

Experimental Analysis of the Modified Direction Feature for Cursive Character
Recognition

X. Y. Liu and M. Blumenstein

School of Information Technology
Griffith University – Gold Coast Campus

PMB 50, Gold Coast Mail Centre,
QLD 9726, Australia

E-mail: m.blumenstein@griffith.edu.au

Abstract

This paper describes and analyzes the performance of
a structural feature extraction technique for the
recognition of segmented/cursive characters that may be
used in the context of a segmentation-based, handwritten
word recognition system. The Modified Direction Feature
(MDF) extraction technique builds upon a previous
technique proposed by the authors that extracts direction
information from the structure of character contours. This
principle is extended so that the direction information is
integrated with a technique for detecting transitions
between background and foreground pixels in the
character image. The MDF technique used in conjunction
with neural network classifiers provide recognition rates
of up to 90.24%, which are amongst the highest in the
literature. This paper also presents a detailed analysis of
the characters that were the source of misclassification in
the character recognition process. The characters used
for experimentation were obtained from the CEDAR
benchmark database.

1. Introduction

There are many existing systems, which provide high
recognition rates for separated handwritten numerals and
characters [1]. However, recognition rates have not been
as successful when performing experiments with
characters that have been extracted from cursive
handwritten words [2]-[5]. Two of the major difficulties in
recognizing segmented, handwritten characters are:
ambiguity and illegibility of the characters.

In past years, many feature extraction techniques have
been proposed for cursive character recognition. Amongst
those have been neural network-based techniques using
features obtained from the local histogram of the
character's chain code [4]. Yamada and Nakano [2]
investigated a standard technique for feature extraction
based on direction histograms in character images. They
used segmented characters from words in the CEDAR
database [6]. Gader et al. [3] have proposed a feature

extraction technique utilizing transition information from
background to foreground pixels in the vertical and
horizontal directions of a character image. A recent study
by Camastra and Vinciarelli [7] has proposed feature
extraction techniques generating local and global features.
The local features are obtained from sub-images of the
character including foreground pixel density information
and directional information. The global features used
included the fraction of the character appearing below the
word baseline and the character’s width/height ratio.

In this research, the newly proposed Modified
Direction Feature (MDF) extraction technique was
extensively investigated. The experimental results using
MDF were compared to those obtained using both
Direction Feature (DF) and Transition Feature (TF)
techniques. A Multi-Layer Perceptron (MLP) and a Radial
Based Function (RBF) classifier were used for testing
character recognition performance with the features
mentioned above.

The remaining sections of this paper consist of five
parts. Section 2 explains the cursive character processing
procedure used in this research, Section 3 provides details
of the MDF technique and the character recognition
methodology and Section 4 presents experimental results.
A discussion and analysis of results takes place in Section
5 and finally Section 6 draws conclusions and presents
future research.

2. Cursive character datasets and processing

Two character sets were used for both the training and
testing procedures in this research. The first dataset was
obtained from words contained on the CEDAR CD-ROM
[6], located in the CITIES/BD training and testing
directories. This dataset will be referred to as the CEDAR
Automatically Segmented (CAS) dataset. The second
dataset was obtained from the BINANUMS/BD & BL
directories of the CEDAR CD-ROM. These images were
comprised of pre-segmented, Binary Alphanumeric
Characters, and will be referred to as the BAC dataset.

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

2.1 Preprocessing

Before characters could be extracted from the CAS
dataset, it was necessary to convert the original word
images from the standard CEDAR format to a .pbm
format to facilitate manipulation and further processing.
Each word was then slant corrected [8]. The characters
comprising the BAC dataset were likewise converted from
their standard CEDAR format.

2.2 Character extraction and processing

To create the CAS dataset, it was necessary to perform
automatic character segmentation and extraction. Our
technique first proceeded to sequentially locate all non-
cursive/printed character components through the use of
character component analysis. Next, x-coordinates
(vertical segmentations) for each connected character
component (defined by our heuristic segmenter [9]) were
used to define the vertical boundaries of each character
matrix. The horizontal boundaries were determined by
conducting a search from both the top and bottom of the
word (bounded by the aforementioned vertical
boundaries). The first instances of foreground pixels in
each direction were deemed as the horizontal boundaries.

