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Abstract 
 

This paper describes and analyzes the performance of 
a structural feature extraction technique for the 
recognition of segmented/cursive characters that may be 
used in the context of a segmentation-based, handwritten 
word recognition system. The Modified Direction Feature 
(MDF) extraction technique builds upon a previous 
technique proposed by the authors that extracts direction 
information from the structure of character contours. This 
principle is extended so that the direction information is 
integrated with a technique for detecting transitions 
between background and foreground pixels in the 
character image. The MDF technique used in conjunction 
with neural network classifiers provide recognition rates 
of up to 90.24%, which are amongst the highest in the 
literature. This paper also presents a detailed analysis of 
the characters that were the source of misclassification in 
the character recognition process. The characters used 
for experimentation were obtained from the CEDAR 
benchmark database. 
 

1. Introduction 
 

There are many existing systems, which provide high 
recognition rates for separated handwritten numerals and 
characters [1]. However, recognition rates have not been 
as successful when performing experiments with 
characters that have been extracted from cursive 
handwritten words [2]-[5]. Two of the major difficulties in 
recognizing segmented, handwritten characters are: 
ambiguity and illegibility of the characters. 

In past years, many feature extraction techniques have 
been proposed for cursive character recognition. Amongst 
those have been neural network-based techniques using 
features obtained from the local histogram of the 
character's chain code [4]. Yamada and Nakano [2] 
investigated a standard technique for feature extraction 
based on direction histograms in character images. They 
used segmented characters from words in the CEDAR 
database [6]. Gader et al. [3] have proposed a feature 

extraction technique utilizing transition information from 
background to foreground pixels in the vertical and 
horizontal directions of a character image. A recent study 
by Camastra and Vinciarelli [7] has proposed feature 
extraction techniques generating local and global features. 
The local features are obtained from sub-images of the 
character including foreground pixel density information 
and directional information. The global features used 
included the fraction of the character appearing below the 
word baseline and the character’s width/height ratio. 

In this research, the newly proposed Modified 
Direction Feature (MDF) extraction technique was 
extensively investigated. The experimental results using 
MDF were compared to those obtained using both 
Direction Feature (DF) and Transition Feature (TF) 
techniques. A Multi-Layer Perceptron (MLP) and a Radial 
Based Function (RBF) classifier were used for testing 
character recognition performance with the features 
mentioned above. 

The remaining sections of this paper consist of five 
parts. Section 2 explains the cursive character processing 
procedure used in this research, Section 3 provides details 
of the MDF technique and the character recognition 
methodology and Section 4 presents experimental results. 
A discussion and analysis of results takes place in Section 
5 and finally Section 6 draws conclusions and presents 
future research. 
 

2. Cursive character datasets and processing 
 

Two character sets were used for both the training and 
testing procedures in this research. The first dataset was 
obtained from words contained on the CEDAR CD-ROM 
[6], located in the CITIES/BD training and testing 
directories. This dataset will be referred to as the CEDAR 
Automatically Segmented (CAS) dataset. The second 
dataset was obtained from the BINANUMS/BD & BL 
directories of the CEDAR CD-ROM. These images were 
comprised of pre-segmented, Binary Alphanumeric 
Characters, and will be referred to as the BAC dataset. 
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2.1 Preprocessing 
 

Before characters could be extracted from the CAS 
dataset, it was necessary to convert the original word 
images from the standard CEDAR format to a .pbm 
format to facilitate manipulation and further processing. 
Each word was then slant corrected [8]. The characters 
comprising the BAC dataset were likewise converted from 
their standard CEDAR format. 
 
2.2 Character extraction and processing 
 

To create the CAS dataset, it was necessary to perform 
automatic character segmentation and extraction. Our 
technique first proceeded to sequentially locate all non-
cursive/printed character components through the use of 
character component analysis. Next, x-coordinates 
(vertical segmentations) for each connected character 
component (defined by our heuristic segmenter [9]) were 
used to define the vertical boundaries of each character 
matrix. The horizontal boundaries were determined by 
conducting a search from both the top and bottom of the 
word (bounded by the aforementioned vertical 
boundaries). The first instances of foreground pixels in 
each direction were deemed as the horizontal boundaries. 

