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Abstract

This paper presents a system for long-term SLAM (simultaneous local-
ization and mapping) by mobile service robots and its experimental evalu-
ation in a real dynamic environment. To deal with the stability-plasticity
dilemma (the trade-off between adaptation to new patterns and preserva-
tion of old patterns), the environment is represented at multiple timescales
simultaneously (5 in our experiments). A sample-based representation is
proposed, where older memories fade at different rates depending on the
timescale, and robust statistics are used to interpret the samples. The
dynamics of this representation are analysed in a five week experiment,
measuring the relative influence of short- and long-term memories over
time, and further demonstrating the robustness of the approach.

1 Introduction

Future service robots will be required to run autonomously in dynamic envi-
ronments for really long periods of time. These robots will be required to live
together with people and adapt to the changes that people make to the world.

The first excursion of a mobile service robot in a new environment will prob-
ably be guided by a human or other intelligent system, for example, to explain
the meaning of different places, as a human employee would be introduced to
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a new workplace. A basic problem for the robot here is static SLAM: simulta-
neous localization and mapping given one set of data. Most previous work on
robotic map learning addresses this problem. However, this phase will only be
a short moment in the lifetime of a service robot that is expected to operate
for years. For a robot to survive in a dynamic and ever-changing world, lifelong
learning is essential.

This paper addresses the problem of long-term SLAM: simultaneous localiza-
tion and mapping in dynamic environments over possibly unlimited periods of
time. A major challenge for long-term SLAM is that environments can change
at different rates, and the changes can be gradual or abrupt. Changes may not
be permanent: an object may have been moved, a package may have been left
for a while, etc. It is therefore desirable for the robot to remember the old
state too in case the change is only temporary. At the same time, there may
be slow but inexorable changes such as plants growing or coloured paint fading.
This challenge is related to a more general and well-known problem confronting
every lifelong learning system, namely the stability-plasticity dilemma described
by Grossberg [9]. Lifelong learning demands both adaption to new patterns and
preservation of old patterns at the same time.

This work makes several contributions:

• We propose sample-based maps for mobile robots, using the sensor data
themselves as primitives of the representation (“using the data as its own
best model”). A novel representation based on dynamic sample sets en-
ables adaptation of the map in a changing world. We show that this rep-
resentation has a well-defined semantics and a probabilistic interpretation
using robust statistics.

• To deal with the stability-plasticity dilemma, we propose simultaneous
representation of the world at multiple timescales, using multiple maps
with a spectrum of learning rates. This allows the robot to maintain mul-
tiple hypotheses in time about the state of the environment, for example,
representing the world before, during and after a temporary object is left
in a particular place.

• Based on these concepts, a complete system for long-term SLAM is pre-
sented. During localization the robot compares its current sensor data
to all timescales in the map and chooses the timescale that best fits the
data. In turn, the results of localization are used directly to adapt the
map. Consequently localization is more robust and the map does not go
out of date.

Further to our previously published results [5], this paper analyses the dy-
namics of the map representation in a long-term experiment using sensor data
recorded by a mobile robot in a busy indoor environment over a period of five
weeks. We measure the relative influence of short-term and longer-term memo-
ries over time, and further demonstrate the long-term stability and performance
of the approach.
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1.1 Related work

Traditional mapping and localization algorithms model the world as being static
and try at most to detect and filter out moving objects such as people. Previous
approaches to robotic mapping of dynamic environments can be grouped into
three categories.

First, some approaches attempt to discriminate “dynamic” from “static”
elements of the environment [6, 15, 16, 10]. For example, the RHINO tour guide
robot [6] used an entropy filter to separate sensor readings corresponding to
known objects such as walls from readings caused by dynamic obstacles such as
people. A fixed pre-installed map was used for localization, while an occupancy
grid was built on the fly to model dynamic objects and combined with the static
map for path planning. However, in general, this approach cannot handle long-
term changes to the environment. By contrast our work uses a spectrum of
learning rates to handle changes occurring at different timescales.

Second, several authors have investigated aging of the map using some form
of recency weighted averaging. Zimmer [18] presented a system that dynami-
cally learns and updates the topology of a map during runtime and showed the
ability of his model to adapt to changes. Yamauchi and Beer [17] developed a
so-called adaptive place network, where a confidence value for each link in the
network was updated in a recency-based manner based on successful or non-
unsuccessful attempts to traverse the link, and links with low confidence were
deleted. Andrade-Cetto and Senafeliu [1] developed an EKF-based map learn-
ing system that is able to forget landmarks that have disappeared, where an
existence state associated with each landmark measures how often it has been
seen.

