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Experimental accessibility of generalized fluctuation-dissipation relations
for nonequilibrium steady states
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We study the fluctuation-dissipation theorem for a Brownian particle driven into a nonequilibrium steady
state experimentally. We validate two different theoretical variants of a generalized fluctuation-dissipation
theorem. Furthermore, we demonstrate that the choice of observables crucially affects the accuracy of deter-
mining the nonequilibrium response from steady state nonequilibrium fluctuations.
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According to Onsager, in thermal equilibrium the reaction
of a system to a small external perturbation and the decay of
an internal fluctuation created by thermal noise are indistin-
guishable. This property, characteristic for the linear re-
sponse around equilibrium, is expressed by the fluctuation-
dissipation theorem (FDT)

kTR, (1) = (a(n)[- 3,E(0)]) (1)

which relates the time-dependent response R, ;(¢) of an ob-
servable a(r) to a perturbation % to the correlation function

between a(r) and the derivative of the energy rate E with
respect to & [1]. Here, kgT is the thermal energy.

Since the FDT allows to determine response properties
such as mobilities or susceptibilities from equilibrium mea-
surements of diffusivities or power spectra and vice versa, it
has found widespread application in different scientific fields
such as statistical mechanics, biophysics, chemical or solid
state physics [2]. In its original derivation the FDT holds
only close to thermal equilibrium. Therefore, violations of
the FDT are a clear fingerprint of a nonequilibrium system.
So far, recent theoretical [3-8] and experimental progress [9]
demonstrated that the FDT can also be extended to a specific
class of nonequilibrium systems, i.e., nonequilibrium steady
states (NESSs). In [8] it has been shown that a similar ex-
pression as in Eq. (1) can be obtained when the energy is
replaced by the entropy within the correlation function on the
right hand side. Furthermore, it was demonstrated that addi-
tional equivalent forms of the FDT exist, which in principle
allows for infinitely many variants.

In this Brief Report, we experimentally demonstrate the
validity of the FDT in a NESS for two different variants.
Although both are equivalent from a theoretical point of
view, large differences regarding the size of experimental
errors exist. Therefore, the right choice of observables is im-
portant for the accurate determination of the response in such
measurements.

Our experimental setup has been described in detail else-
where [10-12] and will be discussed here only briefly. A
colloidal silica particle of radius r=0.65 um, immersed in
water, is trapped within a three-dimensional torus of radius
R=1.18 um by means of scanning laser tweezers. Using
video microscopy, we track the angular coordinate x of the
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particle with —mR=x<mwR with a spatial and temporal ac-
curacy of 10 nm and 15 ms, respectively. Since the torus is
far away from the lower surface of the cuvette cell (approxi-
mately 50 wm), hydrodynamic interactions with the sample
cell are negligible [13]. The tweezers scanning motion exerts
a nonconservative force f to the particle so that it circulates
around the torus onto which an additional static sinusoidal
potential V(x)=(V,/2)sin(x/R) is imposed. The correspond-
ing total force

F(x)==3,V(x) +f, 2)

with Vy=58kgT and f=30kgT/um [14], drives the particle
into a NESS with an average circulation velocity of v*
=7 um/s. In this NESS, the particle permanently dissipates
heat into the surrounding media, while the system is still
characterized by a time-independent probability distribution
p°(x), measured as shown in Fig. 1, and a constant current j*.
Brownian particles driven by forces such as Eq. (2) have
been discussed in a variety of fields as reviewed in [15].
As in thermal equilibrium, the response of a NESS is
defined as the functional derivative of {(a()) with respect to
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FIG. 1. (Color online) Normalized steady state probability dis-
tributions p;(x) (unperturbed state; solid red line) and p;(x) (per-
turbed state; dashed black line). Inset: (a) Corresponding tilted po-
tentials of unperturbed (red solid line) and perturbed (black dashed
line) state. (b) (sin(x/R)) for different driving forces. The black
dashed line is a linear fit.
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the perturbation £ in the limit of h—0: R, () = %%2)2. How-
ever, in experiments such a functional derivative is not ac-
cessible. For a steplike perturbation of height A% integration

of R, (1) leads to the integrated response

t
RO = [ Rytrar= A
0o —Ah

which is experimentally accessible. Here, the average (a(r)),
is determined after the perturbation is turned off and (a)p is
the average of a in the perturbed state, determined via a
separate stationary measurement. In principle, the FDT al-
lows for many choices of the observable a and the perturba-
tion h. However, due to the symmetry of our system, a con-
venient choice for the observable is a=sin(x/R), which is
obtained immediately by the measured angular coordinate x.
For the perturbation we choose Ah=Af, i.e., a small varia-
tion of the driving force f. In a dynamical experiment, we
switch between the reference NESS and the perturbed NESS
with a period of 6 s for approximately 4000 times by instan-
taneously reducing the driving force f by Af=—4kgT/pum,
while all other system parameters are kept constant. The lin-
ear dependence between a and f, as shown in Fig. 1(b),
ensures that even for a force perturbation of 15% the system
stays within the linear response regime and that Af
=—4kgT/ pm is sufficiently small.