Further processing procedures for the CAS and BAC 
data sets differed slightly. To maintain consistency with 
processing procedures carried out in previous experiments 
(for the purpose of comparison), it was necessary to re-
scale the binary images of the CAS dataset to a uniform 
size before further processing. However, images from the 
BAC dataset were further processed without re-scaling. It 
was then necessary to perform boundary extraction on 
images from both datasets in order to derive the required 
direction information (described below).  

 

3. Feature extraction and character 
recognition 

 
This section describes the three feature extraction 

techniques that were investigated in this research. The first 
was the standard Transition Feature (TF) [3], which was 
used for detecting transitions between background and 
foreground pixels in a character image. The second was 
the standard Direction Feature (DF), previously proposed 
by the authors [10], which was developed to provide the 
stroke direction of line segments in handwritten character 
images. The third is the recently proposed Modified 
Direction Feature (MDF) technique [11].  

 
3.1 Transition Feature (TF) 
 

The transition feature used for comparison in this 
research was originally proposed in [3]. In this technique, 

transition calculations are performed based on traversals 
in four directions. These are: left to right, right to left, top 
to bottom and bottom to top. A traversal is defined as the 
crossing of a particular line in a character image in one of 
the given directions. During a traversal, when a transition 
from a background to foreground pixel is encountered, the 
ratio between the location of the pixel and the distance 
across the image in that direction is computed and 
recorded. Each ratio value is referred to as a transition 
feature. Finally, all transition feature values are processed 
to form a transition feature vector. 
 
3.2 Direction Feature (DF) 
 

The Direction Feature has been extensively detailed 
elsewhere [10] and will only briefly be described in this 
section. 
 
3.2.1 Direction determination: The goal of the DF was 
to simplify each character's boundary through 
identification of individual stroke or line segments in the 
image. To achieve this, character boundaries were traced 
from a given starting point to known intersection points. 
Once at an intersection, a clockwise investigation was 
conducted to determine the beginning and end of 
prospective line segments based on a number of rules 
[10].  

Next all foreground (black) pixels (comprising 
individual line segments) were replaced with a set of 
"direction values". Direction values may be categorized 
into four types based on the calculated direction of 
individual pixels: 1) vertical, 2) horizontal, 3) right 
diagonal and 4) left diagonal. After replacing foreground 
pixels with appropriate direction values, a normalization 
procedure was required to generalize the direction of 
individual line segments. This was achieved by calculating 
the most frequently occurring direction value in a given 
line segment [10].  
 
3.2.2 Formation of feature vectors: Once the general 
direction of line segments was determined, a methodology 
was developed for creating appropriate feature vectors. In 
the first step, the character pattern marked with direction 
information was zoned into windows of equal size (the 
window sizes were varied during experimentation). In the 
next step, direction information was extracted from each 
individual window. Specific information such as the line 
segment direction, length, intersection points, etc. were 
expressed as floating point values between –1 and 1 [10]. 

 
3.3 Modified Direction feature (MDF) 
 

The MDF technique builds upon the TF and DF 
techniques described in Sections 3.1 and 3.2. The main 
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difference is in the way the feature vector is created. For 
MDF, feature vector creation is based on the calculation 
of transition features from background to foreground 
pixels in the vertical and horizontal directions. However, 
in MDF, aside from calculating the Location of 
Transitions (LTs), the Direction Transition (DT) values at 
a particular location are also stored. Therefore, for each 
transition, a pair of values such as [LT, DT] is recorded. 
 
3.3.1 Determining LT values: To calculate LT values, it 
is necessary to scan each row in the image from left-to-
right and right-to-left. Likewise, each column in the image 
must be scanned from top-to-bottom and bottom-to-top. 
As in the standard transition feature extraction technique 
[3], the LT values in each direction are computed as a 
fraction of the distance traversed across the image. 
Therefore, as an example, if the transitions were being 
computed from left-to-right, a transition found close to the 
left would be assigned a high value compared to a 
transition computed further to the right (See Figure 1). A 
maximum value (MAX) was defined to be the largest 
number of transitions that may be recorded in each 
direction. Conversely, if there were less than MAX 
transitions recorded (n for example), then the remaining 
MAX - n transitions would be assigned values of 0 (to aid 
in the formation of uniform vectors).  
 
