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Experimental adaptive Bayesian estimation of multiple phases

with limited data
Mauro Valeri1, Emanuele Polino1, Davide Poderini1, Ilaria Gianani 1,2, Giacomo Corrielli3,4, Andrea Crespi3,4, Roberto Osellame 3,4,

Nicolò Spagnolo1 and Fabio Sciarrino 1✉

Achieving ultimate bounds in estimation processes is the main objective of quantum metrology. In this context, several problems

require measurement of multiple parameters by employing only a limited amount of resources. To this end, adaptive protocols,

exploiting additional control parameters, provide a tool to optimize the performance of a quantum sensor to work in such limited

data regime. Finding the optimal strategies to tune the control parameters during the estimation process is a non-trivial problem,

and machine learning techniques are a natural solution to address such task. Here, we investigate and implement experimentally

an adaptive Bayesian multiparameter estimation technique tailored to reach optimal performances with very limited data. We

employ a compact and flexible integrated photonic circuit, fabricated by femtosecond laser writing, which allows to implement

different strategies with high degree of control. The obtained results show that adaptive strategies can become a viable approach

for realistic sensors working with a limited amount of resources.
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INTRODUCTION

Quantum sensing devices are among the most promising
quantum technologies. Their implementation relies on the use
of quantum probes to attain enhanced performances in the
estimation of one or more parameters compared to classical ones.
Quantum metrology aims at identifying the best strategy able to
provide this quantum advantage1–8. This is achieved by carefully
tailoring the probe state, the interaction, and the measurement, in
order to extract the information on the relevant parameter, and by
the optimal choice of the estimator through data post-
processing9. When performing a single-parameter estimation with
a given measurement, the optimal strategy is unequivocally
identified through the saturation of the Cramér-Rao bound (CRB),
which establishes the maximum achievable precision on the
measured parameter10. The CRB is asymptotically saturated with
the number of resources employed to probe the system during
the measurement. Conversely, the realization of quantum sensors,
able to perform estimations in realistic scenarios, poses two
constraints to sensing devices: the resources to be used for
probing are limited, and systems can show high complexity, often
involving more than one parameter. Having a limited number of
resources demands for their optimization. This can be obtained by
accurately tailoring the estimation protocols, from the probe
preparation to the measurement strategies. In this way, one aims
at attaining the saturation of the achievable bounds employing
the smallest number of resources possible. Such problem has
been explored with several theoretical analysis. A possible
approach towards the protocol optimization is that of exploiting
adaptive strategies. These have been successfully employed in
single-parameter estimation8,11–20. In this regard, machine learn-
ing (ML) approaches have provided a significant speed up in the
saturation of the ultimate bounds8,18,19,21–23.
On the other hand, measuring multiple parameters at once

might be necessary in complex systems characterized by a set of

parameters, where a time or spatial dependency can prevent the
successful realization of subsequent single-parameter estimations.
The parameters considered can span from multiple phases24–26, to
phase and phase diffusion in frequency-resolved phase measure-
ments27–29, and phase and loss in absorbing systems30,31. In other
instances where a system depends solely on one parameter, a
multiparameter approach could still be favorable as other
parameters can be interrogated as a control to monitor the
quality of the sensor itself32–34. In general, the saturable bounds
for quantum multiparameter strategies are not as defined as in the
single-parameter case, and trade-offs in the achievable precision
for each of the parameters have to be sought35–39. Different
theoretical works have studied a non-asymptotic Bayesian
approach in quantum multiparameter estimation40–44, thus
providing bounds and protocols to generally address limited-
data quantum metrology.
In this context, it becomes of paramount importance to identify

both a suitable estimation scenario and a corresponding platform
for an experimental investigation of adaptive multiparameter
estimation protocols. A notable scenario to investigate is multi-
phase estimation24–26,45–54. Not only such scenario provides a
benchmark for multiparameter quantum metrology, but it has a
plethora of practical applications in quantum imaging35,37. A
fundamental step is to find a suitable experimental platform to
realize multiphase estimation. A viable solution is provided by
integrated photonics, which enables the implementation of
complex circuits with reconfiguration capabilities55–60 with
applications ranging from quantum simulation, to computation,
and communication. This platform represents a promising system
for optical quantum metrology, since interferometers with several
embedded phases can be employed as a benchmark platform to
study multiparameter estimation problems. In this direction, first
results on multiphase estimation with quantum input probes have
been recently reported24, using a three-arm interferometer
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fabricated by femtosecond laser writing61,62. Here, we report on
multiphase estimation experiments performed with an integrated
platform using different adaptive protocols. We identify the
strategy providing better performances in terms of optimal
estimation and computational resources. In particular, we have
experimentally tested the proposed approach by feeding with
single-photon states an integrated three-mode interferometer
realized by the femtosecond laser writing technique. The
employed technique is a Bayesian learning protocol, which
exploits advantages of Monte carlo approach, such as its
independence of integration space dimensions63. This solution
seems to be ideal for adaptive multiparameter problems, where
complex optimizations could involve multiple integrations. Here
we employ experimentally an adaptive strategy optimized in the
limited data regime for multiphase estimation. Using this
algorithm, we demonstrate that the convergence to the CRB can
be experimentally achieved after only few photons. Importantly,
such convergence is achieved for both the simultaneously
estimated phases. Our results improve research for identifying
optimal learning strategy and finding experimental platforms
suitable to test multiparameter estimation problems also in the
limited data regime.

