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ABSTRACT

We present an in-depth analysis of transient faults effects on HPC

applications in Intel Xeon Phi processors based on radiation experi-

ments and high-level fault injection. Besides measuring the realistic

error rates of Xeon Phi, we quantify Silent Data Corruption (SDCs)

by correlating the distribution of corrupted elements in the out-

put to the application’s characteristics. We evaluate the benefits

of imprecise computing for reducing the programs’ error rate. For

example, for HotSpot a 0.5% tolerance in the output value reduces

the error rate by 85%.

We inject different fault models to analyze the sensitivity of

given applications. We show that portions of applications can be

graded by different criticalities. For example, faults occurring in

the middle of LUD execution, or in the Sort and Tree portions of

CLAMR, are more critical than the remaining portions. Mitigation

techniques can then be relaxed or hardened based on the criticality

of the particular portions.
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· Computer systems organization → Parallel architectures;

· Hardware → Fault tolerance;
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1 INTRODUCTION

Accelerators are extensively used to expedite calculations in large

HPC centers. Tianhe-2, Cori, Trinity, and Oakforest-PACS use Intel

Xeon Phi and many other top supercomputers use other forms of

accelerators [17]. The main reasons to use accelerators are their

high computational capacity, low cost, reduced per-task energy

consumption, and flexible development platforms. Unfortunately,

accelerators are also extremely likely to experience transient errors

as they are built with cutting-edge technology, have very high

operation frequencies, and include large amounts of resources.

Reliability has been identified by the U.S. Department of En-

ergy (DOE) as one of the ten major challenges for exascale [42].

Errors that may undermine the reliability of an HPC system can

come from a variety of sources including environmental perturba-

tions, firmware errors, manufacturing process, temperature, and

voltage variations [31, 35, 37]. Such errors may corrupt data val-

ues or logic operations and lead to Silent Data Corruption (SDC),

Detected Uncorrectable Error (DUE), or be masked and cause no

observable error [13, 43, 44]. Radiation-induced soft errors are par-

ticularly critical, as they have been found to dominate error rates

in commercial devices [4]. The large scale and long application

executions in leading scientific HPC centers exacerbate the prob-

ability of having a transient error in the system. As a reference,

DOE’s Titan, composed of more than 18, 000 Kepler GPUs, has

a radiation-induced Mean Time Between Failures (MTBF) in the

order of dozens of hours [21, 46]. As we approach exascale, the re-

silience challenge will become even more critical due to an increase

in system scale [34, 42, 45]. In this scenario, a lack of understanding

of HPC device resilience may lead to lower scientific productivity

and significant monetary loss [45].

Our intention is to evaluate, understand, and develop mitigation

strategies for reliability issues in current and future supercomputers.

First, we evaluate the problem by showing the results of our neutron

beam experiments onKnights Corner Xeon Phi (3120A) components.

We report the realistic SDC and DUE Failure In Time (FIT) rates of

five benchmarks. Each benchmark was tested for more than 100

hours at the Los Alamos Neutron Science Center (LANSCE), provid-

ing data that covers more than 57,000 years of natural exposure per

board. All the collected errors are available on a public repository

to allow third party analysis and to ensure reproducibility [40].

https://doi.org/10.1145/3126908.3126960
https://doi.org/10.1145/3126908.3126960
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Depending on the application and circumstances, some SDCs

that are satisfactory close to the correct results may be tolerated

in HPC [7, 14]. In order to consider the outputs’ error severity and

better understand the reliability issue, our evaluation considers how

errors manifest at the benchmark output and measures how the

Xeon Phi FIT rate reduces as a function of the tolerated level of

imprecision in the output. For HotSpot, for instance, the FIT rate is

reduced by 85% if a 0.5% variation in the output value is acceptable.

We then performed a detailed analysis of the applications’ vul-

nerabilities to transient errors using a high-level fault injector tool,

named CAROL-FI. Some fault injectors, like LLFI, GPU-Qin, SAS-

SIFI, and GUFI are already available for processors and GPUs [3,

18, 23, 33, 47]. Unlike most fault-injection frameworks, CAROL-FI

injections are made at the highest possible level, to identify the

benchmark portions that are more likely to generate an SDC or a

DUE. CAROL-FI is intended as a tool to help developers to identify

the portions of their code that, once corrupted, are more likely to

affect the output and can then provide pragmatic information to

develop mitigation strategies for the reliability issue in HPC. The

distinction between critical and not critical portions of the bench-

mark, in fact, allows one to selectively harden only a subset of

instructions or variables. As a result, this can significantly improve

code reliability while introducing minimal overhead.

To demonstrate the utilization and benefits of the proposed fault

injection tool, we analyzed fault injection results for six different

benchmarks. We report data obtained by injecting more than 90,000

transient faults, identifying the selected benchmarks’ critical parts.

In summary, this paper makes the following contributions:

• A neutron beam-based evaluation of Xeon Phi’s FIT rates,

which includes a collection of publicly available neutron-

induced output errors.

• We qualify SDCs by considering their spatial distribution and

the benefits of imprecise computation for HPC reliability.

• We present an in-house high-level fault injection tool for

Intel Xeon Phi, which is made publicly available [9].

• Through an analytical methodology we identify critical por-

tions of HPC benchmarks and include a discussion on possi-

ble mitigation techniques.

The rest of this paper is organized as follows. Section 2 gives

a brief background on the impact of transient faults in HPC and

presents related work. Section 3 describes the methodology used

in this work. Section 4 presents the neutron beam experiments.

Section 5 describes CAROL-FI, our in-house fault injection tool.

Section 6 presents the evaluation of six HPC benchmarks based on

the fault injection campaign. Finally, Section 7 concludes the paper.

