reduction in PFC
oxygenation before motor performance
failure is reported.

Pires et al. (2016) A speed bicycle
attached to a
cycle-simulator

Self-paced 4 km
time trial (TT4km)
and maximal
control-pace
incremental test
(MIT) with 80

699± 67 s for MIT
and 359± 17 s for
TT4km

32-channel EEG and
32×32 NIRS and a pair of
EMG and gas analyzer for
recording
Cardiopulmonary Data

9M trained road
cyclists, 32.9± 7.3

7 min warm up was performed before
the experiment. This includes 5-min
TT4km and 2-min MIT at 80

According to oxyHb in PFC and vastus
lateralis muscle, at the closing stage of
different cycling task, when the oxygen
level (VO2MAX) is matched, similar
motor output (EMG and motor output)
is recorded though existence of different
disturbances before the final point.
Activation of M1 in through the
exercises may represent that this part
plays a role in centrally-coordinated
exercise regulation.

Fumoto et al. (2010) Ergometer cycle 60 15 min 24-channel NIRS 10 (9M), 32± 2.2 To assess psychological mood, subjects
were asked to answer questionnaires.

Cycling task increases the brain’s activity
in ventral PFC region. This may cause a
reduction in negative mood.

Ludyga et al. (2016) Ergometer cycle 60, 90, and 120 3-min for each
speed

32-channel EEG 36 (24M) cyclists 27
± 3

The participants had at least 4 h cycling
training per week within the last 6
months before the experiment.

Improvement in cycling training is
closely related to brain cortical activity.
Also, the higher cadence, the greater
brain functional response.

Jain et al. (2013) Stationary bicycle
with a rigid,
reclined
backboard

2.1 s/cycle (±0.5
s/cycle)

20 min with a short
break after 10 min

EEG: 64 channels EMG:
10 Channels

10, Range: 22-32
Median: 26

A warm-up consisting of 5-min
self-paced walking and 2-min cycling at
100 W with pedal cadence of 80 rpm
was performed

During pedaling, the brain processes a
great amount of sensory activities.
Cortical activities in pedaling reaches to
its maximum in transitioning the legs
from flexion to extension and vice versa

Schneider et al. (2013) Ergometer cycle Five pedaling
exercises at 90

2 32-channel EEG and 7
muscle recording by EMG
and electronically braked
cycle ergometer

8, 5M aged 27± 4
and 3 female aged
24± 2

A standardized warm-up (i.e., 5 min at 1
W/kg, 2 min at 3 W/kg, and 1 min at 5
W/kg) and a 5-min recovery period was
used before doing the task.

Besides showing the possibility of
localizing brain cortical activity during
pedaling activity, it is shown that motor
cortex activity increases with the
increasing of power level and
significantly mirrored muscle activity.

Enders et al. (2016) Ergometer cycle 97 by average
(between 90 and
100)

7:04 min by average
(range: 6:01 to 8:58
min)

64-channel EEG cap EMG 10M experienced
cyclists

Each subject performed the tests on 3
different days. First day: finding the
maximum aerobic power of participants
Second day: perfuming the test at 85%
of individual ability and familiarization.
Third day: repeating the second day test
and data recording

By increasing the fatigue, EEG power
increases. The maximum increase
occurs in frontal area of the cortex.
timing of event-related
desynchronization occurring in SMA
denotes the source of producing force
and its transition from flexion to
extension in pedaling.

Fontes et al. (2020) Ergometer cycle 60 30 s cycling and 30 s
rest for four times

fMRI 22M, 24.4± 7.1 The intensity of the cycling was
increased by 25 W at each round

By increasing the exercise’s intensity,
PFC activities decreases. Cerebellum
was activated only in low-intense
activity while motor cortex is activated
in low and high intense activities.
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TABLE 5 Brain-body imaging in walking-running.

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Suzuki et al. (2004) Treadmill - Walking: 3, 5, and
running: 9

30 s rest, 90s
locomotion, 30 s
rest. Three
repetition for each
subject

NIRS (42 channel)
with 28 optodes
consisting of 12
light-source fibers
and 16 detectors

9, right-handed,
healthy subjects
(7M 28.1± 7.4,
Range 22–46

Starting task was selected randomly
between 3 or 5 km/h speed. Participants
could swing their hands freely.