Third, some authors propose richer world models, e.g. with semantics based
on explicit identification of objects. Anguelov et al. [2] divide the environment
into a static part and objects that can move such as chairs. However, these
efforts are decoupled from map building and localization, and it is assumed that
these parts work independently and perfectly. The aim of Anguelov’s work is
more on obtaining one higher level map, and not to adapt the map continuously
as in this work. Stachniss and Burgard [13] proposed an approach to modeling
dynamic environments by representing typical configurations or possible states
in a local area, e.g. corresponding to open and closed doors. In our experiments,
however, we found that such repeated configurations were rare compared to
unexpected changes: most of the changes in our environment resulted in new
configurations that had not been seen before.

In contrast to all these systems our dynamic map addresses the stability-
plasticity dilemma. We do not consider autonomous navigation or topological
changes, rather our focus is on seeing self-localization and map learning as a
never-ending cycle.
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Figure 1: A simple example environment. After some time a cupboard is put in
front of one wall, and some time later it is removed. The example map consists
only of the distance d.

2 Motivation for Sample-Based Maps

To motivate the map representations proposed in this paper a simple toy en-
vironment is considered as shown in Fig. 1. The example environment is an
empty room and the map to be learned is the distance from an arbitrary point
to the nearest wall or object in a given direction. If the environment were static
then learning would be simple: all deviations from the true value would be due
to Gaussian measurement noise, and therefore the map would be perfectly rep-
resented by the sample mean and sample variance. For stationary distributions
these statistics are sufficient (Duda et al. [8], chapter 3.6), i.e. they store the
information content of all measurements, and it is not necessary to keep past
measurements in memory.

Assume now that the environment is dynamic. After some time somebody
puts a cupboard in front of the wall. The above method is not well-suited to
this challenge. The time needed for the sample mean to approach the new true
value would be proportional to the time spent measuring the wall in the old
position. Such behaviour is not desired.

Requirement 1: The time taken by the map to adapt to a change should not
depend on how much time has passed in absolute terms. Also, the initial state
should have no special status or rank.

Recency weighted averaging is a solution to this problem from the field of
reinforcement learning that is especially suited to non-stationary tracking prob-
lems (Sutton and Barto [14], chapter 2.6). Here the estimate for the distance d
is updated after a new measurement according to:

dnew = (1− α) ∗ dold + α ∗ dmeasured (1)

Effectively this methods calculates a weighted sample average. The weight wt
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of a sample is thus dependent on its age t as

wt = α ∗ e−λt with λ = − ln(1− α), (2)

assuming that measurements are made at regular intervals. So the influence
of old measurements decays according to a well-known law that governs many
growing and decaying processes in nature, where a parameter λ determines the
speed of adaption or learning rate.

Imagine that the cupboard is removed after a few days. If λ is small (e.g.
1 year−1) only a small change in the map will occur. On the other hand for
large λs (e.g. 1 s−1) the map will converge to the new value immediately. In the
first case the cupboard can be seen as an outlier and the quality of the distance
estimate to the wall should not get worse. This reminds us of the notorious
problem that statistics derived from least square formulations are not robust to
outliers.

Requirement 2: Map learning should be robust to outliers.

The proposed solution of a sample-based representation can also be justified
by another observation that lies in the nature of the problem: actual changes
in the environment appear in the first instance as outliers. At the moment a
measurement is made it is not possible to determine whether it is an outlier or
not. Only after more time has passed and more measurements have been made
can outliers be identified. Therefore any method that tries to identify outliers
immediately after measurement is, in principle, not well-suited to map learning
in dynamic environments.

Requirement 3: The map representation should be able to track multiple hy-
potheses until it can be determined whether a change has really happened or
only outliers were measured.

Thus any method that represents the environment by a unimodal distribution
cannot be considered an adequate solution.

Outliers aside, there is a further problem with recency weighted averaging:
during learning in the example scenario the distance estimate would change
gradually from “wall” to “cupboard”, but none of these in-between estimates
would correspond to any physical reality. In contrast to many other dynamic
processes, the environmental changes considered here are not necessarily contin-
uous but more often discrete and rapid. In the example it would be more natural
for the estimate to represent either the distance to the wall or the distance to
the cupboard.

Requirement 4: The map should yield only values that have actually been
measured and should not create interpolated values that do not correspond to
any past or current reality.