Further processing procedures for the CAS and BAC
data sets differed slightly. To maintain consistency with
processing procedures carried out in previous experiments
(for the purpose of comparison), it was necessary to re-
scale the binary images of the CAS dataset to a uniform
size before further processing. However, images from the
BAC dataset were further processed without re-scaling. It
was then necessary to perform boundary extraction on
images from both datasets in order to derive the required
direction information (described below).

3. Feature extraction and character
recognition

This section describes the three feature extraction

techniques that were investigated in this research. The first
was the standard Transition Feature (TF) [3], which was
used for detecting transitions between background and
foreground pixels in a character image. The second was
the standard Direction Feature (DF), previously proposed
by the authors [10], which was developed to provide the
stroke direction of line segments in handwritten character
images. The third is the recently proposed Modified
Direction Feature (MDF) technique [11].

3.1 Transition Feature (TF)

The transition feature used for comparison in this
research was originally proposed in [3]. In this technique,

transition calculations are performed based on traversals
in four directions. These are: left to right, right to left, top
to bottom and bottom to top. A traversal is defined as the
crossing of a particular line in a character image in one of
the given directions. During a traversal, when a transition
from a background to foreground pixel is encountered, the
ratio between the location of the pixel and the distance
across the image in that direction is computed and
recorded. Each ratio value is referred to as a transition
feature. Finally, all transition feature values are processed
to form a transition feature vector.

3.2 Direction Feature (DF)

The Direction Feature has been extensively detailed
elsewhere [10] and will only briefly be described in this
section.

3.2.1 Direction determination: The goal of the DF was
to simplify each character's boundary through
identification of individual stroke or line segments in the
image. To achieve this, character boundaries were traced
from a given starting point to known intersection points.
Once at an intersection, a clockwise investigation was
conducted to determine the beginning and end of
prospective line segments based on a number of rules
[10].

Next all foreground (black) pixels (comprising
individual line segments) were replaced with a set of
"direction values". Direction values may be categorized
into four types based on the calculated direction of
individual pixels: 1) vertical, 2) horizontal, 3) right
diagonal and 4) left diagonal. After replacing foreground
pixels with appropriate direction values, a normalization
procedure was required to generalize the direction of
individual line segments. This was achieved by calculating
the most frequently occurring direction value in a given
line segment [10].

3.2.2 Formation of feature vectors: Once the general
direction of line segments was determined, a methodology
was developed for creating appropriate feature vectors. In
the first step, the character pattern marked with direction
information was zoned into windows of equal size (the
window sizes were varied during experimentation). In the
next step, direction information was extracted from each
individual window. Specific information such as the line
segment direction, length, intersection points, etc. were
expressed as floating point values between –1 and 1 [10].

3.3 Modified Direction feature (MDF)

The MDF technique builds upon the TF and DF
techniques described in Sections 3.1 and 3.2. The main

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

difference is in the way the feature vector is created. For
MDF, feature vector creation is based on the calculation
of transition features from background to foreground
pixels in the vertical and horizontal directions. However,
in MDF, aside from calculating the Location of
Transitions (LTs), the Direction Transition (DT) values at
a particular location are also stored. Therefore, for each
transition, a pair of values such as [LT, DT] is recorded.

3.3.1 Determining LT values: To calculate LT values, it
is necessary to scan each row in the image from left-to-
right and right-to-left. Likewise, each column in the image
must be scanned from top-to-bottom and bottom-to-top.
As in the standard transition feature extraction technique
[3], the LT values in each direction are computed as a
fraction of the distance traversed across the image.
Therefore, as an example, if the transitions were being
computed from left-to-right, a transition found close to the
left would be assigned a high value compared to a
transition computed further to the right (See Figure 1). A
maximum value (MAX) was defined to be the largest
number of transitions that may be recorded in each
direction. Conversely, if there were less than MAX
transitions recorded (n for example), then the remaining
MAX - n transitions would be assigned values of 0 (to aid
in the formation of uniform vectors).

3.3.2 Determining DT values: Once a transition in a
particular direction is found, along with storing an LT
value, the direction value (DT) at that position is also
stored. The DT value is calculated by dividing the
direction value (at that location) by a predetermined
number, in this case: 10. The value 10 was selected to
facilitate the calculation of floating-point values between
0 and 1 (See Figure 1).