3.3.2 Determining DT values: Once a transition in a 
particular direction is found, along with storing an LT 
value, the direction value (DT) at that position is also 
stored. The DT value is calculated by dividing the 
direction value (at that location) by a predetermined 
number, in this case: 10. The value 10 was selected to 
facilitate the calculation of floating-point values between 
0 and 1 (See Figure 1). 

Therefore, following the completion of the above, four 
vectors would be present for each set of feature values 
(eight vectors in total). For both LT and DT values, two 
vectors would have dimensions MAX × NC (where NC 
represents the Number of Columns (width) of the 
character) and the remaining two would be MAX × NR 
(where NR represents the Number of Rows (height) of the 
character).  

A further re-sampling of the above vectors was 
necessary to ensure that the NC/NR dimensions were 
normalized in size. This was achieved through local 
averaging. The target size upon re-scaling was set to a 
value of 5. Therefore, for a particular LT or DT value 
vector, windows of appropriate dimensions were 
calculated by determining an appropriate divisor of 
NC/NR, and the average of the LT/DT values contained in 
each window were stored in a re-sampled 5 × 5 matrix (as 
shown in Figure 2 for vectors obtained from a left-to-right 
direction traversal). This was repeated for each of the 

remaining transition value vectors so that a final 120 or 
160 element feature vector could be formed using the 
following formula: 
 

nrFeatures×nrTransitions×nrVectors×rsMatrixHeight(Width) (1) 
 

where: 
nrFeatures = 2, 
nrTransitions = 3 or 4,  
nrVectors = 4 and  
rsMatrixHeight(Width) = 5 
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Figure 1: Processing of DT and LT values in the 

left-to-right direction 
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 (a)   (b)  
Figure 2: Calculation and creation of a resampled 
(a) LT value vector (left-to-right direction), (b) DT 

value vector (left-to-right direction) 
 

3.4 Configuration of the neural classifiers 
 

The classifiers chosen for the task of handwritten 
character recognition was a feed-forward MLP trained 
with the backpropagation algorithm and an RBF network. 
For experimentation purposes, the architectures were 
modified varying the number of inputs, outputs, hidden 
units (or centers) and hidden layers. 

The number of inputs to each network was associated 
with the size of the feature vector for each image. Various 
vector dimensions were investigated through 
experimentation. The most successful vector 
configurations were of size 81 for the DF and 120/160 for 
the MDF. 

The configurations of the neural classifiers were 
different for each data set. For each classifier type (when 
using the CAS dataset), two neural networks were trained 
with 27 outputs each. Each network consisted of 26 
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desired output neurons (a-z or A-Z) and 1 reject neuron. 
For the BAC data set, desired outputs were combined into 
36 categories and there was no reject neuron (similar to 
the settings described in [5]).  
 

4. Experimental results 
 

As mentioned previously, the training and testing data 
used were from the CEDAR benchmark database [6]. In 
this section, we present the experimental results of this 
research, comparing them with the performance of other 
techniques. 

Results are displayed in tabular form for each set of 
experiments. Table 1 and Table 2 display the 
experimental results using the CAS dataset. Separate 
experiments were conducted for lower case and upper 
case character patterns. A total of 18655 lower case and 
7175 upper case character patterns were generated for 
training. A further 2240 lower case and 939 upper case 
patterns were used for testing. Table 3 and Table 4 present 
experimental results using the BAC dataset, which 
consisted of 19145 characters for training and 2183 
characters for testing. Table 1 and Table 3 present top 
results for the TF, DF and MDF extraction techniques 
using MLPs whilst Table 2 and Table 4 present top results 
employing RBF networks. For comparison purposes, all 
feature extraction techniques were tested on boundary 
representations of resized characters from the CAS dataset 
and boundary representations of non-resized characters 
from the BAC dataset. 