The following section describes the map representation developed in order
to meet these requirements.
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3 Sample-based representation

The classical answer to the above requirements is to apply robust statistics [11].
The median of a set of samples fulfils requests 2 (it ignores up to 50 percent
of outliers) and 4. But there are no sufficient statistics to describe the median.
Sufficient statistics preserve the information content of the whole data set, so
the data itself can be discarded. But to calculate robust statistics we always
need a full set of data. It is of course impossible to save all data ever recorded.
Our solution here is a sample-based representation: we maintain a set of sam-
ples drawn from the data that approximates all recent data, thus also fulfilling
requirements 1 and 3.

3.1 Dynamic sample sets

The state of the map is represented at discrete time steps ti. The basic repre-
sentation of the dynamic map is a set S(ti) of n samples. A sample is just a
measurement that has been recorded before time step ti. A sample set is a func-
tion of time and is therefore the central concept that makes the map dynamic.
Its temporal evolution is calculated using an update rule and measurements.

Let M be the set of measurements that have been made between two sub-
sequent time steps ti and ti+1. S(ti+1) is then calculated by an update rule
dependent on an update rate 0 ≤ u ≤ 1 as follows:

• Remove u ∗ n randomly chosen samples from S(ti).

• Replace them by u ∗ n randomly chosen samples from M to get S(ti+1).

This algorithm is applied if the sample set is already full (that is, it contains
the maximum number n of samples). Initially a sample set is empty and until
it is full an update just consists of adding u ∗ n randomly chosen samples.

3.2 Semantics of a sample set

Let s be a sample that has been added at time step ti. The probability that a
randomly chosen sample from the sample set S(ti) has just been added like s
is u ∗ n/n = u. In each subsequent time step the probability of s remaining in
the sample set is given by 1 − u. So at time step tj > ti the probability for s
to be still in S(tj) is given by (1 − u)(tj−ti). Thus we can make the following
statement about the distribution of ages in a sample set:

At any time the probability for a sample to have been added to the sample
set t time steps before is given by:

p(t) = u ∗ eln(1−u)∗t (3)

Thus the age of the samples is distributed just like the weights in recency
weighted averaging. The distribution is dependent on a timescale parameter
λ = − ln(1− u), and has the following well-known properties: the mean life
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time τ of a sample is given by: τ = λ−1, and the half-life is given by t1/2 = ln 2
λ .

This means that one half of the sample set is expected to be younger than the
half-life and the other half older.

3.3 Probabilistic interpretation of a sample set

To actually use the map at a time step t a normal distribution N (ρ, σ2) can
be robustly estimated from the samples using the median and the median of
absolute deviations:

ρ̂ = median(S(t)) (4)
σ̂ = 1.48 median(|x− ρ̂|, x ∈ S(t)) (5)

Additionally an outlier ratio can be estimated by declaring all samples within
an interval of 3σ around ρ as inliers (99.7 % confidence level) and all others as
outliers.

The representation and interpretation of a dynamic sample set are thus
separated. This allows use of the map by techniques with simple low-dimensional
measurement models like the unimodal model applied here. In our application
this model is used for localization, so the localization module need not worry
about more complicated multimodal probability density functions. But full
information about the distribution of the map data is retained in the sample
set, where it is really needed to represent multiple hypotheses.

3.4 Representation using multiple timescales

The obvious question at this point is “which timescale to choose?” As with
spatial filtering the answer is “it depends.” For the above toy example it may
be useful to maintain two estimates, a more long-term one and a more short-term
one. Accordingly, we propose to maintain the dynamic map simultaneously for
several timescale parameters to cover the whole spectrum of possible changes.

In this context the relationship of the timescale parameter to actual time
should also be discussed. In the toy example the sensor is stationary and samples
at regular intervals. It is therefore easy to relate update ratios to hours or days.
For an arbitrarily moving robot the situation is different. It cannot be said how
long it will stay in a room or whether it will return to the same room in the same
day. To relate an update ratio to the absolute time, we must wait in the order of
the timescale to know how many measurements have been recorded during that
time. Only then can samples be picked from the measurements according to the
update ratio. Accordingly in our system the large timescale maps are updated
only after a run or once a day and are called long-term memory maps. There is
also a short-term memory map that is updated after each sensor reading. This
map is characterized by a short half-life, short enough that the assumption of
regular sampling is valid as long as the robot stays within a certain area.

As discussed in the introduction, simultaneous tracking of different timescales
is intended to tackle the stability-plasticity dilemma. Each timescale corre-
sponds to a position on an imaginary stability-plasticity scale. Maintaining
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several timescales simultaneously is thus a way to be everywhere on that scale
at the same time, allowing a map both to preserve old patterns and to adapt to
new patterns.

3.5 Simulation of the toy example

The behaviour of a sample-based dynamic map is demonstrated and compared
to recency-weighted averaging in a simulation of the toy example.