2 BACKGROUND

2.1 Transient Errors Effects in HPC

The pursuit of extreme performance coupled with increased power

efficiency and an increase in computing resources makes mod-

ern HPC computing devices extremely prone to transient errors.

The main causes of transient errors are voltage-frequency varia-

tions, temperature perturbations, and electromagnetic interferences.

Lately, neutron-induced errors have been shown to be critical for

HPC systems [15, 46]. A flux of about 13 neutrons/((cm2) × h)

reaches ground at sea level, and the flux exponentially increases

with altitude [29]. A neutron strike may perturb the transistor state,

generating bitflips in memory or a current spike in logic circuits

that, if latched, leads to a fault [8, 36].

A transient error (independent of its source) leads to one of the

following outcomes: (1) no effect on the program output (the failure

ismasked or corrupted data is not used), (2) Silent Data Corruption

(SDC), i.e., incorrect program output, or (3) Detected Unrecoverable

Error (DUE), which typically is a program crash or device reboot.

Highly parallel computing architectures, like the Xeon Phi, have

some reliability weaknesses [15, 16, 21, 49]. For instance, a single

particle generating a radiation-induced failure in the scheduler or

shared memories (used to expedite parallel executions), is likely

to affect the computation of several parallel threads. Additionally,

a single corrupted thread could feed various other threads with

erroneous data, again leading to multiple corrupted elements. Our

experiments on the Xeon Phi, shown in Section 4.3, demonstrate

that less than 10% of neutron-corrupted executions are affected

by only a single erroneous element in the output. Finally, while

HPC accelerators have the main storage structures protected with

Error-Correcting Code (ECC) implementing Single Error Correc-

tion Double Error Detection (SECDED), some major resources are

left unprotected, such as flip-flops in pipelines queues, logic gates,

instruction dispatch units, and interconnect network. As experi-

mentally demonstrated in Section 4, the neutron-induced error rate

of Xeon Phi can be as high as 193 FIT, even if ECC is enabled.

SDCs are not always critical for HPC applications but some out-

put errors can be tolerated. For instance, if the corruption affects

only the least significant positions of themantissa of a floating-point

number, the results could still be inside the intrinsic variance of

floating-point operations. Moreover, some physical simulations ac-

cept them as correct values in a given range, which can be as high as

4% for wave simulations [14]. Additionally, imprecise computation

is gaining interest in various HPC applications [7]. In Section 4.4

we show that, depending on the application, the FIT rate could be

significantly reduced if a small variance in the expected output is

tolerated.

2.2 Related Work

Particle accelerators have been used for many years to measure

and study radiation sensitivities for components and applications.

Software fault injection (SFI) has also been widely used to estimate

and study the resilience of hardware and applications. RTL level

studies will not be considered as RTL level descriptions of HPC

devices are not publicly available.

Cher et al. [12] use both proton irradiation and SFI to study the

soft error resilience of BlueGene/Q. Proton bombardment shows

that BG/Q has a mean time between correctable errors of 1.5 days

validating the need for detection mechanisms. The SFI study was

performed to analyze the behavior of applications without the

mitigation mechanism employed on BG/Q hardware. Single and

multiple bitflips are the two fault models used in the SFI study.

Oliveira et al. [38] study the radiation effect on NVIDIA and Intel

accelerators using beam tests. The study defines metrics to quantify

and qualify the radiation effects observing the magnitude and how

the error spread in the final output. They state that simple mismatch

detection cannot accurately evaluate the radiation sensitivity of
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modern devices and algorithms. In this paper we take advantage of

some metrics proposed in [38] to qualify SDCs, extending them to

better consider output errors tolerance in HPC.

Binary Instrumentation-based Fault Injection Tool (BIFIT) is

based on PIN and was proposed by Li et al. [32]. BIFIT was im-

plemented to gather more information about when and where the

fault is injected. BIFIT uses only the single bitflip model and in-

jects faults based on memory region (Global, Heap, and Stack). The

study finds that the time and location of faults are tightly related

to applications output. For instance, global objects present a higher

sensitivity and should be well protected.

GPU-Qin [19] is a fault injection tool based on the debugger

mode in NVIDIA GPUs. Fang et al. propose GPU-Qin due the un-

acceptable simulation time of parallel devices like GPUs. The fault

model used is only the single bitflip, and the study finds that al-

gorithmic characteristics can help understand the variation in the

SDC rates of applications.

SASSIFI [24] is a fault injector designed by NVIDIA that enables

fault injection at a micro architectural level on GPUs. SASSIFI uses

a low-level assembly-language tool called SASSI which inserts fault

injection functions into the programs. Siva et al. argue that single

and double bitflips alone cannot model the propagation of low-level

faults to application level. Thus, random number and zero bits are

included in the fault models.

Li et al. [33] extend the LLFI tool to profile and inject faults into

GPU applications. They assume that memory and control logic

are unlikely to experience errors, injecting single bitflips only in

pipeline stages, flip-flops, ALUs, and register files. They observe that

most faults do not propagate to other kernels and error propagation

is application dependent.

The error propagation is the focus of Ashraf et al. in [3]. They

propose a fault propagation framework using LLFI that keeps track

of error propagation in MPI applications. Single bitflip is the fault

model used to inject faults into the registers. They observe that a

fault propagates linearly through time, and contaminates a consis-

tent part of the output.

Unlike the described fault injectors, CAROL-FI injects errors

at high-level to provide fast and pragmatic ideas to improve the

reliability of HPC reliability by mitigating transient errors. We

connect the reliability issues to the high-level source codewhich can

help developers design resilient code and the deployment dedicated

mitigation techniques.

