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Abstract: Delamination in laminated structures is a concern in high-performance structural appli-
cations, which challenges the latest non-destructive testing techniques. This study assesses the
delamination damage in the glass fiber-reinforced laminated composite structures using structural
health monitoring techniques. Glass fiber-reinforced rectangular laminate composite plates with and
without delamination were considered to obtain the forced vibration response using an in-house de-
veloped finite element model. The damage was diagnosed in the laminated composite using machine
learning algorithms through statistical information extracted from the forced vibration response.
Using an attribute evaluator, the features that made the greatest contribution were identified from the
extracted features. The selected features were further classified using machine learning algorithms,
such as decision tree, random forest, naive Bayes, and Bayes net algorithms, to diagnose the damage
in the laminated structure. The decision tree method was found to be a computationally effective
model in diagnosing the delamination of the composite structure. The effectiveness of the finite
element model was further validated with the experimental results, obtained from modal analysis
using fabricated laminated and delaminated composite plates. Our proposed model showed 98.5%
accuracy in diagnosing the damage in the fabricated composite structure. Hence, this research work
motivates the development of online prognostic and health monitoring modules for detecting early
damage to prevent catastrophic failures of structures.

Keywords: machine learning; statistical features; fault diagnosis; delamination; composites; vibration

1. Introduction

Laminated composite structures that are currently used for structural applications,
such as windmill propeller blades, rotorcraft blades, marine propeller blades, and turbine
blades, are manufactured by stacking fiber-reinforced lamina in a sequence of interest to
provide high strength, stiffness, and stability. These structures are more vulnerable to
damage such as the de-bonding of laminate or delamination that originates from dynamic
loads, impact loads, excessive deformations during the service, or poor manufacturing
methods [1]. Delamination is the most common and severe form of damage that reduces
the stiffness, stability, and load-carrying capacity of the structure. Delamination takes place
inside the composite structure without being evident from external surfaces, resulting in
matrix breakage and leading to deteriorating mechanical properties. Especially under dy-
namic loads, delamination can pose a severe threat to the reliability, integrity, and usability
of laminate structures without any visible indications. Furthermore, the delamination in
composites is usually difficult to identify in rea time, even with cost-intensive and time-
consuming non-destructive testing (NDT) techniques [2]. Henceforth, efficient inspection
methods and early detection are necessary to prevent catastrophic failures of structures.
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Structural health monitoring (SHM) is a state-of-the-art technology to monitor the
condition and diagnose the damage and faults in machine and structural components.
SHM uses advanced techniques, such as the vibration-based method [3–5], fiber Bragg
grating (FBG) [5], acoustic emissions (AE) [6], impedance-based method [7], Lamb wave
methods [8], etc. The use of the FBG technique is limited in the real-time health monitoring
of the composite structures, because of the difficulty in embedding the optical fibers during
fabrication. Furthermore, very fine grids of FBGs are necessary to capture changes in
a structure [9]. The AE method cannot be used to detect damage in a structure unless
the damage generates and propagates acoustic signals. Moreover, skilled personnel are
required to differentiate the AE signal from the surrounding noise. On the other hand,
impedance-based and Lamb wave techniques require a large number of transducers to
precisely detect the location and size of the damage [10]. Compared with these approaches,
the vibration-based method is generally proposed to diagnose the structural faults or
damage, as the damage that is present in a laminated composite structures causes variations
in dynamic behavior and the modal parameters, by which the incidence of faults can be
detected [11].

Vibration signatures contain vital information regarding the structural health condi-
tion, such as the source of failure and its severity [12]. By analyzing the vibration signatures
and the damage present in the laminated composite structures that cause variations in the
dynamic behavior and modal parameters, the incidence of faults can be detected. Maia
et al. reviewed the damage diagnostic techniques in composite structures using vibration-
based methods. This is achieved through a real-time monitoring system by adopting
well-developed signal processing techniques [13]. Hence, the vibration signal analysis was
chosen to monitor the health status of the composite plates.