In this simulation the distance to the wall is 2 meters and the distance to
the cupboard 1 meter. Measurements are simulated assuming normal noise
with a standard deviation of 10 cm. At time t = 10 the cupboard is placed in
front of the wall and at time t = 20 it is removed. Between two time-steps 20
measurements are made. The sample set consists of 20 samples and is initialized
using the measurements of the first time-step. The recency-weighted estimate is
initialized by the mean of these first 20 measurements. The algorithm is tested
using three different update ratios: u = 0.75, u = 0.25 and u = 0.05. The
update of the sample set takes place after each time-step. The recency-weighted
average is updated directly after each measurement; the step-size parameter α
is determined to correspond to the respective update ratio.

Fig. 2 shows the results of both algorithms. Recency weighted averaging
appears to work well for large update rates like u = 0.75 when old samples are
forgotten rapidly. For smaller values of u it interpolates as expected towards
the new value and introduces values that have never been measured. After the
cupboard has been placed against the wall, the estimate using the smallest u
(corresponding to a large timescale) is practically useless, since it represents
neither of the two objects for the whole considered time.

The behaviour of the sample-based dynamic map mirrors our requests much
better. The estimates for u = 0.75 and u = 0.25 switch almost during one
time step from the wall to the cupboard and vice versa, where the values of u
determine the delay for that switch. The long-term component is unaffected by
the events, since the period during which the cupboard appeared was too short
for it to be registered.

Note that the above toy example assumed that the position of the robot
is exactly the same during updates to the map. In practice, in a real SLAM
scenario the position of the robot will vary between visits to the same mapped
location. Therefore it is necessary to project observations (laser scans) to the
same local coordinate system before updates are carried out: this aspect is
described in Section 4.1.

4 A complete system for long-term SLAM

This section describes the localization and mapping system developed using
the above map representation. The learning system and the representation of
the map is exactly as described in the toy example. Around it a localization
and mapping system for a real robot equipped with laser range scanner and

8



� �� �� �����
���

�����	 
� ���� ���
��������������� ���������

��� !"��� �"��� �"#�$%&��� ����� #�$%&��� ���&���

� �� �� �����
���

�����	 
� ���� ���
������ �� ������� ������� ������ ���

� � !"#� � !�#� � !�#$%&'()*+ )++,+ $%&'()*+ *,-(.,+
Figure 2: Using recency weighted averaging on toy example (top) and sample-
based dynamic map (bottom) for three different timescales.
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Figure 3: An overview of the whole localization and learning system. The
dynamic map is both updated online during a run and offline after each run.
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odometry has been built that has been shown to work robustly in extensive
long-term experiments.

The data flow of the whole system is depicted in Fig. 3. First, an initial map
is built from the first run through the new environment. This map is build by
a classical static SLAM algorithm using laser scans and odometry as input and
is based on scan matching [4]. The output is a set of selected laser scans with
relations between them [12]. These laser scans form the initial set of local maps.

For localization the robot selects local maps near to its current position. One
timescale within each local map is selected in a data-driven way: the timescale
is selected that best explains the sensor data according to its learned perceptual
model. The selected local maps are then converted into a point set called the
current map and the current laser scan is then matched to this current map.
Odometry information is used as a prior and as a bound to ensure robustness
of matching.

After each localization step the short-term maps are updated online. The
long-term maps are updated offline after each robot run or after each day. The
update processes the data in a run based on the estimated robot trajectory.
Pre-processing of the sensor data before map updating includes conversion of
laser observations to the local coordinate systems of the nearby local maps. In
the following subsections we provide technical details of the representation, local
map selection, self-localization using scan matching, and learning.

4.1 Local maps

In our approach a local map is a generalization of a laser range scan and is
linked to the global map by a position in global coordinates (see Fig. 4). A local
map stores several sub-maps each corresponding to a different timescale. Each
sub-map is like a 360 degree range scan from a constant position or reference
point: it quantizes the continuous space of emanating rays from that position
into a number of discrete bins. Finally each ray maintains a set of range val-
ues, corresponding to measured distances to objects, using the sample-based
representation described in Section 3.

To use this representation in an actual SLAM implementation, it is necessary
to project laser measurements from nearby positions (using the vehicle pose
estimates from self-localization) to one position (i.e. the centre of the local
map) and obtain all observations (rays) from there. An arbitrary 2-D point is
mapped to a ray number and range value by finding the closest ray and taking
the distance from the position of the local map to that point as the range value.

This definition allows the representation of a local map by a one-dimensional
parameterization. Observations recorded near to a local map’s position can be
easily converted into this representation and the learning scheme introduced
with the toy example can then be applied.

