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Abstract: 

Flameless combustion offers many advantages over conventional combustion, particularly 

uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed 

and adopted to scale up a burner operating in flameless combustion mode from a heat release 

density of 5.4 to 21 MW/m
3
 (thermal input 21.5 – 84.7 kW) with kerosene fuel. A swirl flow 

based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 

35-37 µm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal 

input of 21.5 kW (     =5.37 MW/m
3
). Attempts were made to scale this combustor to higher 

intensities i.e. 10.2, 16.3 and 21.1 MW/m
3
. However, an increase in fuel flow rate led to 

incomplete combustion and accumulation of unburned fuel in the combustor. Two major 

difficulties were identified as possible reasons for unsustainable flameless combustion at the 

higher intensities (i) A constant spray cone angle and SMD increases the droplet number density 

(ii) Reactants dilution ratio (    ) decreased with increased thermal input. To solve these issues, 
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a modified combustor configuration, aided by numerical computations was adopted, providing a 

chamfer near the outlet to increase the     . Detailed experimental investigations showed that 

flameless combustion mode was achieved at high intensities with an evenly distributed reaction 

zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC 

for all heat intensities (Ф=1 - 0.6) varied between 11 - 41, 6 - 19 and 0 - 9 ppm, respectively. 

These emissions are well within the range of emissions from other flameless combustion systems 

reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 

dB at all conditions. 

Keywords: Flameless combustion; Swirl flow combustion; Liquid fuel; High intensity; Burner 

scaling; Ultralow emissions; Residence time.  

1. Introduction: 

Flameless/Mild combustion has gained significant importance due to its ability to suppress 

thermal NO formation and improve thermal efficiency of combustion systems. Flameless 

combustion has been primarily identified with gaseous fuels and extensive work has been 

reported [1-10]. Scaling the flameless combustors to higher intensities has been proposed in 

recent studies reported in the literature [7, 8, 11]. A brief summary of various high intensity 

flameless combustion systems with gaseous fuels is listed in Table 1. Lückerath et al., [11] have 

developed a Forward Flow (FF) combustor configuration with a thermal input of 475 kW and 

heat intensity of 240 MW/m
3
 (at 20 bar). Kumar et al., [7] have scaled up a high-intensity 

combustor (5-150 kW thermal input) with new scaling methodology and compared various 

existing scaling techniques i.e. Constant Velocity (CV), Constant Residence Time (CRT) and 

Cole’s approach with the proposed technique. The comparison of Weber [12] shows that CRT 

approach is relatively better for scaling swirl type combustor configurations. They have hinted at 
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the need of maintaining high reactant dilution rates to ensure that flameless combustion mode is 

achieved in scaled combustors. These types of combustor configurations with high heat intensity 

are expected to be useful in gas-turbine applications. Arghode and Gupta [8] have demonstrated 

a laboratory scale combustor achieving colorless distributed combustion with a high intensity of 

453 MW/m
3
 (    6.25 kW) with a combustor volume of ~13 cm

3
 and Reverse Flow (RF) 

configuration. Scaling of these concepts with low thermal input and high heat intensity render 

the systems very complex and making their implementation highly challenging. Further, very 

little literature is available in the field of scaling of flameless combustors with liquid fuels. Some 

basic studies on flameless/mild combustion with liquid fuels [3, 5, 13-15] have been reported 

recently. Traditional industrial burners and stationary gas-turbine combustors operate with liquid 

fuels at higher thermal inputs (~1 MW) and higher heat intensities (100 MW/m
3
). Therefore, 

additional studies are required to investigate the issues related to the scaling of high intensity 

flameless combustors with liquid fuels and their relation with spray characteristics.   

In this study, a swirl based combustor operating in flameless combustion mode with kerosene at 

21.5 kW (base case,      =5.37 MW/m
3
) [16], is developed and scaled up to operate at 85 kW 

(21.1 MW/m
3
). Attempts were made to achieve flameless combustion with higher intensity of 

10.2, 16.3 and 21.1 MW/m
3
 using the base case combustor configuration with increased thermal 

input of 40.8, 65.1 and 84.7 kW respectively. However, the existing combustor configuration 

was unable to achieve stable flameless combustion. Computational and experimental studies 

were carried out to identify the causes preventing successful scale-up of the combustor. The 

combustor configuration was modified by providing a chamfer, thus increasing the degree of 

recirculation in the combustor, allowing stable flameless combustion. Computational studies 

show that with increased chamfer radius (RC), recirculation of the combustion products and fuel 
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residence time increased. Three different RC values were considered, for the 10.2, 16.3 and 21.1 

MW/m
3
 cases respectively, and shown to achieve combustion with low emissions. The influence 

of spray characteristics on scaling the combustor was studied and the results are presented in this 

paper.  

 

2. Computational Studies  

2.1 Geometry design methodology 

The base combustor was designed to stabilize high intensity flameless combustion using 

conventional liquid fuels. Stabilization of flameless combustion with liquid fuels depends on 

three important parameters,  

1. Sauter Mean Diameter (SMD) of the spray. The evaporation rate is a function of boiling 

point and surface area to volume ratio (AS/V) of the droplet. The evaporation time increases 

with increasing boiling temperature and SMD.  

2. A group of parameters including droplet distribution, evaporation, mixture formation and 

subsequent combustion with preheating and dilution of reactants  

3. In flameless combustion mode, the increased dilution of fresh reactants with hot combustion 

products results in reduced reaction rate. Due to this, reaction zone is uniformly distributed 

throughout the combustor volume with lower peak flame temperature than that of 

conventional mode [4]. In conventional mode, the fuel spray directly enters the combustion 

zone having higher peak temperature. Therefore, the droplet evaporation rate is relatively 

slower in flameless combustion mode [4]. To achieve complete evaporation and combustion, 

the droplet residence time should be higher in flameless combustion mode.  
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To sustain flameless combustion with liquid fuels, the above three issues can be addressed by 

increasing the residence times and recirculation as compared to flameless combustion with 

gaseous fuel. A swirl flow creates a central vortex zone and low pressure gradient, supporting a 

large reverse flow region in the combustor. High swirl creates higher centrifugal force that 

enhances the residence time of the hot gases trapped within the swirling flow [13-20]. The 

increased residence time enhances the flame stability limits and rate of mixing of products and 

reactants. The high recirculation allows for good mixing, essential for obtaining a distributed 

reaction zone over a large volume of the combustor [13-20]. Therefore, a tangential air injection 

scheme was used in this study to generate the swirl flow in the combustor.  