Therefore, following the completion of the above, four
vectors would be present for each set of feature values
(eight vectors in total). For both LT and DT values, two
vectors would have dimensions MAX × NC (where NC
represents the Number of Columns (width) of the
character) and the remaining two would be MAX × NR
(where NR represents the Number of Rows (height) of the
character).

A further re-sampling of the above vectors was
necessary to ensure that the NC/NR dimensions were
normalized in size. This was achieved through local
averaging. The target size upon re-scaling was set to a
value of 5. Therefore, for a particular LT or DT value
vector, windows of appropriate dimensions were
calculated by determining an appropriate divisor of
NC/NR, and the average of the LT/DT values contained in
each window were stored in a re-sampled 5 × 5 matrix (as
shown in Figure 2 for vectors obtained from a left-to-right
direction traversal). This was repeated for each of the

remaining transition value vectors so that a final 120 or
160 element feature vector could be formed using the
following formula:

nrFeatures×nrTransitions×nrVectors×rsMatrixHeight(Width) (1)

where:
nrFeatures = 2,
nrTransitions = 3 or 4,
nrVectors = 4 and
rsMatrixHeight(Width) = 5

 0.82 0.59 0.24
0.89 0.65 0.35
0.89 0.71 0.35

.................

....3444444......

...3........2....

..3...4444..2....

.2...3....2.2....

.2..3.....2.2....

.2..2.....2..2...

.2..2.....2..2...

.2..2.....2..2...

.2..2.....2..2...

.2...24444...2...

.2...........2...

..5..........5...

...5......555.5..

....544444...555.

Traversal
from
left
to

right
direction

DT

LT

17
columns

15 row
s

 0.3 0.4 0.2
 0.2 0.3 0.2
 0.2 0.3 0.2

Figure 1: Processing of DT and LT values in the

left-to-right direction

 . . .
0.87 0.65 0.31
. . .
. . .
0.78 0.33 0.11

 . . .
. . .
. . .
0.82 0.59 0.24
0.89 0.65 0.35
0.89 0.71 0.35
. . .
. . .
. . .

0.79 0.44 0.22
0.85 0.38 0.11
0.71 0.18 0.0

(0.82 + 0.89 + 0.89) / 3 = 0.87

(0.59 + 0.65 + 0.71) / 3 = 0.65

(0.24 + 0.35 + 0.35) / 3 = 0.31

(0.79 + 0.85 + 0.71) / 3 = 0.78

(0.44 + 0.38 + 0.18) / 3 = 0.33

(0.22 + 0.11 + 0.0) / 3 = 0.11

LT

.

.

.

4
5
6

.

.

.

13
14
15

1
2
.
.

5

 . . .
0.23 0.33 0.2
. . .
. . .
0.3 0.33 0.5

 . . .
 . . .
 . . .
 0.3 0.4 0.2
 0.2 0.3 0.2
 0.2 0.3 0.2
 . . .
 . . .
 . . .

 0.3 0.4 0.5
 0.2 0.3 0.5
 0.4 0.3 0.5

(0.3 + 0.2 + 0.2) / 3 = 0.23

(0.4 + 0.3 + 0.3) / 3 = 0.33

(0.2 + 0.2 + 0.2) / 3 = 0.2

(0.3 + 0.2 + 0.4) / 3 = 0.3

(0.4 + 0.3 + 0.3) / 3 = 0.33

(0.5 + 0.5 + 0.5) / 3 = 0.5

DT

.

.

.

4
5
6

.

.

.

13
14
15

1
2
.
.

5

 (a) (b)
Figure 2: Calculation and creation of a resampled
(a) LT value vector (left-to-right direction), (b) DT

value vector (left-to-right direction)

3.4 Configuration of the neural classifiers

The classifiers chosen for the task of handwritten
character recognition was a feed-forward MLP trained
with the backpropagation algorithm and an RBF network.
For experimentation purposes, the architectures were
modified varying the number of inputs, outputs, hidden
units (or centers) and hidden layers.