RESULTS

Bayesian multiparameter estimation

In multiparameter estimation, the aim is to measure simulta-
neously an unknown set of parameters x= (x1, …, xn) by reaching
the maximum precision allowed by the amount of resources
employed in the process. In general, the set of parameters is
encoded within the evolution of a system, either described
through a unitary operator Ux or a more general map Lx . The
value of the unknown parameters x can be estimated by
preparing a suitable probe state ρ and sending it to evolve
throughout the system. Information on the unknown parameters
can be retrieved by measuring the output state ρx with a set of
measurement operators {Πd}, where d= 1,…,m represents the set
of possible outcomes. Such process is then repeated N times to
improve precision in the estimation process. After N probes have
been prepared and measured, the obtained sequence of
measurement outcomes d= (d1, …, dN) has to be converted in
a set of parameters estimates x̂ through a suitably chosen function
x̂ ¼ x̂ðd1; ¼ ; dNÞ. A possible choice of estimator is provided by
Bayesian protocols10,64–66. This class of estimators is based on
encoding the initial knowledge on the parameters in a probability
function p(x), called prior distribution, which is updated according
to the Bayes rule at each step of the estimation protocol. The
posterior distribution after N probes reads
pðxjdÞ ¼ N �1

pðdjxÞpðxÞ, where p(d∣x) is the likelihood function
of the system expressing the conditional probability of obtaining
the measurement sequence d for given values of the parameters
x, and N is a normalization constant. Then, the mean of the
posterior distribution can be exploited as the estimate of the
unknown parameters x̂i ¼

R

xipðxjdÞ
Q

idxi . Bayesian protocols
present several important properties. In particular, it can be
shown that such approach is asymptotically unbiased, meaning
that the estimated values converge to the true values when N is
large enough. This is related to the quadratic loss
Lðx; x̂; ~wÞ ¼

P

i
~wiðxi � x̂iÞ

2
, whose average value over all mea-

surement sequences d is commonly employed as a figure of merit
to quantify the convergence of the estimation process. The
average of posterior distribution is the optimal estimator for
minimizing this figure of merit8,65,67. The coefficients ~wi can be
chosen to reflect different weights between the parameters, while
for equally relevant parameters they can be set as ~wi ¼ 1.
Hereafter, we will consider this latter scenario and thus define the
quadratic loss as Lðx; x̂Þ ¼

P

iðxi � x̂iÞ
2
. Furthermore, in a Bayesian

framework the posterior distribution also provides a confidence
region for the parameters estimates, which is represented by the
covariance matrix Covðx̂Þ of p(x∣d). This latter figure of merit is
obtained for each single estimation experiment composed of a
sequence of N probes, and has no counterpart in frequentist
approaches67. In general, Bayesian bounds for both the quadratic
loss and the covariance matrix depend on the amount of a priori
knowledge p(x) available17,44,67,68. Asymptotically for large values
of N, corresponding to the regime where the amount of
information acquired in the estimation process far exceeds the a
priori knowledge, the covariance matrix satisfies the Cramér-Rao
inequality CovðxÞ � F�1=N, where F is the Fisher information
matrix69 and thus F�1 corresponds to its inverse. Such quantity
also provides an asymptotic bound for the quadratic loss as
Lðx; x̂Þ � Tr½F�1�=N.
Adaptive protocols can be employed when, besides the set of

unknown parameters x, the user has access to an additional set of
control parameters c = (c1, …, cl) that can be changed throughout
the estimation process. More specifically, after each of the N
probes is sent and measured, the acquired knowledge is
employed to change the values of c for the next probe to
maximize the extraction of information in the subsequent
measurement. Within a Bayesian framework, such knowledge is
encoded in the posterior distribution. Hence, after each step of the
estimation protocol, the user can decide the values of the control
parameters c starting from p(x∣{c}, d) (see Fig. 1a). Considering the
presence of these tunable control parameters during the
estimation process, the likelihood after N probes reads
pðdjx; fcgÞ ¼