Table 1 shows the different timescales used in our experiments. The number
of timescales and their properties were chosen according to the following consid-
erations: short-term memory should react quickly to changes, so only a few data
samples should be enough. Therefore the number of samples per ray should be
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Figure 4: Internal map representation. The dynamic map consists of a set of
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angle.
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small and the update ratio high. This, in turn, entails a relatively low accuracy.
By contrast, long-term memory should not react to temporary variations, and
adapt only if something has changed consistently. At the same time the static
parts of the environment should be modeled with increased accuracy. This is
achieved by decreasing the update ratio and increasing both the spatial reso-
lution (number of rays per degree) and number of samples for the longer-term
timescales. The use of robust statistics in combination with the large number
of samples then provides both accuracy and robustness against outliers.

4.2 Perceptual model for local map selection

The sample sets are used to derive a perceptual model for the sensor input, that
is to estimate the probability of a laser scan given a pose and a local map at a
certain timescale (i.e., a set of samples). As outlined in Section 3.1 we derive a
mixture model from the sample set. The probability of a range value measured
at the position of a local map for any ray is estimated as

p(d) = (1− poutlier)pnormal(d) + poutlier ∗ puniform(d), (6)

where

pnormal ∼ N (ρ, σ2) (7)
puniform ∼ U(0, maxRange) (8)

That is, pnormal is normally distributed and puniform uniformly distributed
with parameters and mixture factor determined as in Section 3.3 from the sam-
ples of the ray considered (see Fig. 5). The log-likelihood of a whole scan is
calculated by adding the logarithms of p for each range scan reading. To cal-
culate the likelihood of a scan taken near the position of a local map the scan
readings are transformed as if taken from that position.

4.3 Localization

The localization algorithm tracks the position of the robot over time. There
is always only one single estimate for the robot’s position and it is assumed
that the starting position is known. The problem of global localization or robot
kidnapping is not addressed here.

A single localization step consists of two main parts. A point set called
the current map is synthesized by selecting those timescales that best fit the
data according to the perceptual model and the current position estimate. The
current map is then used to localize the robot at the next time step based on a
scan matching scheme that incorporates odometry information [3]. After scan
matching, a new current map is built using the resulting position estimate and
so on. The central interaction between map and localization occurs here: the
sensor data is used to select the most likely model of the current environment
from the available timescales.
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Figure 5: The perceptual model used to a interpret a sample set: a mixture of a
normal distribution and an uniformly distributed outlier distribution (Gaus-
sian+Offset). The model is determined by the mean ρ and variance σ of
the Gaussian, the mixture weight (that is, the estimated outlier ratio) and a
bounded domain (the compact support) for the outlier distribution. The result-
ing model is shown here for ρ = 0, σ = 1 and [−5..5] as support. For the laser
scanner the bounded domain is [0..maxRange] where maxRange is the maximum
range of the laser scanner that is considered to be a valid measurement.
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For a more formal description the following notation is used in the remainder:
x̂t is the posterior estimate of the robot’s pose (x, y, φ) and x̂−t is the prior
estimate at time t. The laser measurements at time step t are denoted by zt.

The current map for time t + 1 is built after the posterior estimate x̂t has
been calculated, using the following steps:

1. Local maps within a pre-specified Euclidean distance (4 meters in our
experiments) of the robot’s pose x̂t are determined to form the set of
nearby local maps.

2. For all local maps in the set of nearby local maps and for all timescales:
calculate log-likelihood according to the perceptual model for range scan
zt.

3. Select the local map timescale with best log-likelihood and add it to the
set of current local maps. The chosen timescale is marked as selected in
that local map and the local map is removed from the set of nearby local
maps.

4. Remove those range readings from zt that have a high likelihood according
to the selected model. A threshold is used here.

5. Go to 2 until the number of range readings in zt is larger than a pre-
specified size (20 in our experiments) and the set of nearby local maps is
not empty.

6. Transform the selected local maps into a set of points, using the median
as a range value. Only readings with an estimated variance no larger than
a threshold (5 cm in our experiments) are converted to points.

If after this process more than half of the range scan readings have a low
likelihood (same threshold as in step 4), the system switches into a safe mode,
where all nearby local maps with the most long-term timescale are used to derive
the current map. If this happens the localization algorithm may have lost its
position or the environment may have changed too much to be represented
accurately by any of the timescales. Using long-term maps in such situations is
a safe fallback as they will be affected much less by temporary localization errors
than the short-term memory maps (because they have the greater plasticity).
The choice of long-term maps in such situations can also be motivated by the
fact that they have lower learning rates. Since higher learning values tend to
result in faster learning but greater later variability and thus lower long-term
performance, small learning rates promise the best long-term performance [14].
In our experiments this mode was activated in approximately 0.5 percent of all
cases.