The number of inputs to each network was associated
with the size of the feature vector for each image. Various
vector dimensions were investigated through
experimentation. The most successful vector
configurations were of size 81 for the DF and 120/160 for
the MDF.

The configurations of the neural classifiers were
different for each data set. For each classifier type (when
using the CAS dataset), two neural networks were trained
with 27 outputs each. Each network consisted of 26

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

desired output neurons (a-z or A-Z) and 1 reject neuron.
For the BAC data set, desired outputs were combined into
36 categories and there was no reject neuron (similar to
the settings described in [5]).

4. Experimental results

As mentioned previously, the training and testing data
used were from the CEDAR benchmark database [6]. In
this section, we present the experimental results of this
research, comparing them with the performance of other
techniques.

Results are displayed in tabular form for each set of
experiments. Table 1 and Table 2 display the
experimental results using the CAS dataset. Separate
experiments were conducted for lower case and upper
case character patterns. A total of 18655 lower case and
7175 upper case character patterns were generated for
training. A further 2240 lower case and 939 upper case
patterns were used for testing. Table 3 and Table 4 present
experimental results using the BAC dataset, which
consisted of 19145 characters for training and 2183
characters for testing. Table 1 and Table 3 present top
results for the TF, DF and MDF extraction techniques
using MLPs whilst Table 2 and Table 4 present top results
employing RBF networks. For comparison purposes, all
feature extraction techniques were tested on boundary
representations of resized characters from the CAS dataset
and boundary representations of non-resized characters
from the BAC dataset.

Table 1. Character recognition rates with an MLP
trained using boundary information from resized

characters (CAS dataset)
Test Set Recognition Rate [%]

TF DF MDF (120) MDF (160)
Lowercase 67.81 69.73 70.22 70.17
Uppercase 79.23 77.32 80.83 80.40

Table 2. Character recognition rates with an RBF

network trained using boundary information
from resized characters (CAS dataset)

Test Set Recognition Rate [%]
TF DF MDF (120) MDF (160)

Lowercase 70.31 70.63 71.33 71.52
Uppercase 79.13 75.93 81.58 79.98

Table 3. Character recognition rates with an MLP

trained using boundary information from non-
resized characters (BAC dataset)

Test Set Recognition Rate [%]
TF DF MDF

(120)
MDF
(160)

36 outputs 82.82 83.65 89.46 88.82

Table 4. Character recognition rates with an RBF
network trained using boundary information
from non-resized characters (BAC dataset)

Test Set Recognition Rate [%]
TF DF MDF

(120)
MDF
(160)

36 outputs 85.48 80.99 90.24 88.73

5. Discussion and analysis of results

5.1 General observations

Two general observations may be made from the
experimental results presented above. For the MDF, two
sets of inputs were created, giving feature vectors of size
120 and 160. One general prediction was that by
providing more detailed input data to the neural network
(in terms of the number of transitions extracted), it was
possible to obtain a better recognition rate. However, as
can be seen from the tables above, the increase in detail
produced a higher accuracy in only one out of six cases.

It was also observed that in general, the RBF network
provided more superior results when compared with the
MLP. This may be due to the Gaussian function in the
hidden layer of the RBF network, which functions more
effectively at distinguishing between characters patterns
than the MLP network.

5.2 Comparison of feature extraction techniques

As shown in all tables above, the networks trained with
the MDF provided a higher recognition rate than the DF
and TF techniques in each case. In particular, the MLP
network trained with the MDF (120 inputs) for the BAC
dataset, demonstrated an increase of approximately 6%
and 7% over the DF and TF techniques respectively. This
increase may be attributed to the enhanced feature
information obtained from both the LT and DT values.

5.3 Investigation of incorrectly recognized

characters

In this research, aside from testing the performance of
the MDF technique compared with two other techniques,
it was also important to perform an analysis of the
characters that were incorrectly recognized to determine
the distribution of errors in the networks.

Of great interest were the classification errors
generated by the MDF technique using the BAC data set,
as it provided some of the top results in this research. For
the network configuration obtaining one of the top
recognition rates (MLP), out of a total of 2183 characters
in the testing set, there were 250 characters that were not
successfully recognized. Firstly, an investigation was

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

performed recording which individual classes of
characters provided the most errors for the network. It was
found that characters ‘i’, ‘l’, ‘v’, and character ‘R’
provided the most misclassifications out of the 36 possible
outputs. Figure 3 illustrates the distribution.