3 METHODOLOGY

3.1 Tested Device

The Xeon Phi used is the coprocessor 3120A, as known as Knights

Corner [27, 28]. The 3120A coprocessor has 57 physical in-order

cores, and each one has 32 512-wide vector registers and supports

four hardware threads. The device has a total of 6 GB GDDR5 main

memory, and each core has 64 KB of L1 cache and 512 KB of L2 cache.

The 3120A is built in a 22nm technology with Intel’s 3-D Trigate

transistors. The operating system is the CentOS 7.0 with Intel MPSS

version 3.7 and GDB 7.8 with Intel extensions. The tested device

is protected with Machine Check Architecture (MCA) reliability

solution, which includes SECDED ECC in memory structures [28].

3.2 Selected Algorithms

To provide the experimental and analytical study of Xeon Phi,

we selected six applications from different domains with differ-

ent computation and communication patterns, following a general

guideline for reliability studies [2, 39]. The selected benchmarks

are: a DOE mini-app named CLAMR [22], a Matrix Multipli-

cation (DGEMM) benchmark, and HotSpot, LavaMD, LUD and

Needleman-Wunsch (NW )which are mini-apps from the Rodinia

benchmark suite [10]. NW was only tested with our fault injection.

CLAMR is a DOE mini-application in the fluid dynamics domain

and is representative of a LANL supercomputer workload. CLAMR

simulates wave propagation using adaptive mesh refinement [22].

DGEMM is an optimized version of a matrix multiplication algo-

rithm [2]. DGEMM is a compute-bound program that is often used

to rank supercomputers.

HotSpot simulates the heat dissipation in an architectural floor

plan to estimate processor temperature [10]. HotSpot is a memory-

bound algorithm as its arithmetic intensity is low.

LavaMD implements an N-Body algorithm [2]. The algorithm

analyzes particles in a 3D space and calculates the mutual forces

between the particles within a predefined distance range [10].

LUD is a dense linear algebra like DGEMM . However, LUD uses

less memory than DGEMM and has more interdependencies result-

ing in an algorithm that is less compute-bound than DGEMM .

Needleman-Wunsch (NW ) is a dynamic programming algorithm

developed to compare biological sequences [10]. It is representative

of dynamic programming techniques that construct a new output

using previous results.

4 BEAM EXPERIMENTS

This section presents the results of neutron beam experiments

performed on the Xeon Phi. The main advantage of radiation exper-

iments is that they provide a realistic evaluation of the processor

error rate. By injecting faults in all the processor resources, beam

experiments enable us to assess the actual FIT for different HPC

benchmarks, which typically cannot be achieved by software fault

injection only. Additionally, beam experiments can be used to evalu-

ate how radiation errors propagate and affect the benchmark output.

Still, software fault injection is used in Section 5 because during

radiation experiments faults are observed only at the code output,

limiting the observability and insights that can be directly applied

for hardening solutions.

4.1 Neutron Beam Setup

Experiments were performed at the LANSCE facility, Los Alamos,

NM, in October and December 2016. LANSCE flux is suitable to

mimic the terrestrial neutron effects on electronic devices [48].

This means that error rates measured at LANSCE scaled down

to the natural flux provide the predicted error rates on a realistic

application expressed in Failure In Time (FIT). The experimental

flux is about between 1 × 105n/(cm2/s ) and 2.5 × 106n/(cm2/s ),

about 6 to 8 orders of magnitude higher than the atmospheric

neutron flux at sea level (which is 13n/(cm2/h) [29]). Tests were

conducted for more than 500 hours of beam time. When scaled to

the natural environment, our results cover at least 5 × 108 hours of

normal operations, which are 57,000 years.
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Figure 1: Part of the experimental setup.

In the real environment, having more than one fault at a time is

rare. To maintain this behavior, experiments were tuned to guaran-

tee observed output error rates lower than 10−4 errors/execution,

ensuring that the probability of more than one neutron generating

a failure in a single benchmark execution remains negligible.

On board DRAM data was not irradiated, allowing an analysis fo-

cused on the devices’ core reliability. DRAM sensitivity, extensively

studied [5, 11, 25, 30, 44], is out of the scope of this paper.

Figure 1 shows part of the experimental setup mounted at LAN-

SCE. A host computer initializes the test sending pre-selected in-

puts to the accelerator and gathers results, comparing them with a

pre-computed golden outputs. When a mismatch is detected, the

execution is marked as affected by an error.

4.2 HPC Benchmarks Sensitivity

Figure 2 shows the results of the neutron beam experiments as

the Failure in Time (FIT) rate for the five benchmarks executed on

Xeon Phi at sea level (neutron flux increases with altitude). For each

benchmark, we show the SDC FIT partitioned into up to the five

observed output error patterns (discussed in the next subsection)

and the DUE FIT. The SDC FIT includes all executions with any

bit mismatch between the output of the program and the expected,

error-free output. We collected more than 100 SDC/DUE for each

benchmark, to have Normal’s 95% confidence intervals lower than

10% of the presented values.

These results show large FIT variations between benchmarks and

between SDCs and DUEs. For instance, CLAMR and HotSpot have

their SDC FIT similar to their DUE FIT, while the other benchmarks

show much smaller DUE FIT in comparison with their SDC FIT.

This provides an initial insight that, for each DUE experienced for

these benchmarks on a Xeon Phi, from one up to five SDCs will be

observed.

If we extrapolate the FIT rates to a Trinity-size machine with

19, 000 Xeon phi, operating at sea level, one should expect to see

a SDC for LUD or DUE for HotSpot every eleven or twelve days.

A hypothetical exascale machine built with the tested Xeon Phi

would require at least an increase of 10× in the number of boards

and would lead to almost daily SDC or DUE.

Benchmarks with several parallel iterations Ð such as HotSpot

with its stencil convolution and LUD with its linear equations com-

putation Ð working with single-precision floating-point matrices,

exhibit the highest SDC FIT rates among the tested benchmarks.