Vibration signals are generally captured using the accelerometer sensor in time, fre-
quency, and time-frequency domains [14]. The frequency and time-frequency domains
require essential mathematical functions to process the signal. Due to this time and compu-
tational complexity, the time-domain format is generally used for fault diagnosis studies.
The captured time-domain data consists of cumulative information about the nature of the
structure. This information has to be properly analyzed to decide on the structure. Hence,
vibration signal analysis is essential for extracting meaningful information. Vibration
signals can be analyzed using spectral analysis, wavelet analysis, waveform analysis, etc.
Spectral analysis transforms the signal from the time domain to the frequency domain
using a fast Fourier transform. However, spectral analysis applies only to stationary signals.
Waveform analysis helps to provide fundamental information about fault locations. How-
ever, this analysis requires complex algorithms for detecting faults [15]. Envelop analysis
detects impacts with very low energy often hidden by other vibration signals [16]; however,
it is very difficult to identify the small variations in the signal. All these shortfalls can
be overcome by adopting a statistical feature analysis. Statistical analysis is the process
of collecting and analyzing data to identify patterns and trends. Talab et al. reported a
novel statistical feature analysis for facial recognition applications [17]. Khairnar et al.
studied tool insert conditions using statistical features extracted from vibration signals [18].
Bansal et al. used statistical feature extraction for developing an iris recognition system [19].
Li et al. used statistical features for the diagnosis of a rolling element bearing [20]. From the
literature, it is evident that statistical features help to gain deeper insights about our data
for fault identification. Hence, we propose using statistical analysis to diagnose damage in
fiber-reinforced laminated composite structures.

A set of statistical features can be extracted from the time-domain vibration response
for both laminated and delaminated structures. All the extracted information is not nec-
essarily required for accurate classification. Hence, the selection of highly contributing
features is necessitated. Features are generally selected using principal component analysis
(PCA), decision tree (DT), attributes evaluator, etc. Song et al. suggested using CA for
selecting the features [21]. PCA is highly sensitive and not appropriate for data sets that
have incomplete information [22]. A decision tree (DT), which is a graphical tree-based
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structure, can be used for selecting contributing features. Sugumaran et al. reported that
a decision tree was effectively used for feature selection in bearing fault diagnosis [23].
However, the order of features may affect classification accuracy. Hence, we need to identify
the order of contributing features. This can be achieved through the attribute evaluator,
which eliminates non-contributing features [24].

Feature classification is the most important step in machine learning (ML). Many
researchers have applied various ML algorithms to classify the features for diagnosing faults
in many applications. The Bayesian family (naive Bayes and Bayes net) and random forest
methods have been studied by researchers due to their computational effort and complexity
level. Anuja et al. made a comparative study of different classification algorithms and
found that the decision tree method was an effective choice for fault diagnosis study [25].
Li et al. used an improved decision tree for diagnosing faults in a VRF system with 98%
classification accuracy [26]. Jegadeeshwaran and Sugumaran obtained 97% classification
accuracy in brake fault diagnosis using a decision tree algorithm [27]. Compared with other
algorithms, the decision tree requires less effort for data preparation during pre-processing
and does not require normalization of data. Naive Bayes is a multi-class classifier that is
used for making predictions in real-time. Akher et al. used a naive Bayes classifier for
detecting faults in a transmission line [28]. Veronika et al. obtained 98.8% classification
accuracy with a naive Bayes classifier model for gear fault diagnosis [29]. Kaplan et al.
achieved 100% accuracy with both the naive Bayes and Bayes net classifier algorithms in
bearing fault diagnoses [30]. It is easy and fast to predict the class of the test data set with
the Bayesian algorithm. It also performs well in multi-class predictions. Akar et al. used a
random forest algorithm for multispectral image classification [31]. Paul et al. proposed an
improved random forest classifier that performs a classification with a minimum number of
trees and achieved maximum classification accuracy [32]. Referring to the above literature,
one can easily understand that ML algorithms have been used for various applications that
include rotating machine elements. There are many conventional approaches for detecting
faults in a laminated composite [33–35]. However, there is limited literature on inspecting
the impact response produced on static elements using machine learning. Hence, an effort
has been made to categorize delaminated composites using machine learning algorithms
such as decision tree, naive Bayes, Bayes net, and random forest.