Distribution of Incorrectly Recognised Characters from
the BAC Dataset

a
b c

d

f

g h

j

l

m
n

o

p
q

r s
t

u

v

w

x
y

z

A H

T

i

R

N

Q

D

k

GE

Be

0

5

10

15

20

25

36 Character Outputs

N
um

be
r o

f I
nc

or
re

ct

Figure 3. Error distribution for incorrectly

recognized characters

The investigation continued to determine which of the

remainder of the characters were mostly being confused
with the top four incorrectly recognized classes. It was
found that the character ‘i’ was mostly incorrectly
recognized as the character ‘l’ (and vice-versa). The
character ‘v’ was mainly confused with the character ‘u’,
and ‘R’ was mostly confused with ‘A’. The following
figures present the error distributions of each of the above
characters.

Character 'i'

0

10

20

30

l o f

Mismatched Characters

N
um

be
r

of

M
is

m
at

ch

Character 'v'

0

5

10

15

u y r N

Mismatched Characters

N
u
m

b
e
r

o
f

M
is

m
a
tc

h

 (a) (b)

Character 'l'

0

5

10

15

i c T y h

Mismatched Characters

N
um

be
r

of

M
is

m
at

ch

Character 'R'

0

5

10

A e p n a x B N

Mismatched Characters

N
u

m
b

e
r

o
f

M
is

m
a

tc
h

 (c) (d)

Figure 4. Error distribution of mismatched
characters for (a) character 'i' (b) character 'v' (c)

character 'l' and (d) character 'R'

During the investigation, it was noticed that in certain
instances, due to the ambiguities of some character

images, the neural network was not at all able to give a
reliable confidence to determine a correct output. In other
words, when the MLP encountered 'ambiguous' character
features, it ranked many of the possible outputs at
confidence values below 0.3. For the MLP test case using
the BAC dataset (mentioned above), there were 37 out of
250 such characters that were incorrectly recognized.

Another interesting result of the investigation was that
if the top two character confidences output by the MLP
were used to determine the character recognition rate, the
recognition error decreased from 250 incorrectly
recognized characters to 101. Hence, when the top two
confidences output by the MLP are taken into account, the
character recognition rate reaches approximately 95%.

5.4 Comparison of character recognition results

with other researchers in the literature

It is always a difficult task to compare results for
handwritten character recognition with other researchers
in the literature. The main problems that arise are
differences in experimental methodology, different
experimental settings and the difference in the
handwriting database used. The comparisons presented
below have been chosen for two main reasons. The
handwriting databases used by the researchers were
similar to those used in this research and/or the results are
some of the most recent in the literature.

Yamada and Nakano [2] presented a handwritten word
recognition system that included a character recognizer.
Their classifier was trained on segmented characters from
the CEDAR benchmark database. The classifier was
trained to output one of 52 classes (a-z, A-Z). They
recorded recognition rates of 67.8% and 75.7% for the
recognition of characters where upper case letters and
lower case letters were distinguished (case sensitive) and
not distinguished (non-case sensitive) respectively.
Therefore, if the top lower case (71.52%) and upper case
(81.58%) character recognition rates from our research
are averaged (using the CAS dataset), a 76.55%
recognition accuracy is obtained. This recognition rate
compares well with their results. Our top recognition
accuracy using the BAC data set (90.24%) exceeds their
top result by nearly 14%.

Another example where a 52-output classifier was used
for segmented character recognition was in research
presented by Kimura et al. [4]. They used neural and
statistical classifiers to recognize segmented CEDAR
characters. For case sensitive experiments, their neural
classifier produced an accuracy of 73.25%, which was
comparable to our lower case and upper case average of
76.55%. Our top recognition accuracy using the BAC
dataset exceeded theirs by almost 17%.

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

Singh and Hewitt [5] obtained a recognition rate of
67.3% using a Linear Discriminant Analysis-based
classifier. Our best result using the BAC dataset exceeds
their top recognition rate by nearly 23%.