The other benchmarks show SDC FIT rates 30% to 75% smaller than

SDC DUE SDC DUE SDC DUE SDC DUE SDC DUE
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Figure 2: Benchmarks FIT and spatial distribution.

LUD. This can be due to a higher sensitivity to radiation in the data

format, in the single-precision computation in the FPUs, or to a

reduced capacity of these benchmarks to mask errors. Neverthe-

less, radiation experiments alone cannot provide the exact answer

without additional (proprietary) details about the hardware.

HotSpot shows the highest DUE FIT rate among benchmarks.

Its prevailing use of control flow statements and low arithmetic

intensity seem to make it more prone to DUE. In contrast, more

regular codes like DGEMM and LavaMD have the lowest DUE FITs.

4.3 Spatial Distribution of Errors

Our aim is to go beyond FIT rates calculations and extract more

information from neutron beam experiments by investigating the

spatial distribution of errors in the corrupted outputs. In each SDC

FIT column in Figure 2, we categorize the outputs as having one

of five failure patterns: (i) single, when a single output value is

wrong; (ii) line, when more than one value in a row or column of

an output matrix is wrong; (iii) square, when more than one value

in two dimensions of an output matrix is wrong; (iv) cubic, when

more than one value in three dimensions of the output matrices is

wrong; and (v) random, when more than one value is wrong but

with no clear pattern. Given that LavaMD is the only benchmark

working with three dimensional simulations, it is the only one that

can exhibit a cubic error pattern.

Results in Figure 2 indicate that most radiation-induced errors

affect multiple values and dimensions of the outputs. It is worth

noticing that, as described in Section 4.1, it is very unlikely to have

more than one neutron generating fault in a single benchmark

execution. Multiple output errors are then caused by a single par-

ticle corrupting multiple resources, by a corruption in a resource

shared among parallel processes or corruptions that spread during

computation, affecting multiple elements. The spread of errors is

particularly significant in scientific iterative applications, where

a value computed in one iteration is used as input for the next

one [3, 33]. This fact maps well to benchmarks such as CLAMR,
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erance.

LavaMD, and LUD. In other cases, intermediate values are computed

and kept in local temporary memory before being used to compute

output values, such as the case for DGEMM . Finally, multidimen-

sional error patterns can also be a result of corruption affecting

control flow instructions and internal variables, making a thread

stop computing too soon or even wrongly overwriting the results

of other threads.

Multi-dimensional errors patterns can be beneficial or detrimen-

tal for error detection and correction. For instance, the algorithm-

based fault tolerance (ABFT) algorithm for matrix multiplication

can correct single, line, and random errors in the output in O(1)

time [26, 41]. Our results shows that for the Xeon Phi most of the

observed SDCs in DGEMM could be corrected by ABFT. Meanwhile,

a larger spread of errors could make it easier for some mechanisms

to detect SDCs [6].

4.4 Relative Error

An additional important insight that can be gained from neutron

beam experiments is howmuch different the values of the corrupted

elements are from the expected, error-free, elements. The SDC FIT

rates presented in Figure 2 consider as an error any bit mismatch

between the experimental output and the expected output. However,

there are some applications that can handle small output variations

as natural imprecision from their methods. Additionally, floating-

point operations have an intrinsic inaccuracy. Unfortunately, there

is still no standard for how much an output can differ from its

expected value. For example, Li et al. [33] consider any bit mismatch

as an error with the exception of double-precision floating-point

values, where comparisons are done using 40 digits of precision,

while Ashrad et al. [3] use a 5% error margin in comparisons. Some

simulations can tolerate up to 4% error margins, and imprecise

computing is being applied to HPC [7, 14].

In Figure 3 we illustrate how varying the acceptable error margin

affects the SDC FIT rates of the benchmarks. For each benchmark,

we provide how much its SDC FIT rate changes (vertical axis)

when we increase the acceptable error margin from 0.1% up to

15% (horizontal axis). Even a small acceptable error margin already

decreases the SDC FIT rate of all benchmarks to at least 75% of

its original value. For instance, this 25% drop makes the SDC FIT

rate of DGEMM go from 113 to 84 (see Figure 2), which results

in an increase of the MTBF (which is inversely proportional to

FIT) by almost 35%. After this initial drop in FIT, decreases in

the FIT rate saturate resulting in smaller improvements in the

SDC FIT rates. This saturation is related to the way floating-point

values are represented. For double-precision, a 0.1% error margin

allows variations in 41 bits of the mantissa, while a 15% one allows

variations in 49 bits of the mantissa.

The benchmark with the smallest relative error is HotSpot. Due

to its stencil convolution behavior, errors usually spread to a sig-

nificant portion of the output (resulting in a higher SDC FIT rate)

but are also significantly attenuated. Even a small tolerated relative

error of 2% results in a SDC FIT decrease to 5% of its original value,

which means a twenty-fold increase in its SDC MTBF. This makes

HotSpot the least sensitive benchmark to SDC.

CLAMR, which exhibited the lowest SDC FIT rate among the

tested benchmarks, experiences (together with DGEMM) one of the

smallest decreases in FIT rate with a relaxation of the error margin.

This, coupled with the square error distribution, makes CLAMR

most sensitive to radiation-induced errors. Still, the large output

variations should make it easier for SDCs to be detected.

One final insight comes from combining the relative error and

spatial distribution of errors analyses. As we havemany instances of

outputs with multiple wrong values and relative errors of over 15%,

it seems that errors not only tend to propagate, but also tend to

compound for four of the five benchmarks. Since these types of

benchmarks do not provide natural means of error attenuation,

detecting SDCs on Xeon Phi becomes vital to preventing large

output errors and the spread of errors to many compute nodes.