First, we want to demonstrate the violation of the equilib-
rium FDT as given by Eq. (1). Since x=d,E is the conjugate
observable to Af with respect to E, we get kgTR, /(1)
=(a(1)x(0)) with x the actual particle velocity. Thus, by de-
fining for any observable b the integrated correlation func-
tion as Cu(1)= [({a(7)b(0))d7, the integrated equilibrium
FDT following from Eq. (1) reads

kgTR(t) = C(1). (4)

Figure 2(a) shows kgTR (1) (open black circles), from a mea-
surement involving the steplike perturbation, and the inte-
grated normalized correlation function (red solid line), from
a separate stationary measurement. Both quantities oscillate
with a period of 1 s corresponding to the mean revolution
time of the particle. This oscillatory behavior is an inherent
feature of this NESS [12], still present even though the mo-
tion of the particle is overdamped and inertia is completely
negligible. In contrast, the response of an overdamped sys-
tem at thermal equilibrium always decays exponentially. The
fact that the response is more than one order of magnitude
smaller than the correlation clearly demonstrates that the sys-
tem is far away from thermal equilibrium.

The FDT can be generalized to a NESS by choosing the
observable as conjugate to the perturbation Af with respect
to the system entropy s(¢)=—kg In p*(x(z)) [8],

kpR, A1) = (a(t)[— d5$(0)]). (5)

In thermal equilibrium Eq. (5) becomes Eq. (1) since in the

absence of an external driving force dpss reduces to z?AfE /T
[8]. It is convenient to split the entropy production of the
system into one of the medium s,.4 and a total entropy pro-
duction s, [16],
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FIG. 2. (Color online) (a) Integrated response kgTR(t) (open
black circles) and integrated normalized correlation function @(t)
=Cy(1)—(a)(x)r (red solid line). (b) kgTR(z) (open black circles)
and integrated correlation function C,_,s(#) (black solid line) accord-
ing to the integrated generalized FDT [Eq. (7)]. (c¢) Conditional
steady state probability distribution p(x|x,) at the flattest x,
=-1.9 um (black closed bars; v*(xg)=3 um/s, F(xy)=8kgT/pum)
and the steepest xo=—2.6 um (red open bars; 1°(xy)=20 um/s,
F(xo)=55kgT/ um) position in the tilted potential.

*S;:*s;tol_jmed' (6)

According to Clausius, s'med=Q/ T=xF/T corresponds to the

heat flow Q into the thermal bath. The total entropy produc-
tion rate is given by s, =x1*/ (uoT) with the bare mobility
and the local mean velocity v°(x)=j*/p®(x), which corre-
sponds to the average over all stochastic velocities for a fixed
particle position x. After inserting Eq. (6) into Eq. (5) and
integrating over time, the latter becomes [3,8]

kpTR(1) = C(1) = Cos(t) = Ci_s(0). (7

Here, the first correlation function corresponds to the one
occurring also in the integrated equilibrium FDT [Eq. (4)]
but now evaluated under nonequilibrium conditions. The sec-
ond term reflects the violation of detailed balance, which
vanishes under equilibrium conditions (v*—0).

Our measurements [see Fig. 2(b)] confirm the generalized
FDT from Eq. (7) connecting response and correlation func-
tion since within the statistical errors kgTR(f) (open black
circles) and C;_,s(r) (black solid line) coincide. We want to
emphasize that Eq. (7) was tested here over more than two
relaxation times (7,=1.4 s) corresponding to about three
particle revolutions. Due to this short relaxation time (in our
experiment 7,~ R?/D,, with Dy=kgT/(677r) the free diffu-
sion coefficient and # the viscosity of the solvent [12]), in
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contrast to previous work [9], we were able to observe the
generalized FDT along the full damped oscillations of
kgTR(1).

The FDT in the NESS can be brought into a form even
more reminiscent to the equilibrium FDT by introducing the
velocity v(r) =x(r) - v°(x(r)), which is measured with respect
to the local mean velocity v* [3,4,9]. Equation (7) then reads
kgTR(t)=C,(r). A physical reason for this restoration of the
equilibrium FDT in the locally comoving frame can be seen
in measuring the conditional velocity distributions p(x|x,) in
this frame. Their shapes are the same at any position x, as
illustrated in Fig. 2(c) for two specific positions. Both distri-
butions resemble Gaussians with a mean equals to the local
mean velocity 1°(x,) and a width of 0?=2D,/At, where At
=20 ms is the time interval over which the velocity x was
determined. Thus, locally the velocity fluctuations are indis-
tinguishable from equilibrium ones even though nontrivial
velocity correlations develop in a NESS even when ex-
pressed in the locally comoving frame.