In the proposed research work, delamination damage in glass fiber-reinforced lami-
nated composite structures are diagnosed using prognostic and health management tech-
niques as per the following sequential procedures. Fiber-reinforced rectangular laminated
and delaminated polymer composite plates have been considered to obtain the forced vibra-
tion response using the finite element analysis (FEA). The energy functional corresponding
to the laminated and delaminated structures are obtained in terms of kinetic energy and
potential energy using first-order shear deformation theory (FSDT). Further, the governing
differential equations of motion are obtained in terms of the finite element formulations
by extremizing the energy functional. The time-domain vibration signals of the delami-
nated and laminated composite structures are acquired using an in-house developed finite
element program using MATLAB®. The statistical information that is extracted from the
forced vibration response is used to diagnose the damage in the laminated composite plates
using machine learning algorithms. The greatest contributing features are identified from
the extracted features through the attribute evaluator to reduce computational time. The
selected information is further used to diagnose the delamination damage in the composite
structure using various machine learning approaches, such as random forest, naive Bayes,
decision tree, and Bayes net algorithms. The effectiveness of the finite element model is
further validated with the experimental results obtained from modal analysis using the
fabricated laminated and delaminated composite plates.
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2. Mathematical Modelling
2.1. Theoretical Modeling
2.1.1. Laminate Composite

The laminated and delaminated glass fiber-reinforced polymer composite structure
configurations with photographs are shown in Figure 1 for the mathematical modeling of
transverse vibration response in the time domain. The laminate structure is assumed to
have perfect bonding between all layers, whereas the delaminate structure is assumed to
be debonding in the central plane, with a size of 100 × 100 mm placed symmetrically at the
center of the plate. The length, breadth, and thickness of the laminated and delaminated
composite structures are assumed to be ‘L’, ‘b’, and ‘h’, respectively.
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Figure 1. Composite plate configuration.

The force and moment resultants associated with the mid-plane strains and curvatures
of the laminated composite plate is expressed as

N = Aε0 + Bk

M = Bε0 + Dk

Q = Ks Asγ0

(1)

where N =


Nxx
Nyy
Nxy

, M =


Mxx
Myy
Mxy

, and Q =

{
Qy
Qx

}
are in-plane force, moment, and

transverse shear force resultants, respectively. A, D, B, and As denote extensional stiffness,
bending stiffness, extensional–bending stiffness, and transverse shear stiffness, which are
given by [36].

The strain energy (U) and kinetic energy (K) are expressed in terms of in-plane and
transverse displacements, rotations of transverse normal, and out-of-plane shear strains,
whereas virtual work done (V) is expressed in terms of transverse load, external forces and
moments given by [37].
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The governing differential equations of motion for the FRP composite plate are ob-
tained by using Hamilton’s principle, as

∂Nxx
∂x +

∂Nxy
∂y − I0

..
u0 − I1

..
∅x = 0

∂Nyy
∂y +

∂Nxy
∂x − I0

..
v0 − I1

..
∅y = 0

∂Mxx
∂x +

∂Mxy
∂y −Qx − I0

..
∅x − I1

..
u0 = 0

∂Myy
∂y +

∂Mxy
∂x −Qy − I0

..
∅y − I1

..
v0 = 0

∂Qx
∂x +

∂Qy
∂y + q− I0

...
w0 = 0

(2)

where u0 and v0, w, and ∅x and ∅y are the in-plane displacements, transverse deflection,
and rotations of transverse normal, respectively.