QN
i¼1 pðdi jx; ciÞ, where di is the measurement result

of the probe i after application of control values ci. Therefore, the
Bayes rule for updating posterior distribution becomes p(x∣{c},
d)∝ p(d∣x, {c})p(x), where p(x) does not depend on {c}, as control
phases have no role in the prior knowledge. Adaptive protocols
represent a relevant tool in phase estimation process. Indeed, the
adoption of adaptive strategies becomes a crucial requirement
even in the single-parameter case to optimize the algorithm
performances11–13,16,18,19,21,22,63,70,71, with the aim of achieving the
ultimate bounds provided by the Cramér-Rao inequality for small
values of N18. Furthermore, in more complex systems character-
ized by a phase-dependent Fisher information matrix, adaptive
strategies become crucial to reach equal performances for all
values of the unknown parameter(s)34. Indeed, in several scenarios
the quantum Cramér-Rao bound, namely the ultimate precision
for a given probe, is parameter-independent. However, construc-
tion of the optimal measurement for its saturation requires in
general significant a-priori knowledge on the parameter(s) since it
can be defined in a local estimation framework25,26. Thus, in a
scenario where limited or no a-priori knowledge on the parameter
is available, and limited resources can be employed, adaptive
protocols represent a powerful tool.

Adaptive protocols for multiarm interferometers

Given the general scenario described in the previous section, it is
crucial to identify and test experimentally protocols to saturate the
ultimate bounds with a very limited number of probes. In this
context, multiarm interferometers represent a benchmark plat-
form to perform simultaneous estimation of multiple phases. The
platform is schematically shown in Fig. 1b, and represents the m-
mode generalization of a Mach–Zehnder interferometer in the
multimode regime24,50,72,73. More specifically, it is composed by a
sequence of a first multiport splitter, employed to prepare the
probe state, a series of phase shifts between all the optical modes,
and a second multiport splitter, which defines the output
measurement. Both multiport splitters can be in principle
designed according to appropriate decompositions74,75 to imple-
ment any linear unitary transformation. The internal phase shifts
can be divided in two layers. The first one ϕ= (ϕ1, …, ϕn)
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corresponds to the unknown parameters to be measured, while
the second one Φ= (Φ1, …, Φn) takes the role of the control
parameters for adaptive estimation; we note that in our
implementation the number of controls is l= n. Here, n=m− 1
is the number of independent parameters, since one of the phases
is considered as the reference mode. Both the unknown
parameters and the control ones contribute to the overall phase
differences Δϕ= (Δϕ1, …, Δϕn) within the interferometer.
We study different adaptive protocols for Bayesian learning of

the unknown phases of this platform injected by a single-photon
state, by focusing both theoretically and experimentally on the
three-mode scenario (m= 3) with two independent parameters
(n= 2). More specifically, we choose both for state preparation
and state measurement transformation a balanced tritter
described by unitary matrix U with ∣Ui,j∣

2
= 1/3, ∀ (i, j)76. Injecting

a single-photon on input port 1 corresponds to generating a
sequence of probe states of the form
ψinj i ¼ 3�1=2ð 1; 0; 0j i þ 0; 1; 0j i þ 0; 0; 1j iÞ, which represents a
single-photon state exiting in the balanced superposition of the
three modes. The Fisher information matrix in this scenario shows
a phase-dependent profile FðΔϕ1;Δϕ2Þ, meaning that without
adaptive strategies the asymptotic precision will be different
depending on the actual phase values. In particular, by looking at
the inverse of F , we obtain minΔϕ1 ;Δϕ2

TrðF�1Þ ’ 3:866, which is
obtained for six different phase pairs ð ~Δϕ1; ~Δϕ2Þ. For those pairs,
minimum asymptotic quadratic loss is achieved. Note that, by
using the results of refs. 25,26,54, an optimal measurement can be in
principle constructed saturating the quantum Cramér-Rao bound.
For instance, for small values of the unknown phases a
measurement including the projector over the initial state can

be employed, thus requiring a-priori knowledge on the para-
meters or adoption of a large number of probes.
Bayesian protocols require in general expensive computational

resources, due to the need of evaluating complex integrals to
determine the normalization constant N , as well as the estimated
values and their corresponding covariance matrices. A possible
solution is to perform a discretization of the parameters space,
thus converting integrals to sums. In this case, the bin size has to
be chosen depending on the minimum error expected at the end
of the estimation process. However, such solution becomes
quickly unmanageable when the number of parameter increases,
since such a discretization has to be performed in a n-dimensional
space. A different solution has been explored in ref. 63 for Bayesian
learning problems by using a Sequential Monte Carlo (SMC)
approach. Indeed, Monte Carlo methods seems to be a natural
solution, due to their capability of reaching convergence
independently from the integration space dimension. The SMC
method approximates the infinite dimensional support ϕ with a
finite number M of elements ϕi, called particles, with associated
probability weights wi. The error in the approximation can be
arbitrarily reduced by increasing the number of particles, leading
to a trade-off between computational time and accuracy of the
approximation. In the context of Bayesian analysis, any distribu-
tion ~pðϕÞ in the particles approximation is expressed as
~pðϕÞ �

PM
i¼1 wiδðϕ� ϕiÞ.