 
Table 1. Character recognition rates with an MLP 
trained using boundary information from resized 

characters (CAS dataset) 
Test Set Recognition Rate [%]  

TF DF MDF (120) MDF (160) 
Lowercase 67.81 69.73 70.22 70.17 
Uppercase 79.23 77.32 80.83 80.40 

 
Table 2. Character recognition rates with an RBF 

network trained using boundary information 
from resized characters (CAS dataset) 

Test Set Recognition Rate [%]  
TF DF MDF (120) MDF (160) 

Lowercase 70.31 70.63 71.33 71.52 
Uppercase 79.13 75.93 81.58 79.98 
 
Table 3. Character recognition rates with an MLP 

trained using boundary information from non-
resized characters (BAC dataset) 

Test Set Recognition Rate [%]  
TF DF MDF 

(120) 
MDF 
(160) 

36 outputs 82.82 83.65 89.46 88.82 

Table 4. Character recognition rates with an RBF 
network trained using boundary information 
from non-resized characters (BAC dataset) 

Test Set Recognition Rate [%]  
TF DF MDF 

(120) 
MDF 
(160) 

36 outputs 85.48 80.99 90.24 88.73 
 

5. Discussion and analysis of results 
 
5.1 General observations 
 

Two general observations may be made from the 
experimental results presented above. For the MDF, two 
sets of inputs were created, giving feature vectors of size 
120 and 160. One general prediction was that by 
providing more detailed input data to the neural network 
(in terms of the number of transitions extracted), it was 
possible to obtain a better recognition rate. However, as 
can be seen from the tables above, the increase in detail 
produced a higher accuracy in only one out of six cases. 

It was also observed that in general, the RBF network 
provided more superior results when compared with the 
MLP. This may be due to the Gaussian function in the 
hidden layer of the RBF network, which functions more 
effectively at distinguishing between characters patterns 
than the MLP network. 
 
5.2 Comparison of feature extraction techniques 
 

As shown in all tables above, the networks trained with 
the MDF provided a higher recognition rate than the DF 
and TF techniques in each case. In particular, the MLP 
network trained with the MDF (120 inputs) for the BAC 
dataset, demonstrated an increase of approximately 6% 
and 7% over the DF and TF techniques respectively. This 
increase may be attributed to the enhanced feature 
information obtained from both the LT and DT values. 
 
5.3 Investigation of incorrectly recognized 

characters 
 

In this research, aside from testing the performance of 
the MDF technique compared with two other techniques, 
it was also important to perform an analysis of the 
characters that were incorrectly recognized to determine 
the distribution of errors in the networks. 

Of great interest were the classification errors 
generated by the MDF technique using the BAC data set, 
as it provided some of the top results in this research. For 
the network configuration obtaining one of the top 
recognition rates (MLP), out of a total of 2183 characters 
in the testing set, there were 250 characters that were not 
successfully recognized. Firstly, an investigation was 
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performed recording which individual classes of 
characters provided the most errors for the network. It was 
found that characters ‘i’, ‘l’, ‘v’, and character ‘R’ 
provided the most misclassifications out of the 36 possible 
outputs. Figure 3 illustrates the distribution. 

 

Distribution of Incorrectly Recognised Characters from 
the BAC Dataset
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Figure 3. Error distribution for incorrectly 

recognized characters 
 
The investigation continued to determine which of the 

remainder of the characters were mostly being confused 
with the top four incorrectly recognized classes. It was 
found that the character ‘i’ was mostly incorrectly 
recognized as the character ‘l’ (and vice-versa). The 
character ‘v’ was mainly confused with the character ‘u’, 
and ‘R’ was mostly confused with ‘A’. The following 
figures present the error distributions of each of the above 
characters. 
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Figure 4. Error distribution of mismatched 
characters for (a) character 'i' (b) character 'v' (c) 

character 'l' and (d) character 'R' 
 

During the investigation, it was noticed that in certain 
instances, due to the ambiguities of some character 

images, the neural network was not at all able to give a 
reliable confidence to determine a correct output. In other 
words, when the MLP encountered 'ambiguous' character 
features, it ranked many of the possible outputs at 
confidence values below 0.3. For the MLP test case using 
the BAC dataset (mentioned above), there were 37 out of 
250 such characters that were incorrectly recognized.  