In this study, a conical combustor with 60
o
 diverging angle was considered with a total volume 

of ~0.004 m
3
 [16, 21]. A pressure swirl fuel injector was used for injection of kerosene. The 

combustor configuration is shown in Fig. 1. Computational and experimental studies were 

carried out simultaneously. Recirculation of combustion products was identified as the key factor 

to sustain flameless combustion. Hence, the reactants dilution ratio (    ) is the governing 

metric.      is calculated as follows [14, 16].  

 

                                     

                     

 

2.1.1 Challenges in scaling  

Initially, the combustor was tested at 21.5 kW thermal input using the unmodified combustor 

configuration (without chamfer, i.e. RC=0 mm) and exit diameter (D) of 25 mm. Well stabilized 
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flameless combustion was observed experimentally [16, 21]. Computational results showed that      varied spatially from 1.1 to 3.2. The same combustor was tested at higher thermal inputs of 

40.8, 65.1 and 84.7 kW (respective heat intensities 10.2, 16.3 and 21.1 MW/m
3
) and 

experimental observations revealed that, flameless combustion was not stabilized in the 

combustor at these higher inputs and large quantities of unburned fuel accumulated in the 

combustor. The fuel spray cone angle was maintained constant at 45
o
 for all nozzles and SMD of 

all nozzles were in the range of 35-37 µm (details in Section 4.1). Therefore, with the increased 

fuel mass flow rate, droplet number density (DND) also increased. Hence, more recirculation 

(increased residence time) would be required to increase the entrainment and to achieve 

complete evaporation. The computational results also revealed that,      decreased with 

increasing thermal input. Computational and experimental evidence suggested that      needed 

to be sufficiently high for all thermal inputs to provide the required entrainment and residence 

time.  

CRT approach appears suitable for scaling swirl combustors operating with gaseous fuels [12]. 

However in case of liquid fuels, the DND increases with thermal input. The residence time 

should be increased for complete evaporation and combustion. CV scaling approach for higher 

thermal inputs results in increased combustor volume and reduced heat intensity [7, 12]. Hence, 

for the present case, both CV and CRT approaches are not suitable. Similarity of certain 

dimensionless quantities in scaling is different for various combustor configurations, operating 

conditions and modes of combustion [22]. Therefore, a combination of experimental and 

numerical simulations aimed at improving the droplet residence times and recirculation rates 

were considered. To enhance both droplet residence time and recirculation rate, a chamfer at the 

top of the combustor is provided as shown in Fig 1. A computational analysis (described below) 
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was carried out for high thermal inputs, by varying chamfer radius (RC) to determine the      for 

each case and the operating conditions that yielded an     >2.5. The combustor geometry for 

different thermal intensities is non-dimensionalized with D, as shown in Fig. 1 and listed in 

Table 2.  

 

2.1.2 Numerical  method 

A general purpose CFD code Fluent-14.5 was used for computational studies in this work. A 3-D 

double-precision pressure-based solver was used. For all thermal inputs, tangential air inlet and 

combustor exit velocities were maintained constant to ensure similar level of pressure drop 

across the combustor. Therefore, the air inlet diameter (din) and exit diameter (D) are increased 

with increased thermal input. Chamfer radius is varied from 10 to 30 mm at 5 mm increments.  

 

Three-dimensional Navier-Stokes equations were discretized and solved in a finite-volume 

domain. Reynolds Stress Model (RSM) was used for turbulence modeling. The energy equation 

was solved considering 20 intermediate species equilibrium chemistry and a non-premixed 

droplet combustion model for simulating the combustion of the liquid fuels. Compressible flow 

was considered and the viscosity was calculated using Sutherland’s law. Specific heats were 

defined as a function of the temperature (piecewise-polynomial). A P1 radiation model was used. 

Constant mass-flow inlet condition normal to the boundary surface was applied at air inlets, and 

a pressure outlet based boundary condition was applied at the exit. No-slip wall and constant 

temperature boundary conditions were applied at the walls.  Non-premixed droplet evaporation 

and combustion, following the spherical law was considered with PDF droplet evaporation. A 

single component surrogate, C12H23 was used to simulate kerosene with a density of 780 kg/m
3
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Fuel injection was simulated as a solid cone type spray with a droplet diameter of 36 µm and a 

cone angle of 45
o
. The amount of heat removal from the combustor walls is 3.2, 8.3, and 12.9 

kW respectively, for three higher heat intensities of 10.2, 16.3 and 21.1 MW/m
3
. The heat 

removal through wall cooling is considered by applying heat-loss through combustor walls as 

heat flux boundary condition for higher heat intensity cases. The solution is considered to be 

converged when RMS residuals of the system were less than 1×10
-6

. A number of computations 

were carried out using hexa mesh with different mesh sizes varying from 1.1-2.5 mm. The 

number of cells for computations was varied from 2 to 4.5 million elements. A mesh size of 1.2 

mm was considered sufficient to obtain grid-independent results with approximately 3.6 million 

grid points. The grid convergence was calculated based on the Grid Convergence Index (GCI) 

criteria. If the GCI for two successive grid sizes was below 3%, it was considered that grid 

convergence has been achieved [15]. 

2.2 Reactants dilution ratio (    )      was calculated at different axial planes of the combustor. For the case of Qth=21.5 kW 

(RC=0 mm) with exit port diameter of 25 mm, a maximum      of 3.2 was achieved. Complete 

flameless combustion with low emissions was observed experimentally.       was calculated for 

higher thermal inputs (Qth=40.8, 65.1 and 84.7 kW)  with different RC of 10, 15, 20, 25 and 30 

mm and results are shown in Fig. 2. It was observed that, for constant thermal input and 

increasing RC, the degree of flow reversal increased in the combustor. The resulting       
increased with RC. For instance, at Qth=21.5 kW, a maximum     , of 5.22, 5.77, 6.26 and 6.75 

was obtained for RC = 10, 15, 20 and 25 mm respectively (Fig. 2a). The curved profile of the 

combustor dome and chamfer near the exit combined to form curved vanes promoted a large 

degree of flow reversal. Hence,     , increased with increased RC. For a constant RC and 
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increasing thermal input,     , was calculated as shown in Fig 2a-d. For example, at RC=25 mm, 

the maximum      calculated were 6.77, 3.75, 3.51 and 2.71 respectively, for 21.5, 40.8, 65.1 

and 84.7 kW. Therefore, it was observed that with increasing thermal input, the chamfer radius 

must be increased appropriately to maintain a constant      for all thermal inputs. The zone 

length of            which is the lower limit for achieving flameless combustion is calculated 

for all computational conditions and shown in Fig. 2e. It was observed experimentally that an 

RC=20, 25 and 30 mm were sufficient to achieve flameless combustion at higher heat intensities 

(10.2, 16.3 and 21.1 MW/m
3
 respectively).  