Through our own experimentation [10], we found that
the standard transition feature, as proposed by Gader et al.
[3], produced results of 70.31% and 79.23% for lowercase
and uppercase characters respectively. Our most recent
results on the CAS data set are higher than those
described above.

Finally, the results presented in our research
(specifically those for the BAC dataset - 90.24%) compare
favorably to those presented by Camastra and Vinciarelli
[7] who obtained a recognition rate of 84.52%. As in most
of the results above, a precise comparison is difficult, as
Camastra and Vinciarelli's classifier configuration and
dataset composition were different to those described in
our research.

6. Conclusions and future research

This paper presents a detailed investigation and
comparison of feature extraction techniques for cursive
character recognition. The MDF technique provided the
top recognition rate for cursive handwritten characters,
outperforming the best TF result by nearly 5% and the
best DF result by nearly 6%. The MDF also compared
well with some of the top results in the literature,
outperforming other techniques by 6-23%.

In addition, a detailed analysis of the incorrectly
classified characters provided by one of the MDF neural
network configurations revealed four main character
classes consistently giving misclassifications. These four
character classes were then further scrutinized to
determine the source of confusion. The results of this
analysis provide future directions for enhancing the
current classification configuration to take into account
those characters that provide the most errors.

In future research, a number of additional
considerations will be addressed to further investigate and
enhance the recognition process. These include
conducting further experiments with additional benchmark
datasets, improving the preprocessing methodology and
enhancing segmentation techniques. Further combinations
of classifiers and local and global features will also be
explored.

7. References

[1] S-B. Cho, “Neural-Network Classifiers for

Recognizing Totally Unconstrained Handwritten
Numerals”, IEEE Trans. on Neural Networks, vol. 8,
1997, pp. 43-53.

[2] H. Yamada and Y. Nakano, "Cursive Handwritten
Word Recognition Using Multiple Segmentation
Determined by Contour Analysis", IEICE
Transactions on Information and Systems, vol. E79-
D, 1996, pp. 464-470.

[3] P. D. Gader, M. Mohamed and J-H. Chiang,
"Handwritten Word Recognition with Character and
Inter-Character Neural Networks", IEEE
Transactions on Systems, Man, and Cybernetics-
Part B: Cybernetics, vol. 27, 1997, pp. 158-164.

[4] F. Kimura, N. Kayahara, Y. Miyake and M.
Shridhar, "Machine and Human Recognition of
Segmented Characters from Handwritten Words",
4th International Conference on Document Analysis
and Recognition (ICDAR ’97), Ulm, Germany,
1997, pp. 866-869.

[5] S. Singh and M. Hewitt, "Cursive Digit and
Character Recognition on Cedar Database",
International Conference on Pattern Recognition,
(ICPR 2000), Barcelona, Spain, 2000, pp. 569-572.

[6] J. J. Hull, “A Database for Handwritten Text
Recognition”, IEEE Transactions of Pattern
Analysis and Machine Intelligence, vol. 16, 1994,
pp. 550-554.

[7] F. Camastra and A. Vinciarelli, "Combining Neural
Gas and Learning Vector Quantization for Cursive
Character Recognition", Neurocomputing, vol. 51,
2003, pp. 147-159.

[8] M. Blumenstein and B. Verma, "Neural Solutions
for the Segmentation and Recognition of Difficult
Words from a Benchmark Database", Proceedings
of the Fifth International Conference on Document
Analysis and Recognition, (ICDAR ’99), Bangalore,
India, 1999, pp. 281-284,.

[9] M. Blumenstein and B. Verma, "A New
Segmentation Algorithm for Handwritten Word
Recognition", Proceedings of the International Joint
Conference on Neural Networks, (IJCNN ’99),
Washington D.C., 1999, pp. 2893-2898.

[10] M. Blumenstein, B. K. Verma and H. Basli, "A
Novel Feature Extraction Technique for the
Recognition of Segmented Handwritten Characters",
7th International Conference on Document Analysis
and Recognition (ICDAR ‘03), Edinburgh, Scotland,
2003, pp. 137-141.

[11] M. Blumenstein, X. Y. Liu and B. Verma, "A
Modified Direction Feature for Cursive Character
Recognition", International Joint Conference on
Neural Networks (IJCNN ’04), Budapest, Hungary,
2004, (accepted).

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