In the frontal cortices, in contrast to
deoxyHb, oxyHb increases in
acceleration period proceeded by
locomotion task. This change in
oxygenated hemoglobin is greater in
PFC and M1 at high-speed locomotion
and there is less change in SMC.
Consequently, to adapt to locomotor
speed, PFC and M1 play crucial roles.

Nordin et al.
(2019b)

Treadmill - Walking: 1.8, 3.6,
5.4, 7.2 and running
7.2, 9

18 min (3 min for
each speed)

128-channel EEG,
8-channel EMG,
optitrack with 10
cameras

9 (6M) random obstacles were added to during
walking/running on the treadmill

The dual-layer EEG cap reduced the
artifacts effects on the data. Spectral
power of delta, theta, and alpha
frequency bands in SMA and PMC
increased within 200 ms after the
obstacle presence.

Jahn et al. (2004) Imaginary - Walking: 3.6 and
running: 9

0.33 fMRI (34 slices of
brain was covered)

13, mean: 27.3
range: 21–35

Imaginary walking with closed eyes in
supine condition: tasks: rest, standing,
walking, and running in 20-s sequences

In slow walking spatial navigation plays
a more significant role and this role is
played by the parahippocampal cortex.
In an unhindered locomotion such as
running vestibular and somatosensory
cortex get deactivated and this prevents
the disruptive effect on the spinal
pattern and sensory signals.
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conceptual framework and discuss how to assess the neurological
and musculoskeletal measures extracted from brain-body imaging
sensors for further clinical use.

5.1. Neurological and musculoskeletal
drivers

According to our systematic review results, most studies
followed the philosophy of medical diagnosis that is rooted in
conducting statistical analysis between different groups (e.g., young
vs. old, control vs. patient). These groups were asked to perform
specific behavioral protocols under which their performances were
supposed to show neurological and musculoskeletal differences
reflected by the brain-body imaging data. Therefore, various
experimental protocols were explored to capture the differences in
statistical norms among groups (Kashuba et al., 2020; Warmerdam
et al., 2020). The typical statistical analysis approaches include
comparisons of statistical norms (e.g., p-value, effect size) and
classifications based on machine learning (e.g., accuracy, precision)
(Figueiredo et al., 2018; Hatami et al., 2019; Patil et al., 2019;
Hausmann et al., 2021). Few studies adopted representation
learning methods based on deep neural networks to explore
patterns and features of brain andmotion signals to show the group
differences (Vásquez-Correa et al., 2018; Talo et al., 2019; Song
et al., 2021). Furthermore, specific quantitative assessments, such
as clinical outcomes or symptoms, were identified as ground truth
so that the same reference could examine both groups. However,
no consensus on experimental protocols caused challenges in
determining reliable ground truth or references. Otherwise, few
studies provided explanations and rationales for the design
methodology of behavioral experiments.

Although it lacks standardization of experimental protocols,
existing studies still generated consistent conclusions on
neurological and musculoskeletal correlates of human locomotion.
For example, most studies revealed that the active brain regions
during various walking protocols include the motor, sensory, and
prefrontal cortexes. The brain areas involved in walking behavior
span SMA, premotor cortex, sensorimotor, M1, and left and right
prefrontal cortex. Notably, the age-related changes showed that
the involvement of PFC increased among old adults, especially
during high-speed walking. When the subjects need to adjust their
postures for cycling, the involvement of PFC decreases in order
to keep mental resources for the maintenance of these additional
requirements during exercise. The PFC has been implicated in
planning complex cognitive behavior, especially in the resting
status. Few studies explored the running protocols; therefore,
there is little consistent knowledge regarding neurological and
musculoskeletal correlates of human running. It is noteworthy
that when subjects are required to conduct spontaneous cognitive
tasks, the PFC activation increases in all age populations, and
its increase is more significant in older adults with and without
cognitive impairment. These conclusions have motivated many
hypothesis-driven research projects on disease-related changes in
neurological and musculoskeletal correlates of human locomotion.