 

2.3 Residence Time Distribution 

The residence time of the reactants in the combustion chamber is a significant parameter to 

achieve flameless combustion [23]. Three basic time parameters were considered to calculate the 

residence time of reactants.  

1. Average residence time;           ; V= combustor volume and   = volume flow rate of 

reactants. However, since the present combustor operates with a swirl flow, the residence 

time was calculated computationally for different cases by injecting particles from air/fuel 

inlets in the combustor.  

2. Swirl based residence time with RC=0 mm;           .  
3. Swirl based residence time with RC=25 mm;            .  
The calculated      decreased from 0.61 to 0.15 s as the thermal input increased from 5.37 to 

21.1 MW/m
3
. The calculated            with swirl flow, decreased from 0.76 to 0.29 s and             decreased from 0.98 to 0.69 s for this same range of thermal inputs. For the case of 

21.1 MW/m
3
, the percentage increase in residence time is 93 and 360 % for            and 
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            respectively as compared with     . It was observed from the computational study 

that the residence time increased with both swirl flow pattern and increased chamfer radius (RC). 

Residence time distribution, E(t) [23] was calculated for all cases by considering the combustor 

as a well-stirred reactor and shown in Fig. 3. The E(t) of the reactor is the probability density 

function of a particle in the reactor. If E(t) of a reactor is high, the residence time of the particle 

is large. It is observed from Fig. 3 that E(t) increases with swirl flow, and increases further  with 

chamfer plus swirl flow.  

  

3 Details of experimental methodology  

3.1 Experimental setup 

Figure 4 shows a schematic diagram of the experimental setup. The combustor was placed 

vertically on a test stand. Kerosene was stored at a pressure of 9 bar (ΔP) in a pressurized 

stainless-steel tank. The fuel injector was located at the center of the combustor. The fuel injector 

imparts a clockwise rotation to fuel spray; hence a counter-clockwise air injection was selected 

to impart more shear force to the flow resulting in enhanced mixing and evaporation of droplets. 

Air supply to the combustor was regulated through electric mass flow controllers (accuracy 

±1.5% of full scale).  

3.2 Experimental procedure and instruments 

Initially, the premixed LPG-air mixture was ignited with a spark and combustor was run for 2-3 

min to preheat the combustor. The kerosene fuel is injected at 5 bar pressure by opening the ball-

valve in the fuel line. The LPG flow rate was then gradually reduced and the kerosene injection 

pressure was simultaneously raised to 9 bar. A stable flame was established in conventional 

combustion mode with stoichiometric kerosene-air mixture for next 4-5 min. After an initial 
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start-up time of 7-8 min, the combustor wall temperature reached ~ 900 K. A chamfered flange 

was placed at the top to effectively reduce the exhaust port diameter from 90 mm to a diameter 

(D) for the particular heat intensity (Table 2). The conventional flame then gradually shifted to a 

flameless combustion mode. This strategy was adapted to understand and evaluate the effect of 

exit port diameter variation on transition between conventional (90 mm) and flameless 

combustion mode (30 mm). The present combustor can be started with the top components in 

place for a real practical application. 

Exhaust gas composition was measured with a gas analyzer which included O2 analyzer (0-25% 

range, 0.1% accuracy), CO analyzer (0-10000 ppm, ±5 ppm accuracy), NO analyzer (0-5000 

ppm, ±1 ppm accuracy), CxHy analyzer (0-50,000 ppm), and CO2 analyzer. Temperature 

measurements were carried out with R-type (djunction=1 mm) thermocouples. The sound level at 

the exit (100 mm away from axis) of the combustor was measured for different combustion 

modes with a fast response (Resolution=0.1 dB, τresponse=200 ms) sound level instrument.  

 

4 Results and discussion 

4.1 Spray characteristics  

In the present study, four nozzles N1 - N4 with mass flow rates of 1.72, 3.27, 5.21 and 6.78 kg/h 

respectively, were used to provide 21.5, 40.8, 65.1 and 84.7 kW thermal inputs respectively. An 

injection pressure of 9 bar was maintained for all experiments. Various details of the spray 

characteristics such as D10, D32 (SMD), DV10, DV50 and DV90, droplet distribution, droplet number 

density (DND) were measured with a particle shadowgraphy technique. 7000-9000 droplets were 

considered in each sample size. A count of 150 pictures was selected for each sample at an axial 

position of 45 mm from the nozzle tip.  



14 
 

 

It was observed that for all four nozzles, SMD was in the range of 35-37 µm and variation in 

other diameters was relatively very small. Since the spray cone angle and droplet diameters were 

nearly the same for all four nozzles, the DND increased for higher mass flow nozzles, the 

measured DND for N1-N4 nozzles was 32×10
3
, 64×10

3
, 110×10

3
 and 167×10

3
 n/cm

3
 

respectively. Therefore, entrainment of hot gases needed to be increased significantly with the 

increasing DND to achieve complete evaporation of all droplets. The DND distribution for all 

four nozzles is shown in Fig. 5.  

 

4.2 Temperature distribution 

Temperature variation in the radial direction of the combustor at an axial location of 120 mm 

was measured for different heat intensities at Φ=0.92 and comparison with predicted results is 

shown in Fig. 6.  Due to larger thermocouple response time (~0.25 s) as compared to integral 

turbulence time-scales (~3 ms), it is difficult to measure actual temperature variation in the 

combustor. However, temperature variation with time is measured at a given location and the 

mean was calculated from recorded temperatures over a period of 10 – 20 seconds. The 

measured temperature was corrected by considering convection and radiation losses from the 

thermocouple junction. For the case of 5.37 MW/m
3
, the wall temperature of the combustor was 

~800 K. When the combustor was operated at 10.2 MW/m
3
, the walls became red hot. Hence, 

cooling of outer walls of the combustor was mandatory for higher heat densities, achieved 

through water circulation through copper tubes brazed on the outer walls of the combustor. A 

constant wall temperature of ~950 K was maintained for higher heat intensities (10.2-21.1 