The actual localization step then uses this current map in an approach that
fuses scan matching and odometry. After the current map is built the prior
estimate x̂−t+1 is obtained by projecting forward the old posterior estimate x̂t

according to the odometry. The uncertainty of the odometry prediction is given
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by a covariance matrix that was acquired experimentally in this work. Scan
matching is then performed by minimizing an energy function ES as described
in [4]. The a priori estimate x̂−t+1 and its estimated uncertainty (given by the
covariance matrix) is incorporated as a prior EO. This odometry prior is defined
as EO(x) = (x− x̂−t+1)

tC−1
O (x− x̂−t+1), where CO is the covariance matrix of the

odometry estimate. So finally a term

ES + κ ∗ EO (9)

is minimized.
Instead of determining a constant value for κ we employ an adaptive scheme

for the following reason: In most cases the result from scan matching is so much
more exact than odometry that incorporation of the prior EO would only worsen
the result, as is confirmed by the relation between the covariance matrices of
scan matching and odometry. But, scan matching could also converge to a
wrong solution (for example, it could match two doors with different opening
angles instead of matching the walls if the robot is very close to the door).
Such a case would also result in a well-conditioned covariance matrix. So the
uncertainty of the scan matching result is not described well by the unimodal
Gaussian associated with the covariance matrix for such cases. In conclusion it
can be said that the scan match estimate is very accurate but can converge to
the wrong solution. On the other hand the odometry is not very accurate but
the description of its uncertainty by a covariance matrix models the reality well
over the short distances considered here.

The sensor fusion scheme we use therefore forces the scan matching algo-
rithm to converge to a solution within a region given by the uncertainty of the
odometry as follows:

1. Set κ = 0.

2. Minimize ES + κ ∗ EO.

3. If result within two standard deviations according to odometry then finish.

4. κ = κ ∗ 2 and goto 2.

This scheme is reminiscent of the Levenberg-Marquardt algorithm (e.g. [7])
and was indeed inspired by it.

4.4 Learning: online and offline updates

Again, Table 1 shows the different timescales used in our experiments. The
short-term memory map (λ1) is updated after each localization step. All local
maps whose centres are near (< 2.5 m) to the current position are considered
for update. The range-finder readings are converted to polar coordinates, as
described in Section 4.1, and then used to update the sample sets of the local
maps, as described in Section 3.1. The robust estimates for the perceptual model
parameters are then updated online. If there is no local map within 2.5 m of the
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Update ratio (u) Timescale (t1/2) nRays nSamples

/interval (t1/2)
λ1 0.2 / always ≈ 3.1 360 5
λ2 0.8 / per run ≈ 0.43 runs 360 10
λ3 0.8 / daily ≈ 0.43 days 720 50
λ4 0.2 / daily ≈ 3.1 days 1440 100
λ5 0.05 / daily ≈ 13.5 days 1440 100

Table 1: The different timescales of the sub-maps contained in one local map.
λ1 is the short-term memory map, λ2-λ5 are the long-term memory maps. The
half-life for λ1 is given in terms of the sensor’s scanning frequency, that is 3.1
is the time needed to record 3.1 laser scans.

current position estimate, then a new local map is added at that position and
initialized using the values of the current scan. For the long-term memory maps
(λ2-λ5) the information (triples of local map, range scan and pose estimate) is
stored and evaluated offline after a run (λ2) or after a day (λ3-λ5), as indicated
in the table, but with exactly the same method otherwise.

5 Experimental evaluation

5.1 Experimental Setup

The complete map learning system was tested extensively in an indoor envi-
ronment consisting of a robotics laboratory with three rooms, a corridor with
Ph.D. students’ offices and a hallway containing stairs, chairs and tables. Over
a period of five weeks the robot was steered manually through this environment
from a constant start position. Typically three runs per day were performed;
one in the morning, one after lunch and one in the early evening. A SICK LMS
200 laser scanner was used, and a total of around 100000 laser scans together
with odometry data were recorded in 75 runs with a total distance of 9.6 km.
The environment was not prepared in any way nor were people instructed some-
how (that would have been impossible due to the heavy traffic of students in
the hallway especially around lunchtime). The initial map built by the static
SLAM algorithm comprising 76 local maps is shown in Fig. 6. Over 90 local
maps were used in total, since the number of local map grows with time as new
areas are visited, as described in Section 4.4. Referring to Table 1, each local
map in our chosen representation needs to store 329 400 samples, meaning a
total memory requirement of around 0.63 MB per local map if two bytes are
used per sample, or approximately 60 MB in total for our setup.
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Figure 6: The initial map of the environment (obtained by a static SLAM
approach) in which the experiment was conducted. The filled circles mark the
positions of local maps.