Besides the consistent understanding of neurological correlates
of human locomotion, mixed results and conclusions exist due
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TABLE 7 Brain-body imaging in dual-task walking.

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Mirelman et al.
(2017)

OG/ Mat 30 SW-YA: 1.349±
0.157 SW-OA:
1.069± 0.1137
DTW-YA: 1.238±
0.136 DTW-OA:
1.058± 0.123

- fNIRS (6 channel),
walkway gait
pressure mat

YA: 23 (10M): 30.9
± 3.7 and OA: 20
(10M): 69.7± 5.8

Each round started and ended with 20 s
of standing quietly, with the instruction
to refrain from talking and moving the
head. More complex walking:
negotiating with two physical obstacles
during walking. DTW: walking while
talking (subtracting 3 s from a 3 digit,
predefined number)

Needed cognition increases for both young
and older people but for older people is more
significant. Gait variability in older adults
increases with the increase in pre-frontal
activation. pre-frontal activation in older
people is higher indicating older people rely
more on their cognitive resources during
walking. Neural activation in the PFC
increases with task complexity, similarly, in
both younger and older adults.

Holtzer et al. (2011) OG/ Room 4.572 SW-YA: 0.1222±
0.175 SW-Old 0.716
± 0.177 DTW-YA:
0.810± 0.175
DTW-OA: 0.362±
0.131

- fNIRS (16 channels) YA: 11 (4M): range:
19–29 OA: 11 (4M):
range: 69–88

quiet room wearing comfortable
footwear with the fNIRS attached to the
front of the head. DTW: walking while
talking alternate letters of the alphabet

PFC activation increases in WWT compared
to mere walking. This increase is higher in
young adults than older adults (contradiction
with Mirelman et al., 2017). The results are
compared to the WWT and shown that single
walking task needs less cognitive resources.

Lu et al. (2015) OG - Self-paced walking 1 min fNIRS 8×8 17 (9M), 23.1± 1.5 WCT: subtracting 7 from a 3-digit
number and speaking out the number.
WMT: carrying a 600-ml bottle on a tray
while walking

PFC, M1, and supplemental motor areas data
obtained by fNIRS show that left-PFC has the
highest oxyHb during WCT and there is a
minor increase in oxyHb in initial phases of
NW andWMT. M1 and supplementary areas
get more activated during WCT and WMT.
WCT cause a reduction in cadence, stride
time, and stride length while WMT only
diminishes the stride length.

Makizako et al.
(2013)

OG - Self-paced walking
(SW: 3.5± 0.6,
DTW: 3.1± 0.7)

20 s for performing
a SW or DTW

16-channel fNIRS
(6 emitters and 6
detectors)

16 right-handed
OA (10M) with 65
years or older

Each participant completed three SW
and DTW. 10 s rest before the task and
20 s rest after the task were considered.

During DTW, pre-frontal activation is
observed among older adults with mild
cognitive impairment

Mirelman et al.
(2014)

OG/
7-meter
sensor-
carpet

5 walks
of 30
meters
for each
trial

SW (4.86± 0.36),
walking while
counting
(4.64±0.54),
walking while S7
(4.43± 0.50)

20 s during the task 6-channel NIRS 23 (10M), 30.9±3.7 The conditions are: 1-SW 2-walking
while counting forward 3- walking while
subtracting 7 from a 3-digit number
(S7) 4-standing while S7

It is shown that DTW is coupled with frontal
brain activation. The observed changes are
directly related to the cognition during
walking and not verbalization.

Talamonti et al.
(2021)

OG - SW: 4.169± 0.130
DT: 3.859± 0.144

5 min combination
30 s walking/
cognition task/ dual
task walking

256-channel fNIRS 24, Older than 60,
Participants were
divided to two
groups of high and
low cardiovascular
risk factors
(HCVRFs and
LCRFS) based on
Framingham score.

