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1. Introduction

The water resources contamination with arsenic (As) has been 

studied worldwide [1, 2]. Due to severe health concerns associated 

with arsenic polluted water, maximum contaminant level was 

changed from 50 to 10 ppb in 2001 by United States Environmental 

Protection Agency (EPA) [3]. Therefore, arsenic removal from water 

is getting more attention to combat health related issues and environ-

mental problems as well. Several techniques including membrane 

separation techniques including nanofiltration and reverse osmosis 

were used to eliminate 90-95% of arsenic from water but at high 

pressure achieved by high energy consumption[4, 5]. Although 

ultrafiltration (UF) requires less energy and runs at lower pressures 

but low molecular weight pollutants cannot be removed without 

enhancing their size. In micellar enhanced ultrafiltration (MEUF) 

technique, surfactant addition is required to form micelles of dis-

solved aqueous pollutants above their critical micelles concen-

tration (CMC), and consequently removed by UF. Researchers stud-

ied this technique, because of its higher removal efficiency and 

lower energy consumption [6-8]. 

The MEUF process can be mostly influenced by various operating 

parameters, so, there is a need of hour to explore the effect of 

those variables to evaluate the process performance. In literature, 

effect of various operating parameters including, molecular weight 

cut-off (MWCO), As concentration and pH of feed solution, molar 

ratio of surfactant to arsenic, membrane material, types of surfac-

tants and other co-occurring inorganic solutes on the removal effi-

ciency (RE) of arsenic was investigated experimentally, [9-11]. 

Previously, most of the MEUF process optimization studies were 

conducted by considering one-parameter-at-a-time during experi-

ments that is an expensive and time-consuming strategy. Therefore, 

artificial neural network (ANN) modeling appears as an alternative 

technique for optimization and control of MEUF process [12]. ANN 

networks are capable to store and process the information with 

distributed memory without empirical studies of the process and 

after learning they can make decision by commenting on similar 

events as literature studies showed their applications in various 

environmental engineering systems [13-16].

In literature few studies were conducted for MEUF process opti-

mization using different modeling techniques. The As removal 
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from aqueous solution through MEUF using binary system ion-ex-

change model presented that predictied and experimental results 

were well agreed [5]. Assessment of MEUF performance and influ-

ence of operational pareametrs for removal of pharmaceutical con-

taminants from wastewater was made successfully by applying 

a statistical experimental design, response surface methodology 

[17, 18]. The removal of zinc from wastewater through MEUF was 

modeled effectively using ANN modeling technique [12] and RSM 

was employed to improve the separation process of cadmium and 

zinc [19]. The flux decline for eosin dye separation was quantified 

using resistance in series model [20], fuzzy modeling and simulation 

for lead removal provided acceptable results for MEUF opti-

minzation [21].   

MEUF optimization using experimental, and ANN modeling 

techniques for As removal from aqueous solution was not found 

in the literature as per author’s knowledge. In this study ex-

perimental dataset was used to evaluate the As RE of MEUF process 

from aqueous solution. The experimental studies were carried out 

by varying operational conditions such as time, pressure, molar 

ratio of CPC to As, As concentration and pH of feed solution. 

The aim of this study was to propose the best model for MEUF 

process optimization that can provide an economical, fast and envi-

ronmental friendly alternate to the expensive and laborious experi-

ential work.

2. Material and Methods

2.1. Materials and Design of Experiment

Sodium arsenate (Na2HAsO4.7H2O) with purity of 99% was pur-

chased from Junsei Chemicals, Japan. The cationic surfactant was 

cetylpyridinium chloride (CPC) 98% pure was procured from 

DAEJUNG CHEMICALS & METALS, South Korea with purity of 

98%. The pH adjustment and cleaning process was performed using 

chemicals including, sodium hydroxide beads with assay above 

97% and hydrochloric acid with purity above 35% were also ob-

tained from DAEJUNG CHEMICALS & METALS, South Korea. 

Polyacrylonitrile based cross flow UF membrane with 0.055 m2 

effective surface area and 10 kDa MWCO used in experiments 

was procured from SYNOPEX MEMBRANE FILTER, South Korea 

and 5 micron cartridge filters were also obtained from the same 

supplier. The characteristics of UF are presented inn Table 1. ACF 

made of carbon impregnated pleated polyester was purchased from 

3M Company, China. The deionized water was used during experi-

ments, including solutions preparation and cleaning process. 