5 FAULT INJECTION

We developed a high level fault injector to better understand tran-

sient errors propagation and provide useful insights to the code

designer on how to mitigate their effects. Unlike the other available

tools, we do not try to inject faults at the lowest possible level, but

at the highest. Our goal, in fact, is not to measure the sensitivity to

transient fault of an application, as we gathered this information

with the neutron beam experiments in Section 4, but to identify

the portions of the high-level code which are more critical for the

application execution. We believe this information to be extremely

useful for code developers.

5.1 CAROL-FI

We implemented a fault injector called CAROL-FI (available at [9])

to allow the injection of various fault models and correlate the in-

jected faults with the algorithm structure. CAROL-FI is built upon

GNU GDB. Debug information is used to correlate each allocated

memory portion with its corresponding variable in the source code.

Only compiling the code in debug mode allows to gather this infor-

mation. As we are injecting at source code level, the fact that GDB

impedes compiler optimizations does not undermine our results.
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It is worth noting that GDB can also be used to inject faults in re-

lease mode, changing registers value and instruction bits. However,

the goal of our study is to correlate the faults injected (and their

outcomes) to particular portions of the source code, so we limit the

use of CAROL-FI to debug mode and memory content corruption.

In other words, the injection sites accessed by CAROL-FI consist of

any source code variable allocated to a memory position.

Our fault injector is built upon two scripts. The first one, named

Supervisor, is responsible for initiating GDB with the defined con-

figurations (e.g., input parameters and the binary code). The Super-

visor also works as a watchdog to kill the program if a user-defined

time limit is surpassed. Finally, upon program execution completion,

the Supervisor runs a user-defined function to check the output

generated and log test data. The second script, named Flip-script,

is called by GDB when the tested program is interrupted. Flip-script

injects the fault into the program currently executing.

CAROL-FI’s workflow is described as follows. The supervisor

will initiate GDB, which will launch the code performing the fisrt

step. Next, the Supervisor script will send the interrupt signal

through the killall command after a random time. After the in-

terrupt signal is captured by the program, GDB initiates the next

step running the Flip-script. The Flip-script first selects one of the

available threads and frames (which is the GDB’s terminology for

the call stack containing information of active process subroutines).

Flip-script looks up the current frame upward the external one

containing the global variables. Then, one of the variables of the

selected frame will have its bits flipped. Such variables include

pointers , arrays , enums , and Inteдers . After the memory address

and offset of the selected data are known, Flip-script applies one

of the fault models presented in Section 5.2. Then, Supervisor per-

forms the final step, which kills the program if needed, and stores

all the test data.

Finally, CAROL-FI logs the source code position that corresponds

to the current instruction, the backtrace from GDB, the variable

name, file name and line number where the variable is defined,

the fault type applied, and the time window when the fault was

injected.

CAROl-FI is very fast. On the average, its overhead is about 4×

the normal execution time, with a worst case of 8×, as its only

significant overheads are the ones caused by the GDB and the

debug mode that disables compiler optimizations. There is no pro-

filing phase and no breakpoints by GDB, in contrast to approaches

like GPU-Qin, which can significantly increase the execution time.

CAROL-FI executes the code at full speed until the interrupt signal

is sent (GDB will not interact with the code). Once the program’s

execution stops, the GDB executes the flip functions with an ex-

ecution time that varies according to how many subroutines are

active and how many variables are allocated. Finally, the evalu-

ated program will resume execution at full speed without further

interaction from the GDB.

5.2 Fault Models

Our fault injection study does not distinguish between logic and

memory errors. As the fault is generated at high level, by modifying

the value of allocated memory, we are considering all possible tran-

sient faults that, by propagating from the transistor level, change

the value of a memory location. These transient faults include errors

that originated in memory, registers, caches, flip-flops in internal

queues, control logic, etc. It is worth noting that identifying the

individual probabilities of failures in the different logic and memory

units is not feasible for components whose architecture details are

not available. We use four different fault models to simulate the

propagation of faults from low level to code level. The four models

are:

• Single: flip a single random bit

• Double: flip two random bits

• Random: overwrite every bit by a random bit

• Zero: set every bit to zero

Single is the most commonly used fault model in the available

fault-injectors, as described in Section 2.2. The double fault model is

also often used when evaluating memory faults, as the probability

of a single particle corrupting more than one word bit is not negli-

gible [20]. SECDED ECC normally triggers application crash when

a double bit error is detected. Our implementation of the Double

model chooses two random bits located at the same byte offset,

restricting the distance between the flipped bits. We emphasize that

our Single and Double fault injections are not to be considered as

faults in the memory alone, as those would be detected by ECC. We

are simulating faults in all the unprotected resources that manifest

in several ways at the highest level of abstraction. As shown in

Section 4.2, the Xeon Phi error rate can be as high as 193 FIT, even

if ECC is enabled. The probability of experiencing a corruption in

unprotected resources that manifests at a high level is clearly not

negligible.

Single and Double models are not considered sufficient for our

purposes. Single bit faults are representative and adequate only

if injected at the lowest accessible level and track how the origi-

nal fault propagates to the microarchitecture level. Injections at a

higher level require a more wide set of fault types to account for

all possible effects of the original fault propagation. Thus, Single,

Double, Random, and Zero models are a more representative set of

the possible outcomes that a fault can manifest at a higher level.

6 FAULT INJECTION ANALYSIS

We have injected at least 10,000 faults into each of the selected

benchmarks, which are sufficient to guarantee the worst case statis-

tical error bars at 95% confidence level to be at most 1.96%. For each

fault injection experiment, we collected the output of the program

execution and compared it to a previously computed golden copy.