Cognitive task: remembering 2-back
heard number. Dual task walking:
performing cognitive task while walking

HCVRFs show greater task-related cortical
response specifically in pre-frontal caudal
and rostral dorsal regions in the beginning of
12-month training. Physical training had
more cortical activation reduction for
HCVRFs. Cognitive performance and stable
gait speed throughout are associated with
12-month physical training.

(Continued)
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TABLE 7 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Pizzamiglio et al.
(2017)

OG - Self-paced walking,
walking while
conversing with a
friend and lastly
walking while
texting with a
smartphone.

- 64-EEG channel, 2
digital force sensing
resistor sensors for
recording
movement. A
digital button
(1-to-0 active edge)
to distinguish start
and end points

14 (5M), 26± 3 3 min of resting standing still (i.e.,
baseline) with their eyes open looking at
a standard spot on a blank wall. Then
walking for the purpose of
familiarization and then recording for
mere walking, then walking while
conversing, finally walking while texting

Real-life activities are associated with
different frequency-specific neural
biomarkers. Walking while conversing is
integrated with an increase of theta and beta
neural power in electrodes located over
left-frontal and right parietal regions.
However, walking while texting is
accompanied with a decrease of β neural
power in a cluster of electrodes over the
frontal-M1 and SMC.

de Tommaso et al.
(2015)

OG 10 Self-paced 15 min 21-channel EEG,
4-channel EMG

17 (5M), Range:
18-65

Each subject did: sitting (5 min),
standing (5 min), walking (5 min), P300
oddball was performed during standing
and walking

P300 component amplitude increases during
walking compared to standing. There is a
negative correlation between age and P300
component vanishing during walking.
According to motor-cortex and EMG
activities, abnormal gait is distinguished from
normal ones.

Meester et al. (2014) Treadmill - SW: 4.39± 0.86
faster walking: 5.33
± 0.94

30 s for performing
the task and 20–40 s
for rest. For five
times at two speeds

4-channel fNIRS
with two sources
and two detectors
and spinal cord
reflex activity
measured by soleus
H-reflex

17 (7M), 15
right-handed and 2
left-handed. 27.8±
6.3, Range: 22–44

The cognitive task was counting
backward in steps of seven from a
defined number.

Although PFC activation doesn’t change by
increasing the walking speed, it would be
activated in response to cognitive loads.

Eggenberger et al.
(2016)

Treadmill - 0.2, 3, 5 for walking 9 min walk 30 min
exergame

fNIRS (2 sensors) 19, 74.9± 6.9 for
exergame, 14, 74.9
± 6.9 for balance

intermittent Interventions of exergame
and balance during walking

Intermittent of exergame and balance reduce
the oxygenation of the PFC. This reduction is
more significant in exergame. This reduction
could be relevant to improve mobility and
falls prevention in the elderly.

Fraser et al. (2016) Treadmill - YA: 2.64 OA: 1.78
And also preferred
speed

2 min fNIRS (16 detector) 19 YA 21.83± 1.92
14 OA: 66.85± 5.26

DTW: Walking and talking and
remembering words and report
immediately (1-back or 2-back)

After controlling the walking speed, the
difference between YA and OA could be
revealed as when the difficulty of task was
increased, oxyHb in PFC of OA was
increased.

Lau et al. (2014) Treadmill - 2.88 and 4.5 5 min standing and
10 min walking

248-channels EEG 8 (7M), Range:
20-31

Task: visual oddball discrimination, 20%
target and 80% standard stimuli were
displayed on a monitor to the
participants at eye level 1 m in front of
them.

Walking has lower functional connectivity
between SMC areas than standing.

Castermans et al.
(2011)

Treadmill - 1.5, 3, and 4.5 6.5 min 32-channel EEG 7, Range: 25–33 The dual task was counting the green
letters appearing during 3 s on a screen
in front of the participants. Task: 0.2 s
flashing light, 0.1 s between two flashes
and 1 s interval and repeating that for 12
times for 25 target letters.

Feasibility of suing P300 during walking
while recording EEG signals from parietal
and occipital areas is shown, which can be
beneficial for ambulatory conditions.