18



5.2 Qualitative results

The most important result is that the dynamic map was stable over time and did
not diverge. The accuracy of its local maps increased over time; this could be
verified visually, for example, by looking at the straightness of walls. In parts of
the environment where changes often occur, static parts like walls emerge while
moving objects like chairs that could be observed in the initial map disappear.
This could be observed, for example, in the robot lab. Figure 7 shows the most
long term map (λ5) of the middle room of the lab on three different days (Oct
18, Nov 1 and Nov 19) along with the local map that is updated after each run
(λ2) on Nov 19. It can be seen that the static aspects improve, although on
Nov 19, for example, the lab looks quite different in some parts, as can be seen
on the rightmost map. For visualization only points are shown for which the
probabilistic model yields a standard deviation estimate smaller than 10 cm.

Major structural changes happened rarely as one might expect in this kind
of environment, but one such change and the reaction of the dynamic map is
shown in Figs. 8 and 9. Another structural change was the installation of new
radiators in the hallway where some tables were also moved. Many changes on
a smaller timescale (a few days or less) occurred frequently in the robotics lab,
where movable “walls” and other robots often appeared at different positions as
other researchers performed their experiments. Other frequent changes occurred
in the hallway, e.g. chairs were often moved. These challenges were handled well
by the dynamic map, with the short-term map adapting quickly to the changes.

Oct 18 / λ5 Nov 1 / λ5 Nov 19 / λ5 Nov 19/ λ2

Figure 7: The most long-term submaps (λ5 in Table 1) of an example local
map (the middle room of the robot lab). The circle marks the centre of the
local map. It can be seen that static aspects improve over time, although the
environment sometimes looks quite different, e.g. on the last day as can be seen
in the rightmost submap (which is a local map with a small half time, λ2 in
Table 1)

5.3 Quantitative performance measures

While these results may be satisfying enough from a theoretical point of view,
a practitioner may still doubt whether such a technology is really needed, as
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Figure 8: A major change occurred on day 4 of the experiments. The design
class attendees presented their work (designs for toasters) in a small exhibition.

Figure 9: Evolution of a local map after a major change has occurred (the toaster
exhibition). Shown are the long-term memory maps λ2-λ5 on four different days.
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it makes the already difficult problem of simultaneous localization and map-
ping even more complex and might lead to a less robust and slower solution.
Therefore we conducted an experimental comparison of the localization algo-
rithm using the dynamic map against the same localization algorithm using the
map created at the end of the first day as a static map. Additionally this static
map was tested in two variations: with and without short-term memory (λ1 in
Table 1 activated). A general result is that in all cases there was no serious
localization error that the robot could not recover from, so global localization
was never required (the start position was always the same). In the absence of
ground truth data, the following performance measures were selected:

1. The average likelihood of a range scan reading given the probabilistic
model explained in Section 4.2. This measure gives an indication of how
expected a scan is.

2. The smallest eigenvalue of the inverse of the covariance matrix that re-
sults from scan matching. This measure gives an indication of localization
accuracy: if that value is large the corresponding uncertainty is small.

Figs. 10 and 11 show the evolution of these measures. In both cases there is
a clear benefit in using the dynamic map. Also, using the short-term memory
map alone improves the performance. But the long-term memory map improves
the results even more, especially regarding localization accuracy. Both figures
also show an expected effect: the static map performs better at the beginning
than at the end, while the dynamic map improves performance with time.

5.4 Usage of the different timescales

While the above “black-box” measures characterize the performance of the
whole system, they do not show how the internal components of the dynamic
map behaved. The exact number of timescales we used (5) was a more or less
arbitrary decision, and more timescales would perhaps further improve the over-
all performance. But the main idea was to cover the full spectrum of possible
timescales and the order of the longest timescale (λ2 ≈ 13.5 days) relates to
the duration of the experiment, so for an experiment lasting a year we would
probably choose a maximum timescale with a half-life of two or three months.