2.1.2. Delamination Formulation

The deformation field for the 2D delamination laminated structure is obtained based
on the FSDT model, as discussed earlier. The structure with delamination was divided
into the intact region (1), lower delamination region (2), and upper delamination region (3),
as shown in Figure 2. The lower and upper delaminated layers are assumed to undergo
deformation without contact with each other at the center delamination boundary, as
shown in Figure 2b. Global coordinates (X, Y, Z) are assigned to the center delamination
plate, as shown in Figure 2a. The mid-plane deformation field (u0, v0, w0) of the intact
region (Segment 1) is considered to be different from the mid-plane deformation field(
u0

L, v0
L, w0

L) of the lower delamination region (Section 2) and the mid-plane deforma-
tion field

(
u0

U , v0
U , w0

U) of the upper delamination region (Section 2). The rotations
of transverse normal of intact, lower delamination, and upper delamination regions are
represented as ∅x and ∅y, ∅x

L and ∅y
L, and ∅x

U and ∅y
L, respectively. The thickness of

the intact, lower delamination, and upper delamination regions are considered to be h, h1,
and h2, respectively.
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The deformation field of the intact region (Segment 1) is given by

u =
{

u0
i
}
+ z{∅} (3)

The deformation field of the delamination region (Segments 1 and 2) is given by

uL,U =
{

u0
L,U
}
+ z
{
∅L,U

}
(4)
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where u0
i =


u0
v0
w0

, u0
L,U =


u0

L,U

v0
L,U

w0
L,U

, and ∅ =


∅x

L, U

∅y
L,U

0


The upper and lower delamination region boundary elements should be connected

to single elements of the laminated region along the interface of intact and delaminated
regions. It is essential to impose continuity conditions between the elements of intact
and delamination regions. To ensure the continuity of the displacement field across the
thickness of the plate at such element nodes, the displacement field of the neutral plane of
the lower or upper delaminated portion at the interface boundary should be essentially
identical to that of the element nodes adjacent to the planes in the intact region. Therefore,
the continuity equations at the interface are given by

u0
L,U = {u0}+ e{∅},

v0
L,U =

{
v0

L,U}+ e{∅},
w0

L,U = w0,

∅x
L,U = ∅x,

∅y
L,U = ∅y

(5)

where e = h−h1,2
2 .

Therefore, from the Equation (5), the deformation field of the lower and upper de-
lamination region at the delamination boundary can be written in terms of the mid-plane
deformation of the intact laminate structure.

u0
L,U

v0
L,U

w0
L,U

∅x
L,U

∅y
L,U

 =


1 0 0 e 0
0 1 0 0 e
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




u0
v0

w0
∅x
∅y

 (6)

The governing differential equations of motion for the FRP composite plate with
delamination are obtained similarly to Equation (2).

2.2. Computational Modeling
FEA Modeling

The laminated and delaminated composite structures were modeled using an eight-
node serendipity element with five degrees of freedom associated at each node (Figure 3).
The interpolation functions (N̂i) of the deformation field for the finite element formulations
are derived using the iso-parametric formulations. The deformation field in the typical
element of the intact and laminated composite structure is expressed in terms of Lagrange
interpolation functions (in natural coordinates) and nodal degrees of freedom (DOF), as

u0
v0

w0
∅x
∅y

 =


N̂i 0 0 0 0
0 N̂i 0 0 0
0 0 N̂i 0 0
0 0 0 N̂i 0
0 0 0 0 N̂i




u0i
v0i

w0i
∅xi
∅yi


u0

L,U

v0
L,U

w0
L,U

∅x
L,U

∅y
L,U

=


N̂i 0 0 0 0
0 N̂i 0 0 0
0 0 N̂i 0 0
0 0 0 N̂i 0
0 0 0 0 N̂i




u0i
L,U

v0i
L,U

w0i
L,U

∅xi
L,U

∅yi
L,U



(7)

where i = 1, 2, . . . , 8
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The governing equations of motion are obtained in terms of finite element equations
by substituting Equation (7) into the variational principle as

[M]e
{ ..

d
}e

+ [K]e{d}e = { f }e (8)

where [K]e, [M]e, { f }e, and {d}e are element stiffness, mass matrix, force vector, and
deformation vector, respectively, which are described in the appendix. Assembling of the
element stiffness and mass matrix of all the elements results in a governing equation of
motion for the laminated and delaminated composite structure, as given below.

[M]
{ ..

d
}
+ [K]{d} = { f } (9)

[K], [M], { f }, and {d} are global stiffness, mass matrix, force vector, and deformation
vector, respectively.