Figure 4 presents the percentage of faults that are masked or

cause an SDC or DUE for each benchmark presented in Section 3.2.

Formost of the benchmarks, SDCs are less likely to occur thanDUEs,

while the majority of injected faults are masked during computation

(except for DGEMM). As explained in Section 5, it is not possible

to directly correlate our beam experiments with CAROL-FI results.

Figure 4 shows the probability of corrupted portions of the source

code to affect the execution, while Figure 2 shows the likelihood

of neutrons to induce errors in physical transistors combined with

the probability of those errors to propagate to the output.

Figures 5a and 5b show the Program Vulnerability Factor (PVF)

for SDC and DUE, respectively, for each fault model described in

Section 5.2. The different fault models yield quite different PVFs
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Figure 4: Outcomes of fault injections.

depending on the benchmark application class and characteristics.

For example, algebraic benchmarks like DGEMM and LUD have

similar PVFs. The different models also affect the type of errors

observed, for instance, the Zero model provides lower DUE.

To evaluate the dependence of the impact of faults on the timing

of their occurrence, we divided the benchmarks into equal parts

based on the execution time. The length of each part is selected

to be short enough to provide insight into the injection time vs

fault sensitivity, and long enough to allow a statistically significant

amount of injections. CLAMR is divided into nine time windows of

equal length. DGEMM and HotSpot are split into five time windows

while LUD and NW are divided into four parts each. We then calcu-

lated the percentage of faults injected into each time window that

caused an SDC or DUE (shown in Figures 6a and 6b, respectively).

Please note that Figures 6a and 6b show the PVF for each time win-

dow, not to be confused with the contribution of each time window

to the benchmark PVF, which is why the sum of percentages is

higher than 100%.

In the following we analyze each benchmark individually to

demonstrate how CAROL-FI can be used to derive information

about benchmark sensitivity and also provide insights on how to

improve the resilience of each benchmark.

DGEMM

As shown in Figure 4, about 60% of the faults injected in DGEMM

generate an error (SDC or DUE). Most of the observed SDCs and

DUEs are the result of faults injected into the input and output

matrices and control variables.

Faults injected in the matrices caused SDCs and DUEs 43%

and 19% of the times, respectively. For control variables, 38% of the

faults injected generate SDCs and 38% cause DUEs. DGEMM creates

nine loop control variables of integer type, which may seem to be

a negligible number and, thus, unlikely to be corrupted. However,

each of the 228 threads active in parallel on the Xeon Phi allocates
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Figure 5: The PVF of the benchmarks for the different fault

models.

those nine integers to have its own copy of the loop control vari-

ables, increasing thememory portion used to store them. In contrast,

the memory portion used to store the matrices remains the same

regardless of the level of parallelism. As a result, the probability of

having a corrupted loop control variable becomes significant, and

the severity of that corruption is very high.

Evaluating the fault models, we observe in Figures 5a and 5b

that the Single and Double models have a similar outcome. On

the other hand, the Random model exhibits a lower SDC error

rate while the Zero model has a higher one. Observing the DUE

rate in Figure 5b, we find that Random and Zero have opposite

behaviors. Random and Zero models have a higher likelihood to
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Figure 6: The dependence of the PVF of the benchmarks on

the execution time window.

generate largely different values than the expected ones. However,

we believe that the Random converts some SDCs to DUEs since the

corrupted values can be used to access invalid memory addresses,

invalid indexes, or another operation that will lead to a DUE. The

Zero model, in contrast, generates values that will most likely cause

an SDC instead of a DUE.

The DGEMM benchmark has the same memory and resources

usage during the entire execution. Therefore, the time window

dependent sensitivity in Figure 6a shows that the SDC error rate

remains unchanged between time windows. However, in Figure 6b

we see that DGEMM DUE rate is lower at the beginning when the

program is still initializing and control flow operations are less

common.

Protecting the control variables can lead to a significant impact

in the final DUE rate. Selective duplication with comparison can

be applied to protect the internal memory structures that contain

such control variables. ECC or parity implemented to protect all

memory strutctures will detect or even correct such errors but, to

improve the resilience at a lower overhead, a selective protection

should be preferred.

Additionally, logic errors that modify the result of instructions

that update loop control variables are likely to impact the output

and could not be detected with ECC but could be detected by residue

module check.

CLAMR

Injected faults are masked 75% of the time inCLAMR, as shown in

Figure 4. CAROL-FI identifies mesh to be the most critical portion

of the benchmark. We can divide the mesh operations into three

parts: Sort, Tree, and others.

Of all the injections in Sort , 39% generate an SDC and 43% cause

DUEs. The Tree part of CLAMR includes the functions responsible

for the creation and operation of a K-D Tree. 20% of all the faults

inTree generate an SDC and 41% cause a DUE. All the faults in the

remaining variables of the mesh code are classified as others . Only

33% of the faults in this part generate an SDC and 28% cause DUEs.

The fault models show similar rates for CLAMR SDCs (see Fig-

ure 5a). For DUEs, only the Zero model yields a different rate than

the other models, as can be seen in Figure 5b. The reason for this is

the same for DGEMM , where zero values are less likely to generate

errors that cause a DUE.

We can observe in Figure 6 that time window 3 exhibits the

highest error rate and then it decreases. This behavior is similar

to the one observed when using a more low-level fault injection

in [22]. CLAMR becomes more sensitive when the number of active

cells reaches its maximum value, which can be automatically set

by the algorithm itself.

Our fault injection analysis shows that Mesh operations and

structure are the most sensitive portions of CLAMR, which is ex-

pected since it is the main structure used to define and hold the

system data. Furthermore, Sort and Tree operations are equally

sensitive to DUEs, causing the majority of the harmful outcomes.