MW/m
3
). The heat removal through wall cooling is 3.2, 8.3, and 12.9 kW respectively for three 
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higher heat intensities of 10.2, 16.3 and 21.1 MW/m
3
. Fresh air at ambient temperature entered 

the combustor and circulated on the inner walls; a sharp rise in temperature of the air was 

observed near the walls of the combustor (Fig. 6). Temperature at all radial locations increased 

with increasing heat intensity of the combustor. As expected, the temperature increased from the 

walls to the center line of the combustor. The temperature difference across the plane, from axis 

to near wall (0.0975 m) for 5.37 MW/m
3
 with RC=0 mm was 443 K. The temperature difference 

for higher heat intensities (10.2-21.1 MW/m
3
) was 319, 293 and 245 K respectively. With 

increased heat intensity, the overall temperature of the combustor and the temperature of the 

fresh air circulating increased. Hence the temperature gradient across the radial direction 

decreased significantly. Maximum temperature at the center of the combustor increased from 

1633 to 1741 K as heat intensity increased from 5.37 to 21.1 MW/m
3
. The temperature 

fluctuations around the mean value were in the range of 1.3-1.8% for all cases (variation bands 

shown in Fig. 6). A low temperature gradient and smaller fluctuations are representative 

characteristics of flameless combustion. For all thermal input conditions, the maximum 

temperature is below 1800 K. Therefore, NOx emissions were expected to be relatively very low. 

The predicted temperatures in the central zone are slightly lower than the measured temperatures 

for all thermal inputs. For the outer region (next to the central zone), the predicted temperatures 

are slightly higher than measured temperatures. Uniformly distributed temperature with low 

temperature gradients is observed in computational studies.  

4.3 Pollutant emissions 

The CO, NOx and HC emissions were measured for the range of operating conditions and 

emission levels were corrected to 15% O2 level and shown in Fig. 7. CO emissions increased 

with a decrease in Ф from 1 to 0.6 and increase in heat intensity. However, the specific 
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emissions index (ppm/kW) decreased with increasing heat intensity. For RC=20 mm and       = 

5.37, 21.1 MW/m
3
, CO emissions varied from 11 to 21 ppm and 25 to 41 ppm respectively, as Ф 

varied from 1 to 0.6. The specific CO emissions for these cases varied from 0.51 to 0.977 

ppm/kW and 0.3 to 0.48 ppm/kW respectively. The emission release rate decreased with 

increasing heat intensity, indicating a positive outcome for higher heat density combustion 

systems. NOx emissions decreased with decreasing Ф, as expected. For lean mixtures, the 

average measured temperature in the combustor decreased with a decrease in Ф. This led to a 

reduction in the NOx emissions, however, CO emissions increase slightly. For the case of RC=20 

mm and       = 5.37, 21.1 MW/m
3
, NOx varied from 9 to 6 ppm and 19 to 12 ppm respectively, 

for Ф varied from 1 to 0.6. The specific NOx emissions for these cases varied from 0.42 to 0.28 

ppm/kW and 0.22 to 0.14 ppm/kW respectively.  

 

HC emissions increased with decreasing Ф from 1 to 0.6 and the specific emissions decreased 

with increasing heat intensity. For the case of RC=20 mm and      = 5.37, 21.1 MW/m
3
, HC 

emissions varied from 0 to 3 ppm and 3 to 9 ppm respectively, for Ф = 1 to 0.6. The specific HC 

emissions for these cases varied from 0 to 0.14 ppm/kW and 0.03 to 0.1 ppm/kW respectively. 

The overall variation of CO, NOx and HC emissions for all heat intensities (Ф = 1 to 0.6) were 

measured to be 11-41, 6-19 and 0-9 ppm respectively. These emissions are well within the range 

of emissions from flameless combustion with gaseous fuels reported in the literature.  

A combustor with a chamfer radius of RC = 25 mm is tested for all thermal inputs (21.5-84.7 

kW) conditions. Flameless combustion mode is observed for all cases without any issues related 

to combustion stability. Minimum recirculation required for each case of thermal input is 

determined experimentally and computationally by varying from RC = 10 - 30 mm.  
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4.4 Acoustic emissions 

Figure 8 shows the variation of acoustic emissions of the combustor in various combustion 

modes. Base level acoustic emissions of 84 dB were measured initially for cold flow conditions. 

After ignition, initially the combustor operated in the conventional mode with exit diameter of 90 

mm and the level of acoustic emissions increased to an average value of 102 dB. After 3 min of 

conventional combustion, the chamfered portion was mounted and the exit diameter was reduced 

to D mm (Table 2). Immediately after reducing the diameter, the sound level increased. After a 

time of 2-3 min, the swirl flow was well stabilized in the combustor and flameless combustion 

was observed. The sound level reduced dramatically to a level well below the conventional 

combustion mode. For the case of 21.1 MW/m
3
, 113.5 and 93.6 dB of sound level was observed 

in the transition and flameless modes respectively. It was observed that with increased heat 

intensity, the sound level increased during the operation of the combustor in transition mode. 

However, for all heat intensities, almost a same sound level of approximately 94 dB was 

observed during the flameless combustion mode. The overall net sound level reduction from 

conventional to flameless mode for all combustors was in the range of 8-9 dB. A similar 

reduction has been reported in the literature [7, 14].  

5 Conclusions:  

In the present work, a new combustor configuration was designed and scaled-up to achieve 

flameless combustion with liquid fuels at high heat intensities for various industrial and gas 

turbine applications. Observations are summarized below.   

1. Flameless combustion was stabilized in the base combustor with 21.5 kW thermal input 

(5.37 MW/m
3
) and maximum      of 3.2 with very low emissions. However, flameless 
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combustion was not achieved and unburned fuel accumulated in the combustor for higher 

fuel flow rates.  

2. A chamfer added near the exit in the modified combustor configuration helped increase 

the      and residence time, permitting flameless combustion at higher intensities. The 

curved profile of the combustor dome and chamfer combined to form a curved vane 

which helps increase the degree of flow reversal . A computational investigation with 

experimental evidence suggests that a chamfer radius of 20, 25 and 30 mm was sufficient 

to achieve flameless combustion for      = 10.2, 16.3 and 21.1 MW/m
3
, respectively.  

3. The peak temperature increases in the combustor and the temperature gradients decreases 

with an increase in the heat intensities. The temperature fluctuations were very small 

(1.3-1.8% of the mean value) for all cases.  