The solution for Equation (9) can be expressed in terms of normal modes (X) and
principal coordinates (q), as

{d} = [X]{q(t)} (10)

Equation (10) uncouples Equation (9), so that we can obtain the second-order uncou-
pled differential equations, as shown below.

[I]
{ ..

q
}
+

[
. . . ωi

2 . . .
]
{q} = {Q} (11)

where ωi is the natural frequency of ith mode and {Q} is the generalized force vector in
terms of the principal coordinates.

Once the generalized deformation vector q(t) is found from Equation (10), the physical
deformation vector can be obtained using Equation (11).

2.3. Machine Learning Modelling

The vibration response acquired from the developed FEA model is processed to obtain
statistical information. The combination of this information is used to extract the damage
information in the laminated composite structure using a machine learning model.

2.3.1. Feature Extraction

The process of decomposing the signal for extracting information is called feature
extraction. The statistical parameters that were extracted from both the simulated and
experimental vibration signals using the visual basic code [8].

2.3.2. Feature Selection

The initial set of raw features can be redundant and too large manage. Therefore,
selecting a subset of features is an important step in improving generalization and inter-
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pretability. The selection of features in classifying the damage in the composite structures is
very critical in machine learning techniques. In the present study, the feature selection was
performed using an attribute evaluator. The attribute evaluator ranks each contributing
feature. Based on this ranking, the effect of contributing features is evaluated using the
effect of the number of features studied.

2.3.3. Feature Classification

A classifier is an algorithm that performs the classification of a dataset. The funda-
mental purpose of a classification algorithm is to predict the output for categorical data. A
classification algorithm uses a supervised learning technique to determine the category of
new observations through a trained data set. A program learns from the dataset, and then
classifies fresh observations into one of several classes (targets/labels). Various machine
learning classifiers, such as naive Bayes, Bayes net, support vector machines, and others
can be used to classify the specified features.

3. Experimental Study

The efficacy of the mathematical model developed using finite elements to measure
the forced vibration response of an intact and delaminated composite structure was studied
by comparing the MATLAB® simulated transverse deflections in the time domain with that
of laboratory experimental results. The intact and delaminated fiber-reinforced laminated
structures were fabricated using a vacuum-assisted hand-lay-up process. First, peel fly
fabric treated with a releasing agent was laid upon the mold surface to provide a smooth
finish on the structure surface. E-glass unidirectional woven fabric of 225 g/m2 was
placed over the peel ply, and then the calculated amount of LY556 epoxy resin with
HY951 was evenly applied over the fiber surface. The lay-up was continued to obtain a
stacking sequence of [0◦/90◦]4 s with sixteen layers. After obtaining the required sequence
of lay-up, the peel ply and breather fabric were laid over the lay-up stack. The entire
setup was placed inside a vacuum bag, which was sealed with a sealant. Initially, the
laminated stack was cured at vacuum pressure and room temperature for one hour. Later,
the laminate was placed in an oven where the temperature was raised to 70 ◦C at a
controlled rate of 1 ◦C/min. In the next stage, the laminate was kept at 70 ◦C for two
hours. Finally, the laminated composite structure was allowed to cure further for one
day at room temperature. The prototypes were cut into 400 mm length × 200 mm width.
The delamination in the composite structure was obtained by inserting 100 × 100 mm
Teflon film symmetrically in the central plane during the fabrication process. Both the
composite structures maintained an identical volume fraction of 0.4. Figure 1a,b shows the
fabricated laminated and delaminated composite structures. The thickness of the laminated
and delaminated structures was measured to be 4.158 and 4.032 mm, respectively. The
mechanical properties of the unidirectional laminate ply are presented in Table 1.

Table 1. Mechanical properties of the unidirectional fiber-reinforced composite lamina.