We now consider the case of an initial prior knowledge p(ϕ)
corresponding to a uniform distribution. In the particles scenario,
this prior information is approximated by a set of M randomly
drawn pair of phases ϕi with equal weights wi= 1/M to satisfy the
normalization condition ð

PM
i¼1 wi ¼ 1Þ. During the experiment,

the information about the unknown phases ϕ is updated
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Fig. 1 Schemes of adaptive estimation. a General layout of an adaptive multiparameter estimation protocol. A sequence of probes ρ are sent
to estimate the parameters x. At each step the results of the measurement Πd and the current knowledge on x are employed to optimize the
control parameters c. b Multiarm interferometer for multiphase estimation. An m-mode interferometer embeds n=m− 1 unknown phase
shifts ϕ, while additional controlled phases Φ can be employed for adaptive protocols.
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according to the Bayes rule after each measurement outcome d. In
the particle approximation, having fixed control phases, this
corresponds to updating the particle weights as wi→ wi p(d∣ϕi, Φ),
while keeping the particles {ϕi} unchanged. The estimation of ϕ is
then provided by the expectation value of the posterior
distribution ϕ̂ ¼

R

dϕ ϕ pðϕjd;ΦÞ �
PM

i¼1 wiϕi . As discussed in
ref. 63, the particle approximation needs some additional steps to
avoid the introduction of further errors throughout the estimation
process. In particular, after a few iterations the non-zero weights
will be mostly concentrated on a small subset of {ϕi}, reducing the
validity of the approximation. To avoid such effect, it is possible to
employ resampling techniques77. More specifically, when the
particle weights become too concentrated according to a given
threshold condition, a new set of particles fϕ0

ig is generated by
adding a small random perturbation to the original particles (see
Supplementary Note 1A for more details). The weights are then
reset to w0

i ¼ 1=M, and the estimation process restarts. Within this
framework, we now have to define the adaptive rule to determine
the value of the control parameters at each step depending on the
actual knowledge. More specifically, at each step of the estimation
process one has to decide the control parameters c (here, the
additional phases Φ) for the next probe. To this end, we consider
different strategies.
A first approach (i) is based on choosing the control phases

according to ϕ̂þΦ ’ δϕ, where δϕ ¼ argminΔϕ1;Δϕ2
TrðF�1Þ.

This strategy looks to set the interferometer phases Δϕ to those

values, leading to a minimum bound for Lðϕ; ϕ̂Þ according to the
Cramér-Rao inequality. While this approach is tailored to work in
the asymptotic regime of large N, its performances are not
guaranteed to be optimal for small N. An upside of this approach
is that setting the control parameters does not require complex
optimization steps, since an analytic rule can be easily defined.
In order to devise a strategy working in the small N regime, one

can consider a second strategy (ii) which is specifically tailored to
work for all values of N. To this end, we adapted the protocol
described in ref. 63 to the multiparameter scenario implemented
by our system. By this approach, the choice of the control phases
is performed to optimize a given figure of merit, known as utility
function (U). Canonical choices for U are information gain or
quadratic loss. In our case, we choose Uðϕ̂Þ ¼ Tr½Covðϕ̂Þ�,
calculated over the posterior distribution. Note that this approach
is general and different utility functions can be chosen, based on
the specific estimation scenario. For instance, if the parameter of
interest is the correlation between the phases, the utility function
should involve the off-diagonal terms of the covariance matrix.
Hence, at each step the minimization algorithm finds the best
control phases Φ that, averaged over all possible measurement
outcomes, leads to a minimum value for the sum of the
parameters confidence intervals. This is thoroughly discussed in
Supplementary Note 1B. Given that this method relies on
numerical optimization steps, it is more expensive in terms of
computational resources than the previous strategy based on the
Fisher information matrix. Conversely, it provides the advantage of
searching the optimal control phases for all values of N, thus
covering the limited data regime where asymptotic approaches
may not be the proper choice.
We have then performed numerical simulations to characterize

the performances of the two algorithms. More specifically, we
have sampled Nph= 100 random pairs of phases (ϕ1, ϕ2) in the
interval [0, 2π] × [0, 2π]. For each pair, we simulated Nexp ¼ 100
estimation processes where N= 100 single-photon probes are
sent in the interferometer. The results are shown in Fig. 2. We first
tested the performances of both algorithms (i) and (ii). We observe
that, concerning strategy (i), the protocol fails to approach the
Cramér-Rao bound even for N ~100. This is related to the non-
injectivity of the likelihood function. In this way, a given