To determine whether all of the timescales applied were really useful, we
recorded how often each timescale was selected by the localization algorithm,
with the result shown in Fig. 12. Clearly each timescale was actually used, and
the relative frequencies are distributed relatively evenly among the long-term
memory maps, but with noticably higher usage of the short-term component.
A definite temporal trend was also observed: Fig. 13 shows relative usage fre-
quencies for the short-term memory map (λ1) and the most long-term memory
map (λ5) against time. The usage of the short-term memory map decreased
with time, while usage of the long-term memory map increased. An explana-
tion for this behaviour is that the long-term map models the static parts of the
scene with increasing reliability over time. With more measurements it becomes
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Figure 10: The average likelihood of a measured range value according to the
learned perceptual model (Section 4.2). The dynamic map, consisting of a short-
term memory map (STM) and long-term memory maps (LTM), is compared to
a static map and a static map with added short-term memory. The static map
is a snapshot of the dynamic map after the first day.

increasingly unlikely that outliers (e.g. caused by moving people or temporary
localization errors) will be used in the local maps. In addition, the median fil-
ter becomes more precise as the number of samples in the long-term memory
map increases, which also means that the corresponding standard deviation will
typically become smaller as the estimate becomes more certain. The localiza-
tion algorithm will then prefer the long-term memory map if the corresponding
part of the environment has really remained static, due to its higher likelihood
according to the perceptual model. This result provides compelling evidence
that the dynamic map was not only successful in reacting to changes in the
environment, but also that it was successful in improving map quality for the
static parts of the environment.

6 Conclusion

This paper presented an experimental analysis of sample-based maps for long-
term SLAM in dynamic environments. The approach is based on two novel, sim-
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Figure 11: The certainty of the localization estimate. This certainty is mea-
sured by the value of the smallest eigenvalue of the inverse of the localization
covariance matrix. If that value is large the corresponding uncertainty is small.

ple and powerful ideas: (1) representing the environment at different timescales,
with older memories fading at different rates, and (2) using samples and ro-
bust statistics to handle contradicting measurements produced by environmental
changes. Large amounts of memory are required for the proposed representa-
tion, but are available today on standard computers. A further contribution was
made at a more abstract level: we investigated the general problems of life-long
map learning in dynamic environments and identified the stability-plasticity
dilemma as the most important problem. Our solution to the dilemma is to
track the state of the world at several timescales simultaneously, and then to
let the sensor data select the most appropriate timescale for a given situation.
With this approach, the robot can simultaneously represent the world before,
during and after changes to the configuration of an environment.

These concepts were verified through a long-term experiment over a pe-
riod of 5 weeks (one of longest robotic mapping experiments performed), where
changes to the environment included the installation and deinstallation of a
small exhibition inside the mapped area. Our proposed method separates the
well-known problems of static SLAM (error-backpropagation, loop closing) from
the dynamic problems, handling the first by a classical SLAM algorithm. This
is advantageous, because the difficulty of both parts adds but does not multiply.
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Figure 12: The relative frequency with which each submap was selected.
Thereby λ1 is the short-term memory and λ2-λ5 are the long-term memory
maps (with update ratios as given in Table 1 ).

Figure 13: Evolution of usage frequencies for timescales λ1 and λ5.
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A key idea to make this possible is to represent the map as a collection of “360
degree scans” relative to global reference points. Thereby the classical SLAM
problems such as error propagation and loop closing affect only the reference
points and are solved by a classical SLAM algorithm. The dynamical effects af-
fect the individual rays of the 360 degree scans only and are solved by applying
1-D robust statistics (median, median of absolute differences) to each ray. This
is crucial, because robust statistics are much harder to generalize to multiple
dimensions than least square statistics.

In this paper, we did not consider the problems of “kidnapping” or global
localization. Although serious localization errors were never observed in our
experiments, this does not guarantee that such errors would never occur in
general. In the case of small localization errors or temporary loss of position,
wrong samples would be added to the dynamic map, but would then be treated
as outliers. In the case of non-recoverable localization error, it would be nec-
essary to switch to global localization and switch off map learning until the
robot’s position had been recovered. In our system, this could be detected us-
ing the perceptual model together with a suitable likelihood threshold to declare
possible localization failures.

Future work would also include investigation of other sensor modalities such
as vision instead of range-finder sensors. Rather than using a normal distribu-
tion in the perceptual model for each angle-bin and timescale, as in this work,
a multi-modal distribution estimated from all timescales per bin might remove
the need for search over timescales in the localization process. Our experiment
in this work covered a five week period in a real environment: further work
would still be needed to determine how to scale the approach to operation of
service robots for a potentially undetermined period of time, e.g. many years.
This would include further analysis on how to choose the timescales and their
memory requirements, update ratios, etc. The problem of selecting a minimal
set of local maps also remains an open topic for future research. In conclu-
sion, while this work demonstrates a basic solution to the problem of long-term
SLAM, it also opens up many interesting avenues for future work on lifelong
operation of mobile service robots.
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