Fiber-Reinforced Composite Lamina

Vf 0.4
E11 (Gpa) 30.2
E22 (Gpa) 6.8

v12 0.269
G12 (Gpa) 2.8
G23 (Gpa) 2.51
ρc (kg/m3) 1745

The schematic diagram of the experimental setup used to obtain the time-domain
response of the laminated and the delaminated composite structure is shown in Figure 4.
The composite structures were divided into fifty rectangular elements and sixty-six nodes
to measure the time-domain response and impact force at the various nodes. The impact
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hammer was used to excite all the nodes of the composite plate. A uni-axis accelerometer
(50 g/100 mV/g sensitivity) was fixed at the location of 234 × 134 mm from the left end
bottom corner of the plate to record the acceleration in the time domain due to impact
excitation at all the nodes of the plate. The time-domain response (hij) acquired using the
four-channel data acquisition system represents the response at the eighth node due to the
impact excitation at the jth node of the laminated and delaminated composite plates. The ex-
periments were performed in a temperature-controlled environment using air-conditioning.
The temperature was set to 27 ◦C during the transverse response extraction of the intact
and delaminated composites.
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4. Results and Discussion
4.1. Validation

The effectiveness of the developed finite element formulation was further verified
by comparing the results available in the literature. Babu et al. [37] evaluated the natural
frequencies of a non-uniform fiber-reinforced polymer laminated composite structure by
considering ply orientations [0/90]8s at the right end and [0/90] at the left end, respectively.
The mechanical and geometrical properties considered for the composite fiber lamina of all
these configurations were E1 = 30.2 GPa, E2 = 6.8 Gpa, v12 = 0.269, G12 = 2.68 Gpa, ρc = 1745
kg/m3, and a ply thickness of 0.19 mm, and resin pocket properties were E = 3.45, v = 0.3,
G = 1.33 GPa, and ρ = 1200 kg/m3. Table 2 compares the natural frequencies of the tapered
laminated composite plate for (1,1), (1,2), and (2,1) modes under CFFF end conditions for
the tapered configuration, by using the present finite element formulations with the results
presented in Babu et al. [38]. Referring Table 2, the natural frequencies evaluated by the
present FEM had a very close agreement with those presented in Babu et al.
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Table 2. Comparison of the natural frequencies of a tapered composite plate derived by utilizing the
present FEM with those presented in [38].

Modes (m,n)

Natural Frequencies (Hz)
% Deviation

Laminated Plate Delaminated Plate

Ref. [38] Present Ref. [38] Present Laminated
Plate

Delaminated
Plate

1,1 21.1 20.8 20.6 20.1 1.42 2.49
1,2 39.4 40.4 38.2 39.1 2.54 2.3
2,1 102.2 100.4 97.5 96.6 1.76 0.93

The time-domain signals were obtained using a finite element code through MATLAB®.
Two conditions of the composite plates, namely laminated and delaminated plates, were
considered for the study. Forty nodes were arbitrarily selected and the corresponding time-
domain signatures were simulated. Similarly, the laminated and delaminated composite
plates were fabricated as shown in Figure 1a,b. The corresponding vibration signals were
acquired from the composite plates using the accelerometer sensors. Figure 5 shows the
time-domain response of the laminated and delaminated structures using numerical and
experimental studies.
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4.2. Feature Extraction and Selection

The raw vibration signals were decomposed for extracting vital information as features.
Thirteen sets of vital statistical information were mined from the simulated vibration
signals. Tables 3 and 4 show the sample feature values extracted from the simulated and
experimental vibration signals.



Appl. Sci. 2022, 12, 12100 11 of 15

Table 3. Extracted features from the simulated data.

Mean Standard
Error Median Std. De-

viation
Sample

Variance Kurtosis Skewness Range Minimum Maximum Condition

0.01 0.36 −0.05 11.41 130.25 4.09 0.12 136.7 −73.65 0.01 LM
0.01 0.33 −0.05 10.53 110.98 3.77 0.07 122.3 −65.36 0.01 LM
0.00 0.27 −0.05 8.56 73.32 3.92 0.07 103.3 −57.21 0.00 LM
0.01 0.36 −0.05 11.41 130.25 4.09 0.12 136.7 −73.65 0.01 DLM
0.01 0.33 −0.05 10.53 110.98 3.77 0.07 122.3 −65.36 0.01 DLM
0.00 0.27 −0.05 8.56 73.32 3.92 0.07 103.3 −57.21 0.00 DLM

Table 4. Extracted features from the experimental data.