4. The overall variation of CO, NOx and HC emissions for all heat intensities (Ф = 1 to 0.6) 

were 11-41, 6-19 and 0-9 ppm respectively. These emissions are well within the range of 

emissions from flameless combustion with gaseous fuels operating at high intensity in the 

literature. Specific emissions (ppm/kW) decrease with an increase in heat intensity.  

5. The outstanding performance of the burner with very low chemical and acoustic 

emissions at high heat release rates indicate the potential for use in various industrial and 

gas turbine applications. 
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Table 1 Variation of heat intensities reported in literature (SJ: Straight Jet, Forward Flow, FF 

(i.e. reactants enters from one side and products leave from opposite side), Reverse Flow, RF 

(i.e. reactants and products from same side of the combustor), Qth: Thermal input (kW) and      : 
Heat intensity (MW/m

3
), S: Solid, L: Liquid, G: Gas 

 

Ref. Qth          Fuel Remarks 

[2] 5 10 G SJ,  FF 

[3] 580 0.024 G,L,S SJ, RF  

[5] 0.4 0.58 G, L SJ, RF  

[6] 20  0.44 G SJ, RF 

[7] 150 5.6 G SJ, FF 

[8] 6.25 453 G SJ, RF 

[9] 15 0.3 G SJ, RF 

[11] 474 240 G SJ, FF 
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Table 2 Dimensional details of the combustor             d  D                     

21.5 5.37 5 25 3.2 8.4 4.4 2.4 0.4 0.2 

40.8 10.2 7.5 29 2.758 7.241 3.793 2.068 0.689 0.258 

65.1 16.3 9 34 2.325 6.176 3.235 1.764 0.735 0.264 

84.7 21.1 11 37 2.162 5.675 2.972 1.621 0.81 0.297 
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Figure 1 Dimensional details of the combustor 
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Figure 2 Variation of      with RC (a) 5.37 MW/m
3
 (b) 10.2 MW/m

3
 (c) 16.3 MW/m

3
 (d) 21.1 

MW/m
3
 (e) Minimum and maximum      for all cases and zone length of     >2.72 (in 

parenthesis) 
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Figure 3 Residence time distribution (E(t)) for three cases based on     ,             and             
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Figure 4 Schematic diagram of experimental setup 
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Figure 5 Distribution of DND for nozzles of different fuel flow rates 
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Figure 6 Temperature distribution comparison of experimental and computational measurements 
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3
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3
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MW/m
3
_RC =25_Comp 16.3 MW/m

3
_RC=25_Comp 21.1 MW/m

3
_RC=30_Comp.           
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Figure 7 Variation of emissions with equivalence ratio for different heat intensities 
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Figure 8 Variation of acoustic emissions for all heat intensities 
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Abstract: 

Flameless combustion offers many advantages over conventional combustion, particularly 

uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed 

and adopted to scale up a burner operating in flameless combustion mode from a heat release 

density of 5.4 to 21 MW/m
3
 (thermal input 21.5 – 84.7 kW) with kerosene fuel. A swirl flow 

based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 

35-37 µm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal 

input of 21.5 kW (     =5.37 MW/m
3
). Attempts were made to scale this combustor to higher 

intensities i.e. 10.2, 16.3 and 21.1 MW/m
3
. However, an increase in fuel flow rate led to 

incomplete combustion and accumulation of unburned fuel in the combustor. Two major 

difficulties were identified as possible reasons for unsustainable flameless combustion at the 

higher intensities (i) A constant spray cone angle and SMD increases the droplet number density 

(ii) Reactants dilution ratio (    ) decreased with increased thermal input. To solve these issues, 
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a modified combustor configuration, aided by numerical computations was adopted, providing a 

chamfer near the outlet to increase the     . Detailed experimental investigations showed that 

flameless combustion mode was achieved at high intensities with an evenly distributed reaction 

zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC 

for all heat intensities (Ф=1 - 0.6) varied between 11 - 41, 6 - 19 and 0 - 9 ppm, respectively. 

These emissions are well within the range of emissions from other flameless combustion systems 

reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 

dB at all conditions. 

Keywords: Flameless combustion; Swirl flow combustion; Liquid fuel; High intensity; Burner 

scaling; Ultralow emissions; Residence time.  

1. Introduction: 

Flameless/Mild combustion has gained significant importance due to its ability to suppress 

thermal NO formation and improve thermal efficiency of combustion systems. Flameless 

combustion has been primarily identified with gaseous fuels and extensive work has been 

reported [1-10]. Scaling the flameless combustors to higher intensities has been proposed in 

recent studies reported in the literature [7, 8, 11]. A brief summary of various high intensity 

flameless combustion systems with gaseous fuels is listed in Table 1. Lückerath et al., [11] have 

developed a Forward Flow (FF) combustor configuration with a thermal input of 475 kW and 

heat intensity of 240 MW/m
3
 (at 20 bar). Kumar et al., [7] have scaled up a high-intensity 

combustor (5-150 kW thermal input) with new scaling methodology and compared various 

existing scaling techniques i.e. Constant Velocity (CV), Constant Residence Time (CRT) and 

Cole’s approach with the proposed technique. The comparison of Weber [12] shows that CRT 

approach is relatively better for scaling swirl type combustor configurations. They have hinted at 
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the need of maintaining high reactant dilution rates to ensure that flameless combustion mode is 

achieved in scaled combustors. These types of combustor configurations with high heat intensity 

are expected to be useful in gas-turbine applications. Arghode and Gupta [8] have demonstrated 

a laboratory scale combustor achieving colorless distributed combustion with a high intensity of 

453 MW/m
3
 (    6.25 kW) with a combustor volume of ~13 cm

3
 and Reverse Flow (RF) 

configuration. Scaling of these concepts with low thermal input and high heat intensity render 

the systems very complex and making their implementation highly challenging. Further, very 

little literature is available in the field of scaling of flameless combustors with liquid fuels. Some 

basic studies on flameless/mild combustion with liquid fuels [3, 5, 13-15] have been reported 

recently. Traditional industrial burners and stationary gas-turbine combustors operate with liquid 

fuels at higher thermal inputs (~1 MW) and higher heat intensities (100 MW/m
3
). Therefore, 

additional studies are required to investigate the issues related to the scaling of high intensity 

flameless combustors with liquid fuels and their relation with spray characteristics.   