Another interesting result of the investigation was that 
if the top two character confidences output by the MLP 
were used to determine the character recognition rate, the 
recognition error decreased from 250 incorrectly 
recognized characters to 101. Hence, when the top two 
confidences output by the MLP are taken into account, the 
character recognition rate reaches approximately 95%. 
 
5.4 Comparison of character recognition results 

with other researchers in the literature 
 

It is always a difficult task to compare results for 
handwritten character recognition with other researchers 
in the literature. The main problems that arise are 
differences in experimental methodology, different 
experimental settings and the difference in the 
handwriting database used. The comparisons presented 
below have been chosen for two main reasons. The 
handwriting databases used by the researchers were 
similar to those used in this research and/or the results are 
some of the most recent in the literature. 

Yamada and Nakano [2] presented a handwritten word 
recognition system that included a character recognizer. 
Their classifier was trained on segmented characters from 
the CEDAR benchmark database. The classifier was 
trained to output one of 52 classes (a-z, A-Z). They 
recorded recognition rates of 67.8% and 75.7% for the 
recognition of characters where upper case letters and 
lower case letters were distinguished (case sensitive) and 
not distinguished (non-case sensitive) respectively. 
Therefore, if the top lower case (71.52%) and upper case 
(81.58%) character recognition rates from our research 
are averaged (using the CAS dataset), a 76.55% 
recognition accuracy is obtained. This recognition rate 
compares well with their results. Our top recognition 
accuracy using the BAC data set (90.24%) exceeds their 
top result by nearly 14%. 

Another example where a 52-output classifier was used 
for segmented character recognition was in research 
presented by Kimura et al. [4]. They used neural and 
statistical classifiers to recognize segmented CEDAR 
characters. For case sensitive experiments, their neural 
classifier produced an accuracy of 73.25%, which was 
comparable to our lower case and upper case average of 
76.55%. Our top recognition accuracy using the BAC 
dataset exceeded theirs by almost 17%. 
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Singh and Hewitt [5] obtained a recognition rate of 
67.3% using a Linear Discriminant Analysis-based 
classifier. Our best result using the BAC dataset exceeds 
their top recognition rate by nearly 23%. 

Through our own experimentation [10], we found that 
the standard transition feature, as proposed by Gader et al. 
[3], produced results of 70.31% and 79.23% for lowercase 
and uppercase characters respectively. Our most recent 
results on the CAS data set are higher than those 
described above. 

Finally, the results presented in our research 
(specifically those for the BAC dataset - 90.24%) compare 
favorably to those presented by Camastra and Vinciarelli 
[7] who obtained a recognition rate of 84.52%. As in most 
of the results above, a precise comparison is difficult, as 
Camastra and Vinciarelli's classifier configuration and 
dataset composition were different to those described in 
our research. 
 

6. Conclusions and future research 
 

This paper presents a detailed investigation and 
comparison of feature extraction techniques for cursive 
character recognition. The MDF technique provided the 
top recognition rate for cursive handwritten characters, 
outperforming the best TF result by nearly 5% and the 
best DF result by nearly 6%. The MDF also compared 
well with some of the top results in the literature, 
outperforming other techniques by 6-23%. 

In addition, a detailed analysis of the incorrectly 
classified characters provided by one of the MDF neural 
network configurations revealed four main character 
classes consistently giving misclassifications. These four 
character classes were then further scrutinized to 
determine the source of confusion. The results of this 
analysis provide future directions for enhancing the 
current classification configuration to take into account 
those characters that provide the most errors. 

In future research, a number of additional 
considerations will be addressed to further investigate and 
enhance the recognition process. These include 
conducting further experiments with additional benchmark 
datasets, improving the preprocessing methodology and 
enhancing segmentation techniques. Further combinations 
of classifiers and local and global features will also be 
explored. 
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