The schematic drawing of lab-scale MEUF system is depicted 

in Fig. 1, which comprises of (1) mixer, (2) feed water tank, (3) 

valve, (4), (5) feed and cleaning pumps, respectively, (6) UF, (7) 

reject water circulation (8) MEUF product water tank. A cross-flow 

type filtration was performed using UF where rejected solution 

is recirculated in to the feed tank, whereas, product water was 

collected separately. The pH of solution was measured by 

Multifunction meter CX-505, Elmetron, Poland. CPC was analyzed 

through UV/VIS spectrophotometer at 372 nm wavelength, while 

arsenic was measured using inductively coupled plasma-optical 

emission spectrometry ICP-OES technique (720-ES, Varian), US 

EPA Method 6010 at 1200W power, plasma gas flow 15 L/min, 

auxiliary gas flow 1.5 L/min, nebulizer gas flow 0.75 L/min. The 

cleaning of UF membrane was perfomed by using deionized water 

followed by 0.1 M NaOH solution, and reflushing with deionized 

water. Similarly, cleaning of membrane was performed with 0.5% 

HCl and flushed with distilled water. The RE of As was considered 

as measured response and calculated by using Eq. (1).

(1)

Cp and Cf are metal concentration in the product and feed water 

while RE represents percentage RE. 

Table 1. Characteristics of UF Membrane 

Membrane material Polyacrylonitrile

Membrane type Hollow fiber

Flow direction Inside to outside

Flow type Cross-flow

Effective surface area, m2 0.055

Membrane diameter (inside/outside) mm 0.8/1.4

Molecular weight cut-off (MWCO) 10kDa

Fig. 1. Schematic diagram of lab-scale MEUF system.

2.2. Experimental Data Preparation

The arsenic removal conditions were optimized by changing MEUF 

parameters; time (10-60 min), pressure (1.5-2.5 bar), molar ratio 

of CPC to As (3 to 10), As concentration of feed solution (1 to 

3 Mm) and pH of solution (7 to 8.5). The data was obtained from 

an experimental work under aforementioned operating conditions 

for As removal from aqueous solution using MEUF technique. In 

ANN modeling time (T), pressure (P), molar ratio of CPC to As 

(CPC/As), arsenic concentration of feed solution (As) and pH of 

solution were considered as input parameters while As RE (0.55 

to 0.99), was used as output parameter. The learning capacity of 

a model depends upon the size of training dataset. Experimental 

data contained 96 rows that were divided randomly into training 

(70%), validation (15%) and testing (15%) for ANN modeling. 

MATLAB R2017b was used for ANN modeling. 
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2.3. Artificial Neural Network (ANN) Modeling

ANN a black box technique is a computer based algorithm that 

processes the information similar to the nervous system of human 

body. Neuron is a central element that is used to receive, process, 

and transmit information after creation, and configuration of the 

network then after training, and validation, model can predict the 

target results [22]. In processing an input (x), is multiplied by 

a specific random value known as weight (w) and a bias value 

(b) is also added. A resulting input of a neuron is weighted input 

(xw) is that is summed up (n = xw + b) and then evaluated using 

a transfer function to provide final output [23]. The output values 

are compared with real values to find the difference between them 

as error that helps in weights and biases updation during training 

using appropriate learning algorithm to get the minimum error [24]. 

ANN is consisted of an input, hidden and output layer as shown 

in Fig. 2. The inputs are represented by x1, x2… xn and output 

by Y. Feedforward back propagation learning technique is com-

monly used because in this technique propagation of total loss 

back into ANN model minimizes the loss [25]. As modeling per-

formed through different stages including training, validation and 

testing therefore, dataset was divided into three sets as mentioned. 

Initially proposed model was trained and validated using validation 

dataset in order to tune hyperparameters. Then proposed model 

used to test the performance of the trained network for unseen 

testing dataset. 

Fig. 2. Basic artificial neural network schematic diagram.

2.4. Model Performance Criteria 

In this study, two performance measures used to evaluate models 

predicted results. The mean square error (RMSE) Eq. (2) and co-

efficient of determination (R2) Eq. (3) were used as statistical values 

for evaluation of a model that are described below [13].

(2)

  (3)

In these equations ‘n’ represents the number of experimental 

values and 
  and 

  presented model predicted and their 

corresponding experimental values, respectively.

3. Results and Discussion

The experimental studies were performed by considering each oper-

ating parameter one by one while others were kept constant. In 

the following section experimental and ANN modeling results are 

presented with respect to As removal from aqueous solution using 

MEUF technique. 

3.1. Experimental Studies

3.1.1. Effect of pressure 

The experimental studies were tested for As removal from aqueous 

solution as presented in Table 2, these values of pressure were 

selected on the basis of previous studies [6, 26-29]. Average As 

removal percentage as shown in Fig. 3 (a) was 92.87, 96.13, 97.01 

and 97.20% at pressure of 1.5, 1.8, 2.2 and 2.5 bar, respectively, 

at molar ratio of CPC to As 5:1. The similar results regarding 

effect of pressure were presented for other heavy metals including, 

chromate, nickel and cadmium removal from aqueous solution 

[26-29]. It is evident that high pressure causes to increase the 

gel layer thickness on membrane surface and eventually removal 

of metal micelle complex was higher. On the contrary, concen-

tration polarization happens because of high pressure that results 

in reduction of permeate flux [26-29]. Experimentally observed 

optimum pressure was 1.8 bar for As removal from aqueous solution 

at molar ratio of 5:1 without any adjustment of pH. 