In this study, a swirl based combustor operating in flameless combustion mode with kerosene at 

21.5 kW (base case,      =5.37 MW/m
3
) [16], is developed and scaled up to operate at 85 kW 

(21.1 MW/m
3
). Attempts were made to achieve flameless combustion with higher intensity of 

10.2, 16.3 and 21.1 MW/m
3
 using the base case combustor configuration with increased thermal 

input of 40.8, 65.1 and 84.7 kW respectively. However, the existing combustor configuration 

was unable to achieve stable flameless combustion. Computational and experimental studies 

were carried out to identify the causes preventing successful scale-up of the combustor. The 

combustor configuration was modified by providing a chamfer, thus increasing the degree of 

recirculation in the combustor, allowing stable flameless combustion. Computational studies 

show that with increased chamfer radius (RC), recirculation of the combustion products and fuel 
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residence time increased. Three different RC values were considered, for the 10.2, 16.3 and 21.1 

MW/m
3
 cases respectively, and shown to achieve combustion with low emissions. The influence 

of spray characteristics on scaling the combustor was studied and the results are presented in this 

paper.  

 

2. Computational Studies  

2.1 Geometry design methodology 

The base combustor was designed to stabilize high intensity flameless combustion using 

conventional liquid fuels. Stabilization of flameless combustion with liquid fuels depends on 

three important parameters,  

1. Sauter Mean Diameter (SMD) of the spray. The evaporation rate is a function of boiling 

point and surface area to volume ratio (AS/V) of the droplet. The evaporation time increases 

with increasing boiling temperature and SMD.  

2. A group of parameters including droplet distribution, evaporation, mixture formation and 

subsequent combustion with preheating and dilution of reactants  

3. In flameless combustion mode, the increased dilution of fresh reactants with hot combustion 

products results in reduced reaction rate. Due to this, reaction zone is uniformly distributed 

throughout the combustor volume with lower peak flame temperature than that of 

conventional mode [4]. In conventional mode, the fuel spray directly enters the combustion 

zone having higher peak temperature. Therefore, the droplet evaporation rate is relatively 

slower in flameless combustion mode [4]. To achieve complete evaporation and combustion, 

the droplet residence time should be higher in flameless combustion mode.  
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To sustain flameless combustion with liquid fuels, the above three issues can be addressed by 

increasing the residence times and recirculation as compared to flameless combustion with 

gaseous fuel. A swirl flow creates a central vortex zone and low pressure gradient, supporting a 

large reverse flow region in the combustor. High swirl creates higher centrifugal force that 

enhances the residence time of the hot gases trapped within the swirling flow [13-20]. The 

increased residence time enhances the flame stability limits and rate of mixing of products and 

reactants. The high recirculation allows for good mixing, essential for obtaining a distributed 

reaction zone over a large volume of the combustor [13-20]. Therefore, a tangential air injection 

scheme was used in this study to generate the swirl flow in the combustor.  

In this study, a conical combustor with 60
o
 diverging angle was considered with a total volume 

of ~0.004 m
3
 [16, 21]. A pressure swirl fuel injector was used for injection of kerosene. The 

combustor configuration is shown in Fig. 1. Computational and experimental studies were 

carried out simultaneously. Recirculation of combustion products was identified as the key factor 

to sustain flameless combustion. Hence, the reactants dilution ratio (    ) is the governing 

metric.      is calculated as follows [14, 16].  

 

                                     

                     

 

2.1.1 Challenges in scaling  

Initially, the combustor was tested at 21.5 kW thermal input using the unmodified combustor 

configuration (without chamfer, i.e. RC=0 mm) and exit diameter (D) of 25 mm. Well stabilized 



8 
 

flameless combustion was observed experimentally [16, 21]. Computational results showed that      varied spatially from 1.1 to 3.2. The same combustor was tested at higher thermal inputs of 

40.8, 65.1 and 84.7 kW (respective heat intensities 10.2, 16.3 and 21.1 MW/m
3
) and 

experimental observations revealed that, flameless combustion was not stabilized in the 

combustor at these higher inputs and large quantities of unburned fuel accumulated in the 

combustor. The fuel spray cone angle was maintained constant at 45
o
 for all nozzles and SMD of 

all nozzles were in the range of 35-37 µm (details in Section 4.1). Therefore, with the increased 

fuel mass flow rate, droplet number density (DND) also increased. Hence, more recirculation 

(increased residence time) would be required to increase the entrainment and to achieve 

complete evaporation. The computational results also revealed that,      decreased with 

increasing thermal input. Computational and experimental evidence suggested that      needed 

to be sufficiently high for all thermal inputs to provide the required entrainment and residence 

time.  

CRT approach appears suitable for scaling swirl combustors operating with gaseous fuels [12]. 

However in case of liquid fuels, the DND increases with thermal input. The residence time 

should be increased for complete evaporation and combustion. CV scaling approach for higher 

thermal inputs results in increased combustor volume and reduced heat intensity [7, 12]. Hence, 

for the present case, both CV and CRT approaches are not suitable. Similarity of certain 

dimensionless quantities in scaling is different for various combustor configurations, operating 

conditions and modes of combustion [22]. Therefore, a combination of experimental and 

numerical simulations aimed at improving the droplet residence times and recirculation rates 

were considered. To enhance both droplet residence time and recirculation rate, a chamfer at the 

top of the combustor is provided as shown in Fig 1. A computational analysis (described below) 
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was carried out for high thermal inputs, by varying chamfer radius (RC) to determine the      for 

each case and the operating conditions that yielded an     >2.5. The combustor geometry for 

different thermal intensities is non-dimensionalized with D, as shown in Fig. 1 and listed in 

Table 2.  

 

2.1.2 Numerical  method 

A general purpose CFD code Fluent-14.5 was used for computational studies in this work. A 3-D 

double-precision pressure-based solver was used. For all thermal inputs, tangential air inlet and 

combustor exit velocities were maintained constant to ensure similar level of pressure drop 

across the combustor. Therefore, the air inlet diameter (din) and exit diameter (D) are increased 

with increased thermal input. Chamfer radius is varied from 10 to 30 mm at 5 mm increments.  

 

Three-dimensional Navier-Stokes equations were discretized and solved in a finite-volume 

domain. Reynolds Stress Model (RSM) was used for turbulence modeling. The energy equation 

was solved considering 20 intermediate species equilibrium chemistry and a non-premixed 

droplet combustion model for simulating the combustion of the liquid fuels. Compressible flow 

was considered and the viscosity was calculated using Sutherland’s law. Specific heats were 

defined as a function of the temperature (piecewise-polynomial). A P1 radiation model was used. 