(Continued)
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TABLE 7 (Continued)

References Surface Dist.
(m)

Speed Km/h Duration
(min)

Sensors Participants
No. and age

Special condition Contribution

Malcolm et al.
(2015)

Treadmill - YA: 2.4 and 5 OA:
2.4 to 4.8 (3.5 by
average)

About 4 min for a
block

EEG (72 channel) 17 YA (9M), 27.2±
4.6 Range:
21.8–36.1, 16 OA
(7M), 63.9± 4.0,
Range: 57.7- 71.0

OA performed five blocks of the
response inhibition task while sitting, 9
or 10 blocks while walking and two
blocks only walking. YA completed
three or four blocks sitting, a minimum
of four blocks walking slowly (range: 4-8
blocks), at least four blocks walking
quickly (range: 4-8 blocks) and two
blocks of each speed walking without
the task. Task: speeded visual Go/No-Go
task

By examining the variability and time of
stride in different configurations, only the
OA’s accuracy drops significantly when
performing inhibitory task while walking.
Also, the brain’s performance in YA is more
modulated than OA according to the EEG
data of cortical activities. The reason might
be an age-associated loss in flexible resource
allocation across multiple tasks.

De Sanctis et al.
(2014)

Treadmill - 2.4, 5 About 4 min for a
block

EEG (72 channel) 18 (10M) Range:
21.8-36.1, Mean:
27.2

Doing a Go/No-Go task by shown
pictures and selecting by mouse while
sitting, walking slowly and walking
briskly

When walking while doing another task,
stride time in walking grows by increasing the
cognition load of the task. Also, by increasing
the age, the cortical motor behavior shifts
from automatic to more controlled process.

Mazurek et al.
(2021)

Treadmill - 2.4, 5 About 4 min for a
block

EEG (64 channels
and 128 channels)

10, Range: 20–72 Doing Go/No-Go task while walking
similar to De Sanctis et al. (2014) 16
blocks: one training block at the
beginning, seven sitting blocks, seven
walking blocks, and one task-free block
(walking on the treadmill without a
task)

Developing and easy customizing method for
configuration EEG electrodes, which is
improving the spatial localization of without
specialized hardware or software.

Lau et al. (2012) Treadmill - 2.88 5 min standing
followed by 10 min
walking

248-channel EEG 8, Range: 20–31 Showing stimulus while the participants
stand/walk should press a button when
seeing the target stimuli.

Based on studying visual cortex in visual
oddball discrimination during standing and
walking, Weighted Phase Lag Index
introduced as a potential method for
recovering cognitive brain dynamics in the
presence of gait-related artifacts.

Gramann et al.
(2010)

Treadmill - 2.88, 4.5 Two 10-min for
each condition (60
min in total)

248-Channel EEG 11 (10M), 24.2±
3.4

A computer screen 50cm away from
participants showed 80% non-target and
20% target stimuli, vertical or 45◦

rotated black cross for 500 ms. Three
conditions were standing, slow walking,
fast walking, and running (removed
because of artifacts)

Inside or near right-lateral occipital cortex,
and superior and inferior parietal cortex,
according to ICA, are activated in the target
-stimulus ERPs. In contrast, 40% of variance
in 350–500 ms of the target-response ERPs
was accounted for all movement conditions
with activation in or near anterior cingulate
cortex.
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FIGURE 3

Task-Surface-Brain sensor visualization: the most outer layer shows the type of the locomotion task; walking, running, cycling, and dual-task

walking. The middle layer shows the type of the surface used for the body-brain imaging experiment, which are Tr: treadmill, IM: imaginary task, B:

Board with pedals, OG: overground, Erg: Ergometer cycling. The most inner layer shows the type of the brain sensor used in the brain-body imaging.