probability can be associated with different possible pairs of
phases. Approach (i) seeks for setting the phase differences Δϕ to
a fixed point, and it is not able to resolve such ambiguity issue.
Better results are obtained by applying at each step a random (but
known) set of control phases (iii), which shows better convergence
while not reaching the Cramér-Rao bound. However, the
application of this strategy is capable of resolving the ambiguity.
One can then consider a modified version (i’) of the asymptotic
protocol (i), where the first K control phases are drawn from a
uniform distribution, while for N > K the strategy works as (i).
Numerical evidence shows that the best choice for this parameter
is K ~ 20. We observe that, with this modified strategy, the Cramér-
Rao bound is approached for N ~ 50. Better results are obtained
with the optimized strategy (ii), in particular in the small N regime.
For N > 60, we observe that both strategies (i’) and (ii) provide
similar performances since the experiment progressively
approaches a large N scenario where the Fisher information
matrix defines the system sensitivity. Finally, in Supplementary
Note 2 we perform some numerical simulations to show the
superior performance of the optimized adaptive protocol with
respect to non-adaptive strategies, that are not capable of
resolving unambigously the estimation process in the full [0,
2π] × [0, 2π] interval (see Supplementary Figs. 1 and 2). In this work
we experimentally implement the optimal strategy to guarantee a
faster convergence of the estimation process.

Integrated circuit for multiphase estimation

The platform employed in this experiment is an integrated three-
arm interferometer. This system has been employed in ref. 24 for
the simultaneous estimation of two relative phase shifts ϕ= (ϕ1,
ϕ2) between the arms of a three-mode interferometer (Fig. 3). We
first discuss the circuit layout and parameters, while we
subsequently describe the working condition used for the
multiphase estimation experiments reported below.
The platform is a three-arm interferometer realized in a glass

chip through femtosecond laser writing61,62. The interferometer,
optimized for operation at λ= 785 nm, is implemented by two
cascaded tritters (three-mode beam splitters) A and B interspersed
with phase shifters. Each tritter is decomposed in a 2-D planar
configuration74 consisting of three balanced directional couplers
and one phase shifter ϕA

T (ϕB
T ) for tritter A (B). These phase shifters,

as well as those placed between the two tritters, can be tuned by
means of the thermo-optic effect, using microresistors that are
patterned in a thin gold layer covering the chip surface. When an
electrical current is applied to the resistor, an optical path change
on the waveguide is induced by the dissipated heat78. In
particular, let us consider the dissipated power Pi ¼ Ri I

2
Ri

on
resistor Ri subjected to a current IRi , where we also include that the
value of the resistor depends on the current due to its
temperature change. The two induced relative phase shifts
Δϕ= (Δϕ1, Δϕ2) between the arms of the interferometer with
respect to the reference mode, have the following general
dependence on the dissipated powers:

Δϕj ¼ ϕj0 þ
X

6

i¼1

αjiPi þ
X

6

k¼i

αNLjik PiPk

 !

; (1)

where j= 1, 2, and ϕj0 stands for the static phases of the
interferometer. Parameters αji and αNLj;i¼k are the linear and
quadratic response coefficients relative to the dissipated power
Pi, respectively, while αNLj;i≠k represent the nonlinear coefficients
associated with the product of the two powers Pi and Pk to include
cross-talk effects. In our device 8 independent resistors are present
(Fig. 3). Resistors RA and RB are exploited to tune tritter phases ϕA

T

and ϕB
T , respectively. Conversely, resistors R1, R4 along mode 1, R2,

R5 along mode 2 and R3, R6 along mode 3, are employed to tune
the internal relative phase shifts of the interferometer, according
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to (1). The operations of tritters A and B are described through the
unitary evolutions UA and UB, respectively, while the action of each
phase shifter along mode i is described through a unitary matrix

PSi (i= 1, 2, 3). The overall evolution Utot of the interferometer is
given by Utot ¼ UBð

Q3
i¼1 PSiÞUA.

In order to characterize the relevant parameters necessary to
fully describe the evolution of the interferometer, we measure the
output probabilities when single photons are injected along input
1, tuning the current applied on each resistor. The probabilities

have been theoretically modeled by modifying the ideal expres-
sion with additional terms, taking into account non-ideal
visibilities and dark counts of the detectors. In this way, we

performed an overall fit of all the measured probabilities to
determine the 58 chip parameters (see Supplementary Note 3 and

Supplementary Fig. 3) and finely reconstruct the likelihood
probability p(d∣Δϕ) of our system.
According to the scheme of Fig. 1b, the unknown phases to be

estimated are the pairs (ϕ1, ϕ2), relative to the chosen reference
arm ϕref. The eight resistors allow us to finely tune and control all
the relevant phase shifts of the interferometer. The tritters phases
can be tuned and are chosen in order to maximize the sensitivity
of the interferometer. Using single-photon probes, the optimal
configuration for our interferometer employs mode 1 as input and
mode 2 as reference. In this case, the trace of the inverse of Fisher
Information matrix, minimized over all possible internal phases, is
Tr½ðF expÞ