Constant mass-flow inlet condition normal to the boundary surface was applied at air inlets, and 

a pressure outlet based boundary condition was applied at the exit. No-slip wall and constant 

temperature boundary conditions were applied at the walls.  Non-premixed droplet evaporation 

and combustion, following the spherical law was considered with PDF droplet evaporation. A 

single component surrogate, C12H23 was used to simulate kerosene with a density of 780 kg/m
3
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Fuel injection was simulated as a solid cone type spray with a droplet diameter of 36 µm and a 

cone angle of 45
o
. The amount of heat removal from the combustor walls is 3.2, 8.3, and 12.9 

kW respectively, for three higher heat intensities of 10.2, 16.3 and 21.1 MW/m
3
. The heat 

removal through wall cooling is considered by applying heat-loss through combustor walls as 

heat flux boundary condition for higher heat intensity cases. The solution is considered to be 

converged when RMS residuals of the system were less than 1×10
-6

. A number of computations 

were carried out using hexa mesh with different mesh sizes varying from 1.1-2.5 mm. The 

number of cells for computations was varied from 2 to 4.5 million elements. A mesh size of 1.2 

mm was considered sufficient to obtain grid-independent results with approximately 3.6 million 

grid points. The grid convergence was calculated based on the Grid Convergence Index (GCI) 

criteria. If the GCI for two successive grid sizes was below 3%, it was considered that grid 

convergence has been achieved [15]. 

2.2 Reactants dilution ratio (    )      was calculated at different axial planes of the combustor. For the case of Qth=21.5 kW 

(RC=0 mm) with exit port diameter of 25 mm, a maximum      of 3.2 was achieved. Complete 

flameless combustion with low emissions was observed experimentally.       was calculated for 

higher thermal inputs (Qth=40.8, 65.1 and 84.7 kW)  with different RC of 10, 15, 20, 25 and 30 

mm and results are shown in Fig. 2. It was observed that, for constant thermal input and 

increasing RC, the degree of flow reversal increased in the combustor. The resulting       
increased with RC. For instance, at Qth=21.5 kW, a maximum     , of 5.22, 5.77, 6.26 and 6.75 

was obtained for RC = 10, 15, 20 and 25 mm respectively (Fig. 2a). The curved profile of the 

combustor dome and chamfer near the exit combined to form curved vanes promoted a large 

degree of flow reversal. Hence,     , increased with increased RC. For a constant RC and 
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increasing thermal input,     , was calculated as shown in Fig 2a-d. For example, at RC=25 mm, 

the maximum      calculated were 6.77, 3.75, 3.51 and 2.71 respectively, for 21.5, 40.8, 65.1 

and 84.7 kW. Therefore, it was observed that with increasing thermal input, the chamfer radius 

must be increased appropriately to maintain a constant      for all thermal inputs. The zone 

length of            which is the lower limit for achieving flameless combustion is calculated 

for all computational conditions and shown in Fig. 2e. It was observed experimentally that an 

RC=20, 25 and 30 mm were sufficient to achieve flameless combustion at higher heat intensities 

(10.2, 16.3 and 21.1 MW/m
3
 respectively).  

 

2.3 Residence Time Distribution 

The residence time of the reactants in the combustion chamber is a significant parameter to 

achieve flameless combustion [23]. Three basic time parameters were considered to calculate the 

residence time of reactants.  

1. Average residence time;           ; V= combustor volume and   = volume flow rate of 

reactants. However, since the present combustor operates with a swirl flow, the residence 

time was calculated computationally for different cases by injecting particles from air/fuel 

inlets in the combustor.  

2. Swirl based residence time with RC=0 mm;           .  
3. Swirl based residence time with RC=25 mm;            .  
The calculated      decreased from 0.61 to 0.15 s as the thermal input increased from 5.37 to 

21.1 MW/m
3
. The calculated            with swirl flow, decreased from 0.76 to 0.29 s and             decreased from 0.98 to 0.69 s for this same range of thermal inputs. For the case of 

21.1 MW/m
3
, the percentage increase in residence time is 93 and 360 % for            and 
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            respectively as compared with     . It was observed from the computational study 

that the residence time increased with both swirl flow pattern and increased chamfer radius (RC). 

Residence time distribution, E(t) [23] was calculated for all cases by considering the combustor 

as a well-stirred reactor and shown in Fig. 3. The E(t) of the reactor is the probability density 

function of a particle in the reactor. If E(t) of a reactor is high, the residence time of the particle 

is large. It is observed from Fig. 3 that E(t) increases with swirl flow, and increases further  with 

chamfer plus swirl flow.  

  

3 Details of experimental methodology  

3.1 Experimental setup 

Figure 4 shows a schematic diagram of the experimental setup. The combustor was placed 

vertically on a test stand. Kerosene was stored at a pressure of 9 bar (ΔP) in a pressurized 

stainless-steel tank. The fuel injector was located at the center of the combustor. The fuel injector 

imparts a clockwise rotation to fuel spray; hence a counter-clockwise air injection was selected 

to impart more shear force to the flow resulting in enhanced mixing and evaporation of droplets. 

Air supply to the combustor was regulated through electric mass flow controllers (accuracy 

±1.5% of full scale).  

3.2 Experimental procedure and instruments 

Initially, the premixed LPG-air mixture was ignited with a spark and combustor was run for 2-3 

min to preheat the combustor. The kerosene fuel is injected at 5 bar pressure by opening the ball-

valve in the fuel line. The LPG flow rate was then gradually reduced and the kerosene injection 

pressure was simultaneously raised to 9 bar. A stable flame was established in conventional 

combustion mode with stoichiometric kerosene-air mixture for next 4-5 min. After an initial 
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start-up time of 7-8 min, the combustor wall temperature reached ~ 900 K. A chamfered flange 

was placed at the top to effectively reduce the exhaust port diameter from 90 mm to a diameter 

(D) for the particular heat intensity (Table 2). The conventional flame then gradually shifted to a 

flameless combustion mode. This strategy was adapted to understand and evaluate the effect of 

exit port diameter variation on transition between conventional (90 mm) and flameless 

combustion mode (30 mm). The present combustor can be started with the top components in 

place for a real practical application. 

Exhaust gas composition was measured with a gas analyzer which included O2 analyzer (0-25% 

range, 0.1% accuracy), CO analyzer (0-10000 ppm, ±5 ppm accuracy), NO analyzer (0-5000 

ppm, ±1 ppm accuracy), CxHy analyzer (0-50,000 ppm), and CO2 analyzer. Temperature 

measurements were carried out with R-type (djunction=1 mm) thermocouples. The sound level at 

the exit (100 mm away from axis) of the combustor was measured for different combustion 

modes with a fast response (Resolution=0.1 dB, τresponse=200 ms) sound level instrument.  