FIGURE 4

Comparing locomotive intensity in two types of brain-body imaging tasks performed with di�erent rotational speeds: 1) cycling 2) walking on a

board with pedals. Only younger adults have been employed to perform these tasks.

to the heterogeneity of participants’ neurological expressions,
musculoskeletal variance under imprecise experimental protocols,
and observation constraints by the sensing techniques. For
instance, some studies concluded that the cerebral cortex controls
multiple muscles hierarchically through a few synergies during
walking. In contrast, few studies argued that the role of cortical
control during walking might not be valid due to the motion
artifacts of EEG. Furthermore. Subjects that conducted actual
walking were more accurately classified than subjects with
imaginary walking. Subjects that walked on a treadmill showed
different band activities captured by EEG compared to subjects
who walked over the ground. These inconsistent results require

further investment in establishing protocols, standardization, and
benchmarking tools, which also motivated this research work.

5.2. Locomotive and cognitive demands

The primary assumption underlying the experimental
protocols is that the locomotive and cognitive demands could
stimulate changes and patterns in neural activity, which the
brain-body sensors could pick up (Ladouce et al., 2019). Thus,
the knowledge of the simulation mechanisms further guides
the treatment and rehabilitation strategies for potential clinical
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outcomes. However, most experimental protocols involve low-
intensity locomotion tasks, such as walking and cycling, while
few studies conducted high-intensity locomotion tasks, such
as running. In addition, little research explained the design
methodology of the experimental protocol, especially the
research hypothesis of which types of neural activities might
be expected under the experimental configurations, such as
duration, intervals, and frequency. Also, conducting behavioral
studies on human subjects is always challenging, even more,
if considering psychological factors such as state of mind,
concentration, and technical dexterity. Therefore, some studies
integrated cognitive demands into locomotive tasks, such as
avoiding obstacles, determining walking directions, or following an
avatar. Other studies developed a dual-task paradigm to examine
the involvement of cognition in human locomotion.

As illustrated in Figure 1, the conceptual framework argued
that more work is needed to examine the simulation mechanisms,
thus developing a better design methodology for experimental
protocols. The systematic review results showed that several
challenging questions remain in the research field. First,
benchmarking the locomotive and cognitive demands will be
needed. Locomotive tasks have several configurable parameters,
such as duration, intervals, and frequency, which need to divide
into several levels or intensities. Cognitive tasks also have
configurable parameters, such as type and complexity, depending
on working memory and executive functions. For instance, for a
specific subpopulation’s demographic, locomotion and cognition
capacity, researchers in designing experimental protocol need a
basic understanding of which levels of demands might stimulate

the anticipated brain activity. Knowledge of locomotion disorder
patterns and corresponding brain areas has helped establish
experimental protocols for several neurological diseases, such as
parkinsonian gait for Parkinson disease (Ghai et al., 2018) and NIH
cognitive toolbox for cognitive impairment (Gershon et al., 2010).
Second, manipulation of the tasks needs more research investment.
Existing studies rarely consider how the sequential configuration
of the tasks stimulates neural activity. Most protocols conducted
a heuristic-designed sequence of locomotive tasks and anticipated
the brain-body sensors could capture the subtle changes or patterns
of neural activities. However, the loop from demands to brain
and musculoskeletal activities to sensors, in Figure 1, shows that
manipulation of the demands could generate richer information
than the heuristic-designed protocol. Third, the experimental
protocols should be easily administered to avoid confusion and
distraction for participants. Few studies gave a clear description
of how the protocols are being instructed. Cueing the participants
toward specific tasks could have influenced the expected neural
activity and cognitive performance. Therefore, most researches
argued that when the experiment protocol is administered and
instructed by assistance of a computer is less likely that neural
activity and cognitive performance get adversely affected compared
to the case that the experiment is controlled and instructed by
interference of a human. Hence, replication of previous experiment
protocols that were controlled by a human as examiner with a
computer-assisted administration provides a high-quality data with
removal of the human interference affects (Vrana and Vrana, 2017;
Dror, 2020; Young et al., 2022). Moreover, computer assistance in
the cognitive load assessment could make it feasible to conduct

FIGURE 5

Intensity of locomotion in existing experiment protocols.
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FIGURE 6

The participants’ age distribution in each locomotion experiment. The vertical axis shows the age of the participants and the horizontal axis shows

the number of participant in the reported experiment protocol.

the experiment at places out of the clinics and laboratories. These
places (e.g., participants’ home or a local clinic) are accessible to
the participants and individuals are comfortable to perform the
experiment with assistance of a computer without interference
of an examiner. As positive side effects of the computer-assisted
experiment administration, high-quality and cost-effective patient
care could be provided (Porrselvi, 2022; Young et al., 2022).