However, for SDCs, Sort has double the sensitivity and should have

a higher priority when attempting to improve reliability. Thus, spe-

cific techniques targeting Sort [1] and Tree operations can improve

the overall resilience of CLAMR. Additionally, general techniques

like redundant multithreading applied only to those critical func-

tions and operations may also yield an improved resilience with a

fair overhead. Moreover, by reducing the DUE rate caused by fault

in Sort and Tree, HPC systems can allow lowering the frequency

of checkpointing techniques.

HotSpot

HotSpot shows trends similar to CLAMR. About 75% of the faults

are masked and do not affect the output, as shown in Figure 4.

Most of the observed SDCs and DUEs are caused by injections in

constant and control variables used during computation. Our

fault injection analysis shows that about 30% of the faults in control

and constant variables cause an SDC and 40% generate a DUE.
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HotSpot is a stencil algorithm like CLAMR, but HotSpot simulates

an open system. Thus, SDCs in the program can be dissipated out

of the system given enough iterations. Out of the four fault models,

the Single model has the highest chance to introduce small errors

since it flips only one bit, while the other fault models flip two or

more bits. We can see in Figure 5a that the Single model has indeed

the lowest error rate, showing the HotSpot ability to recover from

it. Considering DUEs, the Single model has the same outcome as

the Double and Random ones. The Zero model has the lowest rate

since any bit flipped using the other models can lead to invalid

operations while Zero will likely cause an SDC.

Similarly to DGEMM , HotSpot keeps the memory and resources

utilization around the same level during the execution. Therefore,

the sensitivity for each time window deviates only by a small

amount as can be seen in Figures 6a and 6b.

HotSpot computes the temperature of functional blocks in a chip

when executing a program, given the power consumed by these

blocks. The temperatures of the different blocks are calculated in

an iterative manner and thus, errors in intermediate values will

have negligible effect on the final results. This computing strategy

is intrinsically robust to data errors. In fact, the impact of a fault on

the value of a variable will be reduced by the use of nearby correct

values in subsequent iterations. Taking advantage of the intrinsic

robustness of the algorithm, we can focus hardening efforts on

the variables that the fault injection campaign has shown to be

more sensitive. Thus, applying a simple replication of the sensitive

variables will yield a better performance/reliability ratio than a

more comprehensive strategy.

LavaMD

Figure 4 shows that, for LavaMD, only 15% of the injected faults

produce an SDC or DUE. Faults in the charge and distance ar-

rays and control variables cause the vast majority of harmful

outcomes.

The charдe and distance arrays used in the algorithm are respon-

sible for 57% of the SDCs and 11% of the DUEs. The two arrays

are up to five orders of magnitude larger than the other data struc-

tures that cause harmful effects. Thus, the probability of a fault

to occur in the two input arrays is higher than for the other data

structures. Therefore, these two arrays are the most critical parts

of the benchmark.

Figures 5a and 5b show that the four fault models have similar

results for SDCs and DUEs in LavaMD. LavaMD is a complex al-

gorithm, and the impact of each fault depends on several factors

such as the item (particle) corrupted, position in the 3D space, and

the state of neighboring particles. However, the fault model and

magnitude of the corrupted element seem to have the same im-

pact due the nature of the operations performed. LavaMD executes

exponentiation operation, and this will exacerbate any error.

LavaMD presents one of the biggest challenges to devise a hard-

ening technique that can significantly improve resilience without

compromising performance. In fact, a large amount of memory is

exposed to corruption that is likely to generate an SDC or DUE.

Thus, unless a specific technique for LavaMD is developed, a generic

technique, like modular replication and checkpointing should be

applied, which may consume up to twice the execution time and

energy.

LUD

LUD exhibits a behavior similar to that of DGEMM . Most of the

harmful outcomes are due to faults in the matrices and control

variables. However, the DUE and SDC rates for LUD are well-

balanced, and LUD has a much lower DUE rate than DGEMM (see

Figure 4).

Faults in the main matrix and the temporary matrices allocated

during the computation of the decomposition generate an SDC for

about 54% of the injected faults and 28% cause a DUE. Evaluating

the control variables, we observe that 24% of the faults generate an

SDC and 36% cause a DUE.

Figures 5a and 5b show that the fault models have a similar be-

havior for algebraic algorithms like LUD and DGEMM . The Random

and Zero models seem to shift some SDCs to DUEs and vice versa.

This similarity indicates that the fault models behavior among al-

gorithms from the same class can be similar, and the same insights

obtained from one benchmark can be applied to a larger number of

algorithms.

LUD has many row and column interdependencies resulting in a

higher load in the middle of execution, which also corresponds to

the more critical time windows. Therefore, while the fault model

behavior is dependent on the algorithm class, the time window

sensitivity is associated with the workload computed during that

time.

To mitigate errors in LUD we can take advantage of the time

dependent sensitivity and use a heavier mitigation technique in the

middle of the execution and a lighter one in the beginning and end.

Moreover, we can rely on residue check for matrix operations and

apply redundant multithreading or duplication with comparison

to control variables, improving reliability without compromising

performance too much.

NW

NW has a well-balanced rate between SDC and DUE, as Figure 4

shows. The rates of SDCs and DUEs are similar because faults that

cause the vast majority of errors are in the matrices used as input

and output. We notice that SDC and DUE have a similar probability

to occur when a fault is injected in the matrices.

NW is the only algorithm using integers as its main data type.

We can see in Figure 5a that the Zero faults do not cause any

errors. NW dynamically constructs a matrix based on matches and

mismatches of the input values, and a large portion of the matrix

and values manipulated will be zero. Thus, the Zero faults have the

highest chance to be masked. Double and Random have the highest

probability to introduce significantly different values in NW since

the algorithm works with small and zero values. Still, Single is the

fault model with the highest rate of SDCs in NW while Double and

Random result in very few SDCs, but when we look into DUE (refer

to Figure 5b), Double and Random have the highest error rate for

NW . Thus, NW will most likely crash when the value is largely

different from the expected one.