Table 2. MEUF Experimental Operating Parameters 

Operating parameters Tested values

Retentate pressure (bar) 1.5, 1.8, 2.2, 2.5

Molar ratio of CPC to arsenic (mM) 3:1, 5:1, 8:1, 10:1

Initial arsenic concentration, (mM) 1, 1.5, 2, 3

pH 7, 7.5, 8, 8.5

Sampling time (min) 10, 20, 30, 40, 50, 60

3.1.2. Effect of molar ratio of CPC to arsenic 

Number of experiments were performed to investigate the effect 

of molar ratio of CPC to As at fixed pressure as evaluated previously. 

As presented in Fig. 3 (b), average removal of arsenic was 99.00, 

98.15, 96.51% for a molar ratio of 10:1, 8:1, 5:1, respectively but 

at molar ratio of 3:1 average arsenic rejection was dropped to 83.09%. 

An improvement in As removal was noted corresponding to an increase 

in CPC to As ratio. This improvement occurred due to more micelles 

formation at higher CPC concentration, which increases the available 

micelle surface area for attracting arsenic ions electrostatically. 

Previously done studies supported these results [26-30]. The optimum 

molar ratio was noted as 5:1 that provides 96.13% average removal 

of arsenic at 1.8 bar pressure without any pH adjustment. 

3.1.3. Effect of initial arsenic concentration 

Experiments were conducted using different As concentrations of 

feed solution such as 1, 1.5, 2 and 3 mM at CPC concentration 
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of 5 mM. In this case average As RE was 96.12% for 1 mM concen-

tration of As while 87.25%, 74.55% and 67.80% rejection was 

found for As concentration of 1.5, 2 and 3 mM, respectively as 

presented in Fig. 3(c). Arsenic removal decreases with increasing 

As concentration of feed solution [11, 30, 31] and similar trend 

for other heavy metals including cadmium, chromium and nickel 

was presented in the literature [28]. The concentration of arsenic 

in product water was increased proportionally to As concentration 

of feed solution because  lesser micelle surface area was available 

to adsorb higher metal concentrations electrostatically [26]. The 

1 mM initial arsenic concentration was found optimum as it pro-

vides higher RE of arsenic 96.12% while other parameters were kept 

constant.

3.1.4. Effect of pH on arsenic removal 

Series of experiments were performed to explore the effect of pH 

on As removal from aqueous solution. It was observed that arsenic 

removal was slightly increased by pH up to 8.0 as in Fig. 3 (d), 

but above that no increase in As RE was observed. As previously 

reported that As(V) species were found neutral at pH 1.0 while 

between pH 2.22 to 6.98, they change from neutral to mono-anionic 

form. Further, at a pH value of 6.98, mono-anionic to di-anionic 

dissociation happened. Hence, maximum As removal takes place 

at pH value of 8, due to the likely binding of di-anionic arsenate 

to the micelles [9, 11]. 

The removal of As is proportional to the pH value of feed solution. 

At lower pH, As has to compete with H+ ions during adsorption 

onto the micelles surface. Therefore, in the acidic environment, 

adsorption of As onto the micelle surface was decreased that ulti-

mately reduces RE as similar results presented in the literature 

for cadmium and copper removal [28, 29]. On the other hand, 

binding of functional groups with H+ at higher pH easily dissociated, 

and the deprotonated functional groups can bind with arsenic [9, 

11]. Consequently, the influence of pH dependent on the type 

of metals and categorically on the competiotion between metal 

and H+ ions during adsorption onto the micelles. 

3.1.5. Experimental results discussion

During experimental studies of MEUF process at various operating 

parameters, it was noted that optimum conditions for As removal 

from aqueous solution were found as pressure of 1.8 bar, CPC 

to As molar ratio was 5:1, As concentration of feed solution of 

  

a b

c d

  

Fig. 3. (a) Effect of retentate pressure, (b) Molar ratio of CPC to As, (c) As concentration of feed solution, (d) pH on As RE 
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1 mM at pH 8.0. The experimental optimization of MEUF required 

much time, expensive, laborious work and hazardous to the environ-

ment as used chemicals were drained to wastewater stream. 