5.3. Observation constraints by the sensing
techniques

Another dimension of our systematic review results is
illustrating the impacts of the observation constraints by the brain-
body sensing techniques. Previous work has reviewed and discussed
the advantages and disadvantages of these techniques, including
tolerance of motion artifacts and spatial and temporal resolutions.
However, most studies reviewed in this work did not explain the
rationale for selecting specific sensing techniques in experimental
protocol design. According to our review results, it is obvious to
see the impacts of sensing techniques on the research results and
generated knowledge. Therefore, we summarize these impacts for
enabling guidelines for future researchers to design experimental
standards and benchmarks.

5.3.1. Tolerance of motion artifacts
Prior knowledge of sensing techniques has concluded that

among three of them, MRI has the lowest tolerance to motion

FIGURE 7

Brain-body imaging experiments’ duration.

artifacts, EEG less, and fNIRS the highest. Despite efforts in signal
processing and denoising to improve each technique’s tolerance
to motion artifacts, most studies still followed the knowledge
and showed different experimental results. Studies that adopted
MRI has considered its limited tolerance of motion artifacts and
mainly designed imaginary locomotion or simulated surrogate
tasks rather than actual locomotion in their experiments (Stolbkov
et al., 2019; Amemiya et al., 2021). The central assumption of
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FIGURE 8

Comparing distance the walk distance in two types of Brain-body imaging experiments: 1) DTW and 2) SW.

these studies is that neurological correlates of these imaginary
or surrogate tasks are closely related to neurological activation
during actual locomotion. However, our summarized results in
locomotion tables and Figure 9 showed that these imaginary or
surrogate tasks could not simulate the complex dynamics the
brain must execute to adjust and maintain the musculoskeletal
patterns during actual locomotion. Especially studies that utilized
EEG have shown that actual walking stimulated brain activation
patterns that could be classified with higher precision than imagery
walking. Therefore, studies that adopted EEG sensors designed a
more comprehensive range of locomotion tasks, from imaginary
walking and cycling to running. Furthermore, the fNIRS studies
are preferred in high-intensity locomotion experiments. More than
50% of studies reviewed in this work that conducted cycling and
running tasks adopted fNIRS sensors.

Sensitivity of EEG data to motion artifacts is a research concern
and the results of some previous published research due to not
considering an extensive removal of motion artifacts has been
questioned. For instance, the reported EEG results indicating the
changes in high-gamma frequency band during walking (Gwin
et al., 2011) could be caused bymotion artifacts as well (Castermans
et al., 2014). To address the considerable drawback, different
denoising methods to employ during or after data collection
have been developed. During data collection, artifact removal
is associated with hardware modifications. In this respect, one
effective way has been introduced to separate electrophysiological
signals from non-neural signals. To this end, in one approach,
two layers are used below the EEG cap. A silicone layer is used
on top of the scalp to block electrophysiological signal. Then,
a simulated conductive scalp with similar impedance to human
scalp is used to measure the voltage differences generated by gait
dynamics (Snyder et al., 2015). In another approach, well-known as
a EEG dual electrode design, simultaneously EEG data and isolated
motion artifacts are recorded by pairs of the electrodes that are
electrically independent and mechanically coupled (Nordin et al.,
2018; Clark et al., 2020). After the data collection, denoising is
coupled with software data processing. In this regard, Independent
Component Analysis (ICA), low, high, and band band pass filter
are routinely applied. Besides these remedies, ICA-based methods
such as adaptive ICAmixturemodel algorithm (Palmer et al., 2006),
extended infomax ICA (Lee et al., 1999) and multiple mixture ICA
(Allen et al., 2000) approaches are utilized (Gwin et al., 2010).
Moreover, a developed conductive head phantom and robotic
motion platform has emerged as a powerful tool to analyze the

artifact removal methods through generating a ground truth for
EEG signal. This device is used to evaluate artifact removal methods
such as dual-layer EEG and Artifact Subspace Reconstruction
(Richer et al., 2020). Also, this device is used to show that electrodes
with larger surface reduces the electrodes vulnerability to motion
artifacts (Symeonidou et al., 2018). In addition, this device is
employed to assess the effect of the motion artifacts parameters
such as frequency and amplitude (Oliveira et al., 2016).