NW presents a lower DUE rate in the beginning when the al-

gorithm has a limited workload to compute. After the workload

reaches its highest value, the sensitivity at each time window stabi-

lizes for DUEs and SDCs.

Similarly to LavaMD, NW presents a considerable challenge

to hardening if one wishes to protect all the sensitive memory
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which is most of the memory used by the algorithm. The source

of SDCs and DUEs is the same, i.e., faults in the matrices. Thus,

protecting the matrices will improve both rates. Residue check and

control flow techniques may provide a good reliability without a

high degradation in performance.

6.1 Discussion

As we can see from radiation data in Figure 2, the actual FIT rate is

already too high even with ECC in most memory structures. Inter-

nal queues, flip-flops, or even logic circuits, are not protected, and

errors in these parts will propagate to memory. Furthermore, errors

in these unprotected parts, especially the logic circuit, can manifest

in different ways such as random or zero values. The overhead

to protect from all the fault types can be too costly. Thus, we can

evaluate the most critical code portions, fault models, and time win-

dows for each class of application and apply the most appropriate

level of protection to provide the desired level of resilience.

Algebraic applications can be better protected with residue error

detection than ECC, which is unable to correct Random or Zero

faults nor the logic circuit. We need only 8 bits to usemod15 for the

residue error protection, or only 2 bits formod3. Residue protection

can also be applied to hardware providing fast mechanisms using

small portions of chip area.

For NW , a simple parity would detect most SDCs since single

faults are more critical than the others types of faults. Therefore,

the ability to disable or to provide weaker mitigation mechanisms

will significantly improve the performance and sustain the desired

level of resilience.

For applications like HotSpot and CLAMR, we can take into con-

sideration the natural resilience of the algorithm, especially when

allowing a certain percentage of tolerated error (see Figure 3) so

a simple mitigation technique can provide the desired level of re-

silience.

7 CONCLUSION AND FUTUREWORK

We present the realistic SDC and DUE rate of Xeon Phis. We go be-

yond the sole FIT rate and also evaluate how the errors spread and

the severity of SDCs.We demonstrate that output error patterns can

be beneficial to evaluate the efficacy of mitigation techniques like

ABFT, which can detect and correct errors depending on the spatial

locality of the errors. We also investigate how the notion of impre-

cise computation can be applied to HPC applications and measure

the FIT rate decrease as a function of accepted error tolerance.

We show fault injection analysis to correlate SDCs and DUEs

with the high-level code, improving the understanding of applica-

tions reliability. CAROL-FI identifies which portions of the code

are more prone to be corrupted and cause an SDC or DUE. We

also observe that, for some programs, the probability of corruption

to propagate significantly depends on the time window in which

the fault occurs. Additionally. we have studied the severity of vari-

ous fault type (i.e. Single, Double, Random, or Zeros). We believe

that the reported radiation and fault injection analysis provide

pragmatic information to design the best hardening solution for

scientific applications, balancing the resilience and performance.

In the future, we plan to implement the mitigation techniques

based on the radiation and fault injection analysis. Then, we will

validate them with radiation experiments and fault injection cam-

paigns.
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A ARTIFACT DESCRIPTION:
EXPERIMENTAL AND ANALYTICAL
STUDY OF XEON PHI RELIABILITY

A.1 Abstract

This artifact description details how to obtain all the software used
in this work as well as how to execute it to reproduce the fault
injection campaigns presented in Section 6. It assumes that the OS
and the Intel software is correctly installed.

A.2 Description
A.2.1 Check-list (artifact meta information).

• Algorithm: CLAMR, DGEMM , HotSpot, LavaMD, LUD, and NW

• Program: C, C++, and OpenMP code
• Compilation: ICC 16.0.2 20160204
• Data set: Dynamically generated or provided with the code
• Run-time environment: CentOS 7, Intel MPSS 3.7, and GNUGDB
7.8-16.0.677
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• Hardware: Intel Xeon Phi 3120A
• Experiment workflow: Download the repository, compile the

source code, execute the automated scripts, and run the parse scripts
• Publicly available?: Yes

A.2.2 How software can be obtained (if available). Carol-FI and
benchmark code can be cloned from GitHub (available in [9]).

A.2.3 Hardware dependencies. Intel Xeon Phi 3120A or similar
Knights Corner hardware. The underlying system has no restriction
once the Intel compiler will produce native code to be executed on
the Knights Corner device.

A.2.4 Software dependencies. Intel MPSS 3.7 must be installed
as well as Intel Parallel Studio 2016 to provide the required tools to
compile and run the software.

A.2.5 Datasets. HotSpot is the only code that uses predefined
datasets. The other benchmarks generate dynamic datasets that
will be generated once and used during the whole fault injection
campaign.

A.3 Installation

There is no additional software to install besides the Intel software
stack referenced in A.2.4. There are instructions and a Makefile for

each algorithm’s source code that was used in this work. There is
also a README file that explains step by step how to run the fault
injector in a generic machine and the Intel Xeon Phi.

A.4 Experiment workflow

The first step is to compile the source code with debug information.
Then, a configuration file is produced with all the information
needed by the fault injector. Finally, the fault injector is executed
with the configuration file as an argument and how many times
the experiment should be repeated.

A.5 Evaluation and expected result

All the results are located in [40]. The parser scripts are located in
the parser-scripts folder, a README file is also provided to detail
how to execute and how to interpret the results produced.

A.6 Experiment customization

A detailed README showing how to execute in different envi-
ronments and with different benchmarks is also included in the
repository.
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