�1� ¼ 4:2 (see Supplementary Note 4). This value
represents the (phase-dependent) Cramér-Rao bound of our
device, where the aim of the protocol is to saturate such bound
for all phase pairs by using limited probes. In absence of adaptive

Fig. 2 Numerical simulations of Bayesian adaptive protocols. For Nph= 100 pair of phases, we simulated the performance of the different
strategies described in the main text, by averaging for each phase over Nexp ¼ 100 different runs and by performing spline interpolation on

the obtained curves. Top: quadratic loss Lðϕ; ϕ̂Þ (solid lines). Bottom: utility function Uðϕ̂Þ ¼ Tr½Covðϕ̂Þ� (dashed lines), corresponding to the
sum of the parameters confidence intervals. Inset: (top) ratio R between the performances of each protocol, compared with the optimized

strategy (ii). R is computed both for Lðϕ; ϕ̂Þ (solid lines) and Uðϕ̂Þ (dashed lines), referring the same colors of the main panels. (bottom) two-
dimensional map of uniform-distributed couples of phases drawn for the simulations. Green lines: approach (i) based on the Fisher
information matrix. Red lines: approach (i'), which includes first N= 20 events with random control parameters, while for N > 20 works as (i).
Blue lines: optimized approach (ii). Gray lines: benchmark approach with random control parameters (iii). Dotted black lines: Cramer-Rao
bound for the asymptotic regime.
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strategies, such precision cannot be reached for all phase pairs,
thus rendering the sensitivity of the sensor phase-dependent. The
aim of our strategy is thus also to reach the bound Tr½ðF expÞ

�1� ¼
4:2 for all values of the parameters. The unknown phases ϕ= (ϕ1,
ϕ2) are tuned by means of resistors R4, R5, and R6, according to (1),
while the control phases Φ= (Φ1, Φ2) are tuned by resistors R1
and R2 (see “Methods”).

Experimental adaptive multiphase estimation

We perform the experiment by continuously adapting the present
tunable circuit following the optimized Bayesian-SMC method
[strategy (ii)]. This allows us to achieve the best attainable estimate
with a limited number of resources. The probes are heralded
single photons at 785 nm generated by a degenerate type-II SPDC
process inside a BBO crystal, pumped by a pulsed 392.5 nm laser.
A photon from each pair is sent through the circuit, entering in
input 1, and acts as probe, while the other photon acts as the
trigger for the heralding process (see Fig. 3). An event is then
recorded as the coincidence between the trigger detector and
one of the three outputs of the circuit. The interaction of the
probe with the chip operator encodes information about ϕ onto
its state. Finally, the result of the measurement is collected and
used to identify the optimal settings for the next
experimental step.

The phases ϕ to be estimated can be chosen by setting the
currents flowing in three resistors R4, R5, R6 (see “Methods”). In
order to test the protocol over different estimation experiments,
we have identified Nph= 15 pair of phases uniformly distributed
(Fig. 4). Resistors R1, R2 are used to tune the control phases
necessary for the adaptive strategy. After the first event, where
currents IR1 ; IR2 are chosen at random, we implement strategy (ii):
optimal control phases Φ are calculated by minimizing the
expected posterior variance. The nearest available control currents
IR1 ; IR2 , limited by the precision of our power supply (Keithley 2230)
and by maximum dissipation power (<1 W, see “Methods”), are
calculated and effective control phases are applied to the device.
The calculation of the prior distribution for each step is made
through the particle approximation. A uniform grid of M= 2000
pairs of phases (Fig. 5a) is assumed as initial set for the prior
distribution. This choice is performed to avoid any possible
harmful periodicity during the estimation process. Examples of
prior information evolution during an experiment are reported in
Fig. 5b–d. In Fig. 5c the resampling step is shown, where particles
with zero weight of the previous step (Fig. 5b) are rearranged in
more significant locations (see Supplementary Note 1A for more
details). Each pair is estimated Nexp ¼ 100 times, adopting N= 100
resources (photons) as for the numerical simulations discussed
above. Individual experiments are reported in details in Supple-
mentary Note 5 and Supplementary Fig. 4. Algorithm