5.3.2. Spatial and temporal resolutions
MRI has the highest spatial resolution among the three sensing

techniques while fNIRS has the lowest (only centimeters under
the skull) (Li et al., 2022b). Accordingly, MRI studies discussed
their results with a detailed description of the brain cortex, such
as SMA and the dorsal premotor cortex. Nonetheless, lacking the
portability feature has significantly limited the application of the
MRI in the brain-body imaging of locomotion studies mostly to
imaginary task and thus, this scope of study has been deprived
from the high spatial resolution of the MRI imaging technique.
On the other hand, although EEG has lower spatial resolution than
MRI, appropriate source localization approaches could improve its
spatial resolution at a cortical level. When source localization is
used, the spatial resolution of the fNIRS and EEG are comparable.
However, EEG has the highest temporal resolution among the three
methods and permits the highest and the most precise data brain
investigation compared to the fNIRS and MRI methods. Thus,
Looking into the results summarized in our work, we can see that
studies that adopted EEG sensors provided the neurological and
musculoskeletal correlates on a fine-grained temporal scale, such
as neural activation patterns during different movement periods
(e.g., swing, stance). These features has made the EEG the most
popular technique in the explorations of the brain-body imaging
of human locomotion.

5.3.3. Miscellaneous constraints
We also observed other constraints in the design methodology

of experimental protocols, such as imbalanced ages of participants.
For example, most studies recruited participants aged below 40,
while fewer recruited participants older than 60. A significant
age gap (40–60) among the participants involved in these studies
existed. However, the adults within this age range are baby boomers
in the U.S., a large sector of the population, a group deemed by
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FIGURE 9

Brain areas activation patterns during locomotion tasks.
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the Centers for Disease Control and Prevention (CDC) as mid-life
stage adults. This age population is facing an increase in clinical and
other preventive services to support maintaining good health into
older age (Pearson-Stuttard et al., 2019; Doubeni et al., 2021), which
means this age group should be a critical population for studies on
neurological and musculoskeletal correlates of human locomotion.
Although there might exist real-world challenges to recruiting this
specific age population, additional investment in balancing the
age distribution of the participants is needed to fulfill a cross-
lifespan understanding of human locomotion and its neurological
and musculoskeletal correlates.

6. Conclusion

This paper explores the topic of the design methodology
of experimental protocols that aim to study neurological and
musculoskeletal correlates of human locomotion using brain-
body sensing techniques. The review of many types of neural
activities stimulated by human locomotion demonstrates the
importance of quantitative analysis using brain-body sensors in
potential healthcare applications. By reviewing the current design
methodology of experimental protocols, this paper illustrates that
the protocol design significantly impacts the experimental results
due to the heterogeneity of participants’ neurological expressions,
musculoskeletal variance under the imprecise locomotive and
cognitive demands, and observation constraints by the sensing
techniques. Finally, the impacts of the experimental protocols are
discussed by reviewing the practical issues to provide implications
and guidelines for future researchers to design experimental
standards and benchmarks.

Brain-body imaging of human locomotion is a vast area
of research. This paper focused on a significant research issue:
how to reproduce human locomotion experiments. Therefore, we
conducted a systematic review of existing experiment protocols
to examine various settings and conditions, such as locomotion
intensity, locomotion duration, locomotion distance, brain sensing
technologies, and corresponding brain activation expressions.
In future work, technologies for locomotion sensing and their
advantages and disadvantages will be further examined and

discussed. Also, upper-limb locomotion, such as shoulder, elbow,
wrist, and finger movement, is a broad study that will be examined
in another work. Finally, as the participants of this systematic
review are healthy, similar brain-body imaging experiment
exploration for neuromechanical disorders would be a valuable
work to extend.
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