Somewhat surprisingly, the conjugate observable appear-
ing in the correlation function on the right hand side of the
generalized FDT in Eq. (5) is not unique as observed in [8],
where a classification of the different variants was suggested.
This equivalence in a theoretical perspective, however, does
not extend to an equivalence in terms of experimental acces-
sibility as we next demonstrate. The earliest variant of the
FDT in a NESS is based on Agarwal [17] and reads in our
notation

kTR, A1) = (a(t)[= Dyd, In p*(x(0)]). (8)

Here, the conjugate observable is derived from the steady
state distribution which leads to an observable in the state
(i.e., configuration) space that does not involve a time de-
rivative. Consequently, it is more easily accessible experi-
mentally than the strongly fluctuating stochastic velocity x
appearing in Eq. (7).

In a steady state, the constant probability current can be
written as j*= uF(x)p*(x)—Dyd,pS(x) [18]. With the defini-
tion of the local mean velocity, we obtain

= Dyd, In p*(x) = 1*(x) = poF (x). ©)
Inserted into Eq. (8) and integrated over time, we get

TR(1) =Cplt) = Cp ) = Cyypd). (10)
Since both the integrated generalized FDT from Egs. (7) and
(10) are valid for any steady state, their correlation functions
must be identical

Cimap(1) = Cooyy (1), (11)

Even though their second arguments are different, there is
indeed very good agreement between these correlation func-
tions, as seen in Fig. 3(a). The deviation, which occurs only
for times larger than 1.5 s, can be attributed to statistical
errors which increase in time. Compared to the previously
shown function C;_,s(r) [see Fig. 2(b)] the correlation func-
tion C,s_ /LOF(Z) [see Fig. 3(b)] traces the integrated response
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FIG. 3. (Color online) (a) Integrated correlation functions
C;_,5(1) (black dashed line) and C,s_ MOF(t) (red solid line) indicating
different forms of the generalized FDT. (b) Comparison between
kgTR(t) (black open circles) and C,,S,MOF(I) (red solid line).

even better. As most pronounced in the time interval between
1.5 and 3 s, the phase and the amplitude of the oscillations
are represented by C,,S_MOF(I) more precisely.

To understand why C,,S_MOF(I) leads to a more accurate
determination of kzTR(f) we next concentrate on the terms
involved in these two different correlation functions. Figures
4(a) and 4(b) show their time evolution along the trajectories
over a time interval of 3 s. Although leading to the same
correlation function when correlated with a=sin(x/R) (light
gray line), the trajectories of v°—uoF (red line) and x—1°
(black line) are different. While the first trajectory is rather
smooth, in the second one, due to the appearance of x, strong
fluctuations are present. The amplitude of these fluctuations
is more than ten times larger than the maximal velocity
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FIG. 4. (Color online) (a), (b) Quantities involved in the corre-
lation functions: sin(x/R) (light gray line), 1°— uoF (red line) and
x—1° (black line). (c) Integrated correlation function C;_,s(¢) deter-
mined from different raw data lengths. The black line corresponds
to the full data set of 3000 s whereas for the blue dashed (red
dashed-dotted) line only one half (quarter) of the original data was
used.
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variation of v*— u,F. Since for a reliable average (...) many
realizations have to be sampled, it is evident that the corre-
lation C;_,s(¢) cannot be determined with the same statistical
precision than C,;_Mop(t). This observation is supported by
Fig. 4(c) where, in order to examine the impact of statistics,
only parts of the acquired raw data were evaluated. The
black line shows C;_,s(f) calculated from the complete raw
trajectory of length 3000 s. For the blue and the red line the
length of the trajectory was reduced by a factor of two and
four, respectively. In the latter case the strong deviation to
the black curve is obvious. In contrast, CVS_MOF(I) is almost
insensitive to a reduction of the statistics. Indeed, reducing
the length of the evaluated data to 300 s (one order of mag-
nitude) does not influence the shape of C,s_ Mop(t) visibly.
The insight gained in this model system can be transferred
to other systems as well: If one wants to obtain the response
of a NESS from a measurement of its stationary correlations,
one should use the variant of the generalized FDT not in-
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volving time derivatives for its better statistical convergence
properties. In this respect, the situation in experiments is
somewhat different from that in simulations, where the cor-
relation between a(r) and the a priori known Langevin noise
(x—uoF)/2=¢£/2 determines the response most conveniently
(8]

In summary, we studied the FDT for a driven Brownian
particle experimentally. For this paradigmatic system, a kind
of “Ising-Model” of nonequilibrium steady states, we vali-
dated two different generalizations of the FDT to the non-
equilibrium regime. We demonstrated that the right choice of
observables affects the errors when calculating the response
from a measurement of stationary correlations.
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