processing 
unit

PDC

D1

D2

D3

DT

PC

SMFA

MMFA

IF

IF
SMF

SMF

RA RB

R6R3

R4

R5

R1

R2

Fig. 3 Experimental platform. A type-II parametric down conversion source (PDC) generates photon pairs, which are spectrally selected via
interference filters (IF) and coupled to single-mode fibers (SMF). One of the photons is directly measured by detector DT acting as trigger for
the experiment. The other photon, after polarization compensation (PC), can be injected in any of the three input ports of the interferometer
via a single-mode fiber array (SMFA). After evolution, photons are collected via a multimode fiber array (MMFA) and measured through
detectors Di, with i= 1, 2, 3. Coincidences between DT and any of Di are recorded via a time-to-digital converter. The results of the
measurement are processed and employed to apply the adaptive protocols. The layout of the integrated circuit (shown in the bottom panel)
includes eight resistors to modulate the input transformation (RA), the output one (RB), and the internal phases (Ri, with i= 1, …, 6) as
described in the main text.
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performances are shown in Fig. 6. A first evaluation consists in
averaging the experimental quadratic loss for each pair of phases
over all Nexp independent runs. As a result, the overall quadratic
loss Lðϕ; ϕ̂Þ saturates the CRB with a limited number of resources,
in agreement with the numerical simulations described above.
Furthermore, saturation occurs both for off- and diagonal matrix
elements of the CRB. In particular, the latter show that the CRB is
reached with similar performances in the estimation of both
phases. This result is a fundamental feature for multiparameter
metrology tasks when both parameters are treated equally. We
observe from Fig. 6c that our algorithm reaches the CRB also when
looking at the correlations between the parameters. This means
that the employed estimation approach does not add additional
sources of undesired correlations in the estimation process, which
is relevant given the addressed multiparameter scenario. In our
case the resulting difference in estimation of the two parameters
is <10%, when compared to the sensitivity bound. Furthermore, a
heuristic estimation of the convergence time to saturate the CRB
can be calculated by studying the difference
Lðϕ; ϕ̂Þ � Tr½ðF expÞ

�1�=N. A characteristic time can be computed
by using aþ b expð�N=τNÞ as fit function, with a; b; τN 2 R the
fitting parameters. The value obtained for τN is τfitN ¼ 5:6, which
underlines the good performance of the adaptive adopted
technique in using small number of probes. Note that the number
of probes necessary to achieve the bound is generally scheme-
dependent, as it can be seen studying different multiparameter
scenarios44. Another significant property of Bayesian approach is
the ability to provide the statistical error in each step of the
estimation process, calculated as the variance of the posterior
distribution. Final estimated pairs fall on average within the error
from true set values of phases (Fig. 4).
All these experimental results demonstrate the quality of

Bayesian-SMC strategy, confirming it as largely suitable for
multiparameter estimation problems. While the convergence to
CRB in limited data regime has been accurately studied by
theoretical works in both single-17,68,79 and multi-43,44 parameter
estimation, the obtained results show the robustness of the
employed Bayesian approach when applied to a realistic sensor,
where calibration of the system has to be performed before it can
be employed for phase estimation experiments. Indeed, we have
shown the capability of saturating the Cramér-Rao bound by using
limited probes when the calibration procedure is performed with
finite size data. Note that such result is non-trivial, and shows that
the actual modeling of the sensor permits to reach a high degree
of control of the device, even when a larger number of phases is

simultaneously tuned. Implementation of this strategy has been
enabled only by the high reconfigurability of our employed
integrated device, which highlights the fundamental role of an
appropriate platform for metrology tasks, which involve more
than one parameter. These features characterize our proof-of-
principle experiment, defining it as a necessary step towards the
realization of adaptive multiparameter algorithms for technologi-
cal applications.

DISCUSSION

Multiparameter estimation is a fundamental problem for the
realization of realistic quantum sensors in several scenarios8,35,37.
In this task, there are still several open problems and a
comprehensive framework has yet to be defined. For instance
no general strategies are available for the construction of optimal
probes and measurements in different multiparameter scenarios.
While a general framework for Bayesian quantum multi-

parameter estimation exists (see ref. 41 for a complete review),
there are several remaining open questions. In particular, the
operational application of optimal strategies, measurements and
probes preparation, is a field that needs to be largely explored,
even if some theoretical results are available also in the limited
data regime44. Furthermore, further progresses are still required
on the technological platforms towards reaching unconditional
violation of the standard quantum limit80 in complex sensors.
Hence, it is crucial to identify an experimental platform versatile
enough to address different possible approaches. Multiphase
estimation provides an ideal scenario with different practical
applications. Furthermore, it represents a testbed for different
multiparameter estimation protocols. Applying these to real world
scenario requires a further step, that is, the optimization of the
available resources, so as to attain the minimum reachable
uncertainties after a sufficiently small number of measurements.
This can be achieved by implementing adaptive strategies. In the
limited data scenario, theoretical works have shown the number
of required resources to saturate the lower bounds44,68, but the
multiparameter experimental counterpart still lacks its
investigation.
Here, we have reported the experimental implementation of a

multiphase Bayesian adaptive protocol on an integrated platform,
optimized to operate in the limited data regime. We have
reviewed different adaptive strategies and selected the one
optimizing the cost function given by the trace of the covariance
matrix. This has been employed to perform several simultaneous
estimations of uniformly distributed pairs of phases. As we have
shown, the achievable bounds are attained for both unknown
phases after a limited number of N ~ 40 probes. Our experiment
permits to underline the suitability of such an integrated circuit for
performing multiparameter estimation tasks, as well as to exploit
the capabilities of the proposed Bayesian adaptive strategy.
This work provides a versatile approach for future perspectives