Resultantly, it is need of hour to find an alternate to minimize 

experimental studies to make future studies easier and more 

reliable for optimization of such type processes. For this purpose, 

ANN studies were considered for modeling of MEUF process 

used for As removal from aqueous solution as described in below 

sections. 

3.2. ANN Modeling Results

3.2.1. Pre-assessment of experimental data

The As removal conditions were optimized by changing MEUF 

parameters; time (ranges 10-60 min), pressure (ranges 1.5-2.5 bar), 

molar ratio of CPC to As (ranges 3-10), As concentration of feed 

solution (1-3 mM) and pH of solution (7 to 8.5). The data was 

obtained from an experimental work under aforementioned operat-

ing experimental conditions for As removal from aqueous solution 

using MEUF technique. In ANN modeling time (T), pressure (P), 

molar ratio of CPC to As (CPC/As), arsenic concentration of feed 

solution (As) and pH of solution were considered as inputs and 

output was the RE of As. The learning capacity of a model depends 

upon the size of training dataset. Experimental data contained 

96 rows of which randomly 68 were selected for training, 14 rows 

were used for validation and 14 rows chosen for testing in ANN 

modeling.

3.2.2. Topology of ANN model

The number of neurons in the hidden layer were varied from 

2-50 to find optimum number of neurons. Each topology was 

checked thrice using RMSE values as performance criteria. ANN 

models provided the best results by using Levenberg-Marquardt 

algorithm with 10 neurons in the hidden layer. Through trial 

and error method, it was noted that (5-10-1) is the best ANN 

topology as presented in Fig. 4. The optimal architecture of 

ANN for best prediction of As removal using MEUF process 

from aqueous solution was observed by considering 5 variables 

input layer; 10 neurons in a hidden layer; and one variable 

output layer (5-10-1). 

Fig. 4. Optimum structure of ANN model.

3.2.3. ANN model prediction results 

ANN model prediction results were evaluated on the basis of per-

formance criteria parameters such RMSE and R2. The R2 values 

provided information on general error between experimental and 

model prediction results. The good fit between measured and pre-

dicted values is improbable to occur, would have R2 = 1 [13].

The experimental and ANN model predicted results are presented 

in Fig. 5. It depicts that ANN model predictions are close to the 

a

b

c

Fig. 5. ANN results of (a) Training, (b) Validation and (c) Testing dataset.
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Fig. 6. Percentage contribution of operating parameters.

experimentally measured results; thus, proposed ANN model might 

be an alternate to laborious, expensive and environmentally hazard-

ous experimental method used for optimization of MEUF process. 

The proposed ANN model presented very good results with R2 

= 0.932 for testing dataset. The consistency between the ANN 

predictions and experimentally measured results may increase the 

reliability of proposed ANN model for the prediction of As removal 

from aqueous solution. The results indicated that ANN model can 

be used to predict As RE of MEUF process without any empirical 

study that acquires long time and an expensive option. 

A percentage contribution was performed to check the sig-

nificance of operating parameters including time (T), pressure (P), 

As concentration of feed solution (As), molar ratio of CPC to As 

(CPC/As) and pH. It was noted that all considered operating parame-

ters were significant in this MEUF study for As removal from aqueous 

solution as shown in Fig. 6, including, time, pressure, As concen-

tration of feed solution, molar ratio of CPC to As and pH were 

significant for this study as noted, 23.37%, 23.16%, 19.96%, 18.19 

and 15.33%, respectively. Although time and As concentration 

of feed solution showed relatively high significance than other 

operating parameters but does not have a prominent importance 

as compare to other parameters. In further studies even more operat-

ing parameters can be considered for better understanding of MEUF 

process for As removal from aqueous solution.

  

4. Conclusions

Micellar enhanced ultrafiltaion of As-contaminated aqueous sol-

ution through experimental and ANN modeling techniques was 

investigated. Optimum parameters for As removal from aqueous 

solution were noted as pressure of 1.8 bar, CPC to As molar ratio 

was 5:1, As concentration of feed solution 1 mM at pH 8.0. The 

proposed ANN model successfully traced the behavior of As RE 

versus time, pressure, As concentration of feed solution, molar 

ratio of CPC to As and pH value. The predictive capability of 

the ANN model (R2 = 0.932 for testing dataset) was comparable 

with experimental results. The proposed ANN model might be 

an alternate to the laborious, expensive and environmentally haz-

ardous experimental methods used previously for the optimization 

of MEUF process. Results indicated that a well-trained ANN model 

can be used to optimize As RE of process without any empirical 

study. Percentage contribution confirmed that all the operating 

parameters are important in MEUF process. Hence, we can recom-

mend the extension of ANN model to other ultrafiltration applica-

tions for further insight where only tuning of the hyperparameters 

can be helpful to trace the input-output relationship of complex 

processes.
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