Mean Standard
Error Median Std. De-

viation
Sample

Variance Kurtosis Skewness Range Minimum Maximum Condition

0.04 0.42 −0.05 13.56 183.87 2.72 0.20 135.7 −68.17 67.58 LM
0.00 0.32 −0.05 10.10 101.99 3.18 0.43 94.76 −40.38 54.38 LM
0.03 0.38 −0.05 12.26 150.21 1.70 0.09 113.3 −56.39 56.94 LM
−0.05 0.05 −0.05 1.49 2.23 20.74 −1.45 24.74 −15.66 9.08 DLM
−0.04 0.11 0.00 3.42 11.69 7.86 −0.70 42.82 −24.79 18.04 DLM
−0.04 0.12 −0.04 3.93 15.47 14.56 −1.04 59.90 −38.31 21.59 DLM

All the features may not be required for classification. Hence, feature selection was
initiated using the attribute evaluator and the effect of the number of features studied.
The attribute evaluator ranks the contributing features. The first feature suggested by
the attribute evaluator was selected and classified by the considered algorithms. The
corresponding accuracy was noted. Then, the top two ranked features were selected for
classification and the corresponding accuracy was noted. In the same way, all the features
were clubbed one by one based on their ranking, and their corresponding accuracies
are noted in Table 5. Referring to Table 5, all the algorithms produced the maximum
classification accuracy with the top five feature combinations. These were the (1) Mean,
(2) Standard error, (3) Sample variance, (4) Kurtosis, and (5) Skewness. However, the
decision tree and naive Bayes algorithms produced the maximum accuracy with the top
four features. Based on model-building time, the decision tree algorithm is suggested for
further study.

Table 5. Effect of the number of features on classification accuracy—simulated data.

No. of Features
Classification Accuracy (%)

C4.5 Decision Tree Random Forest Naive Bayes Bayes Net

1 56.00 54.25 57 47.5
2 80.90 80 86.25 84.36
3 90.72 96.25 88.75 87.45
4 100 98 100 96.25
5 100 100 99.0 100
6 100 99.12 98.2 99.4
7 98.2 98.5 97.9 98.5
8 97.9 98.5 97.1 97.7
9 96.4 97.2 96.2 96.6
10 95.2 96.3 95.1 95.9
11 95.2 96.3 94.9 94.2
12 94.9 96.3 94.3 94.6

4.3. Feature Classification

The decision tree classifier model was trained with the selected number of statis-
tical features (mean, sample variance, standard error, and kurtosis) that were selected
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by the attribute evaluator. The trained model was tested and validated using a 10-fold
cross-validation. The obtained results are disclosed in the form of a matrix known as the
“confusion matrix” (Table 6).

Table 6. Confusion matrix for decision tree with simulated data.

Category LAM DLAM

LAM 40 0
DLAM 0 40

LAM: Laminated; DLAM: Delaminated plate.

Referring to Table 6, the first row denotes the data related to the laminated composite
plates (LAM) and the second row represents the data relevant to delaminated composite
plates. The first element in the first column represents the correctly classified elements.
Among the 40 laminated composite plate data, all were correctly classified. Hence, there
was no misclassification. The second element in the second column represents the data
points corresponding to the delaminated plate (DLAM). In this case, all 40 data points were
also correctly classified and none were misclassified. Among all 80 simulated data points,
all 80 were correctly categorized. Hence, the classification accuracy with the DT algorithm
is 100%. The time taken to build the model was 0.01 s.

Summary of the classifier results:
Correctly Classified Instances 100 (100%)
Incorrectly Classified Instances 0 (0%)
Kappa statistic 1
Mean absolute error 0
Root mean squared error 0
Relative absolute error 0
Coverage of cases (0.95 level) 100%
Mean rel. region size (0.95 level) 50%
Total Number of Instances 100

4.4. Experimental Validation

An experimental study was carried out for validating the proposed decision tree
model. As per the proposed design, the laminated and delaminated composite plate was
fabricated. Both laminated and delaminated sheets were fitted on a workbench and the
frequency response in the time domain was acquired. From the time-domain response, the
statistical information was extracted. Then feature selection process was carried out using
the effect of the number of feature study. Table 7 shows the effect of number of features
study on the classification accuracy.