in multiparameter quantum metrology. In particular, these
techniques can be directly generalized for multi-photon quantum
probes, which would provide insight on the achievable quantum
accuracy limit. Indeed, the framework behind this approach is
general, and thus different probe states can be employed by
suitable choice of the system likelihood function. At the same time,
the algorithm here described can be applied to more complex
integrated platforms, which enable optimized extraction of
information. The realized platform can be exploited also for the
realization of different optimal multiphase Bayesian protocols, such
as that proposed in ref. 44. In that paper, given an arbitrary state,
prior knowledge and number of repetitions of the experiment,
explicit recipes for the optimal measurements are provided in the
case where the estimators commute. Further perspectives include
the study of different multiparameter scenarios, as well as practical

Fig. 4 Final distribution of the estimated phases. Experimental
simultaneous estimations of Nph= 15 different uniform-distributed
pairs of phases. The estimation process uses an amount of N= 100
resources and Bayesian adaptive approach. Dark orange regions
represent the error in the estimation obtained from the covariance
matrix. Each estimated pair (red dot) is distant from true set value
(blue dot) within the error (orange area), thus confirming the good
performance of the algorithm.
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applications to quantum sensing of delicate samples81 and
quantum error correcting algorithms82–84.

METHODS

Tuning of circuit parameters for adaptive two-phase estimation

We discuss in more details how we exploit the phases in our

interferometer. The pair (ϕ1, ϕ2) represents the unknown phases relative

to a reference arm with phase ϕref (Fig. 1b). All the relevant phases of the

circuit can be finely tuned by means of eight resistors.
The first step performed aimed at finding the optimal choice for the

tritter phases ϕA
T , ϕ

B
T to maximize the sensitivity of the interferometer.

To achieve this goal, we first evaluate the Fisher information matrix F exp

associated with the device from the experimentally estimated parameters,
Then, we numerically minimize Tr½ðF expÞ

�1� over all possible values of ϕA
T ,

ϕB
T and internal phases Δϕ, in the allowed range of dissipated powers (the

upper threshold being ~1W, to avoid possible damages to the resistors).
We identify such minimum for all combinations of possible inputs and
reference arms. The best scenario for our interferometer corresponds to
use mode 2 as reference mode and arm 1 as input mode for single
photons, with the following values of phases: ϕA

T ¼ 1:49 rad, ϕB
T ¼ 0:72

rad, Δϕ1=− 3.07 rad and Δϕ2= 0.34 rad. In this working point, the trace
of the inverse of Fisher Information matrix is Tr½ðF expÞ

�1� ¼ 4:2. We now
have to assign each resistor Ri (i= 1, …, 6) to tune both the unknown
phase shifts ϕ= (ϕ1, ϕ2), and the control phases Φ= (Φ1, Φ2) for the

Fig. 5 Example of experiment. A typical estimation of two phases (red dots) is reported. a A uniform grid is generated as initial support for
the prior distribution. b–d Evolution of the posterior distribution during experiment for three subsequent moments. In particular, the
distribution before and after the resampling are shown respectively in b and c, where particles are rearranged in order to eliminate zero
weight cases. The new posterior weights are uniform, while particles are distributed closer to the estimated phases. In a–d, particle colors
represent the corresponding weight. e Study of standard deviation in estimation of the single phases (blue dashed lines) and their sum (red
dashed lines). The saturation of their CRB (solid lines) occur for small N. f Experimental estimated pair of phases as function of the number N of
adopted probes (dots). Dashed lines indicates true set values of the phases.
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adaptive algorithms. More specifically, we choose to employ resistors R4,

R5, and R6 to tune ϕ. Conversely, the control phases Φ are those modified

by dissipating power in R1 and R2. Hence, considering (1) as Δϕ=ϕ+Φ,

we find the following expressions:

ϕj ¼ ϕj0 þ
X

6

i¼4

αjiPi þ
X

6

k¼i

αNLjik PiPk

 !

(2)

Φj ¼
X

2

i¼1

αjiPi þ
X

2

k¼i

αNLjik PiPk

 !

; (3)

with j= 1, 2. In setting all phases of the device (Eqs. (2) and (3)) the

effective number of applicable phases is finite, due to the upper damage

threshold of global power (<1W) and to the limited precision of the power

supply (Keithley 2230). In particular, the generated control phases are

distributed uniformly and quite densely over all the interval [0, 2π] × [0, 2π],

sufficient to guarantee the correct functionality of the tested algorithms.

Note that, in principle, only four resistors would be sufficient to tune

independently the 4 phase shifts (two unknown and two controls).

However, we employed five resistors in order to obtain large tunability of

the device within limits of the damage threshold of each resistor.
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