Table 7. Effect of the number of features on classification accuracy—Experimental data.

No. of Features
Classification Accuracy (%)

C4.5 Decision Tree Random Forest Naive Bayes Bayes Net

1 62 60 56 64
2 80 80 86 84
3 92.5 89 91 90
4 96 92 94 92
5 98 96 96 95
6 98 97 96 95
7 97 97 96 94
8 96 96 95 93
9 96 96 93 93
10 95 95 93 92
11 94 93 92 91
12 92 93 91 90
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Referring to Table 7, DT produced 98% maximum accuracy with the experimental
data. Table 8 shows the confusion matrix for the experimental data. Among the total 100
experimental data, 98 data were correctly classified with an overall accuracy level as 98%.
The decision tree uses a confidence factor of 0.25.

Table 8. Confusion matrix for decision tree with experimental data.

Category Laminated Delaminated Plate

LAM 49 1
DLAM 1 49

Summary of the classifier results:
Correctly classified instances 98 (98%)
Incorrectly classified instances 2 (2%)
Kappa statistic 0.96
Mean absolute error 0.0296
Root mean squared error 0.1422
Relative absolute error 5.913%
Root relative squared error 28.4309%
Coverage of cases (0.95 level) 98%
Mean rel. region size (0.95 level) 50%
Total number of instances 100

The random forest algorithm produced a maximum accuracy of 96% with the top six
features. The random forest randomly uses 10 trees as a forest and the maximum accuracy
was predicted. Similarly, the selected naive Bayes and Bayes net algorithms were also used
for the classification processes. The naive Bayes algorithm produced 96% as its maximum
accuracy, whereas the Bayes net produced a maximum accuracy of 95%. Both algorithms
produced the maximum accuracy with the top five contributing features.

4.5. Comparative Study

Table 9 shows the summarized results with both experimental and simulated time-
domain signatures. Among the four algorithms considered, the decision tree produced
the maximum accuracy on both simulated and experimental data with less processing
time. Hence, the decision tree algorithm can be effectively used for identifying defective
delaminated composite structures with minimal computation time. This motivates us
to develop an OBD for displaying the results then and there. These results suggest that
delamination can be identified using experimental and simulated vibration responses
through the application of machine learning. Therefore, defects can be identified during the
product development stage by studying the simulated signals. This will help researchers to
eliminate structural defects in the laminated composites during initial stages of product
development. This information will be useful for engineers to avoid catastrophic failure
during the service period of a product.

Table 9. Comparative study.

Algorithm Accuracy with
Simulated Data

Time Taken to
Build the
Model (s)

Accuracy with
Experimental

Data

Time Taken to
Build the
Model (s)

Decision Tree 100 0.1 98 0.15
Random Forest 100 0.5 97 0.52

Naive Bayes 100 0.4 96 0.45
Bayes Net 100 0.6 95 0.6
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5. Conclusions

A machine learning-based fault diagnosis has been proposed for identifying delami-
nation in fiber-reinforced laminated structures. Glass fiber-reinforced rectangular laminate
composite plates with and without delamination were considered to develop a finite
element model. The forced vibration responses of the delaminated and laminated compos-
ite structures were acquired using an in-house developed finite element program using
MATLAB®. The statistical information that was extracted from the forced vibration re-
sponse was used to diagnose the damage in the laminated composite plates using machine
learning algorithms. The greatest contributing features were identified from the extracted
features using the attribute evaluator. The selected features were further classified using
machine learning algorithms, such as decision tree, random forest, naive Bayes, and Bayes
net algorithms for diagnosing the damage in the laminated structure. The decision tree
algorithm was found to be a computationally effective model in diagnosing the delam-
ination of the composite structure. It was observed that the proposed model produced
98.5% accuracy in diagnosing the damage in the fabricated composite structure. Hence,
this research work motivates us to develop an online prognostic and health monitoring
module for detecting early damage to prevent catastrophic failures of structures.
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