 

4 Results and discussion 

4.1 Spray characteristics  

In the present study, four nozzles N1 - N4 with mass flow rates of 1.72, 3.27, 5.21 and 6.78 kg/h 

respectively, were used to provide 21.5, 40.8, 65.1 and 84.7 kW thermal inputs respectively. An 

injection pressure of 9 bar was maintained for all experiments. Various details of the spray 

characteristics such as D10, D32 (SMD), DV10, DV50 and DV90, droplet distribution, droplet number 

density (DND) were measured with a particle shadowgraphy technique. 7000-9000 droplets were 

considered in each sample size. A count of 150 pictures was selected for each sample at an axial 

position of 45 mm from the nozzle tip.  
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It was observed that for all four nozzles, SMD was in the range of 35-37 µm and variation in 

other diameters was relatively very small. Since the spray cone angle and droplet diameters were 

nearly the same for all four nozzles, the DND increased for higher mass flow nozzles, the 

measured DND for N1-N4 nozzles was 32×10
3
, 64×10

3
, 110×10

3
 and 167×10

3
 n/cm

3
 

respectively. Therefore, entrainment of hot gases needed to be increased significantly with the 

increasing DND to achieve complete evaporation of all droplets. The DND distribution for all 

four nozzles is shown in Fig. 5.  

 

4.2 Temperature distribution 

Temperature variation in the radial direction of the combustor at an axial location of 120 mm 

was measured for different heat intensities at Φ=0.92 and comparison with predicted results is 

shown in Fig. 6.  Due to larger thermocouple response time (~0.25 s) as compared to integral 

turbulence time-scales (~3 ms), it is difficult to measure actual temperature variation in the 

combustor. However, temperature variation with time is measured at a given location and the 

mean was calculated from recorded temperatures over a period of 10 – 20 seconds. The 

measured temperature was corrected by considering convection and radiation losses from the 

thermocouple junction. For the case of 5.37 MW/m
3
, the wall temperature of the combustor was 

~800 K. When the combustor was operated at 10.2 MW/m
3
, the walls became red hot. Hence, 

cooling of outer walls of the combustor was mandatory for higher heat densities, achieved 

through water circulation through copper tubes brazed on the outer walls of the combustor. A 

constant wall temperature of ~950 K was maintained for higher heat intensities (10.2-21.1 

MW/m
3
). The heat removal through wall cooling is 3.2, 8.3, and 12.9 kW respectively for three 
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higher heat intensities of 10.2, 16.3 and 21.1 MW/m
3
. Fresh air at ambient temperature entered 

the combustor and circulated on the inner walls; a sharp rise in temperature of the air was 

observed near the walls of the combustor (Fig. 6). Temperature at all radial locations increased 

with increasing heat intensity of the combustor. As expected, the temperature increased from the 

walls to the center line of the combustor. The temperature difference across the plane, from axis 

to near wall (0.0975 m) for 5.37 MW/m
3
 with RC=0 mm was 443 K. The temperature difference 

for higher heat intensities (10.2-21.1 MW/m
3
) was 319, 293 and 245 K respectively. With 

increased heat intensity, the overall temperature of the combustor and the temperature of the 

fresh air circulating increased. Hence the temperature gradient across the radial direction 

decreased significantly. Maximum temperature at the center of the combustor increased from 

1633 to 1741 K as heat intensity increased from 5.37 to 21.1 MW/m
3
. The temperature 

fluctuations around the mean value were in the range of 1.3-1.8% for all cases (variation bands 

shown in Fig. 6). A low temperature gradient and smaller fluctuations are representative 

characteristics of flameless combustion. For all thermal input conditions, the maximum 

temperature is below 1800 K. Therefore, NOx emissions were expected to be relatively very low. 

The predicted temperatures in the central zone are slightly lower than the measured temperatures 

for all thermal inputs. For the outer region (next to the central zone), the predicted temperatures 

are slightly higher than measured temperatures. Uniformly distributed temperature with low 

temperature gradients is observed in computational studies.  

4.3 Pollutant emissions 

The CO, NOx and HC emissions were measured for the range of operating conditions and 

emission levels were corrected to 15% O2 level and shown in Fig. 7. CO emissions increased 

with a decrease in Ф from 1 to 0.6 and increase in heat intensity. However, the specific 
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emissions index (ppm/kW) decreased with increasing heat intensity. For RC=20 mm and       = 

5.37, 21.1 MW/m
3
, CO emissions varied from 11 to 21 ppm and 25 to 41 ppm respectively, as Ф 

varied from 1 to 0.6. The specific CO emissions for these cases varied from 0.51 to 0.977 

ppm/kW and 0.3 to 0.48 ppm/kW respectively. The emission release rate decreased with 

increasing heat intensity, indicating a positive outcome for higher heat density combustion 

systems. NOx emissions decreased with decreasing Ф, as expected. For lean mixtures, the 

average measured temperature in the combustor decreased with a decrease in Ф. This led to a 

reduction in the NOx emissions, however, CO emissions increase slightly. For the case of RC=20 

mm and       = 5.37, 21.1 MW/m
3
, NOx varied from 9 to 6 ppm and 19 to 12 ppm respectively, 

for Ф varied from 1 to 0.6. The specific NOx emissions for these cases varied from 0.42 to 0.28 

ppm/kW and 0.22 to 0.14 ppm/kW respectively.  

 

HC emissions increased with decreasing Ф from 1 to 0.6 and the specific emissions decreased 

with increasing heat intensity. For the case of RC=20 mm and      = 5.37, 21.1 MW/m
3
, HC 

emissions varied from 0 to 3 ppm and 3 to 9 ppm respectively, for Ф = 1 to 0.6. The specific HC 

emissions for these cases varied from 0 to 0.14 ppm/kW and 0.03 to 0.1 ppm/kW respectively. 

The overall variation of CO, NOx and HC emissions for all heat intensities (Ф = 1 to 0.6) were 

measured to be 11-41, 6-19 and 0-9 ppm respectively. These emissions are well within the range 

of emissions from flameless combustion with gaseous fuels reported in the literature.  

A combustor with a chamfer radius of RC = 25 mm is tested for all thermal inputs (21.5-84.7 

kW) conditions. Flameless combustion mode is observed for all cases without any issues related 

to combustion stability. Minimum recirculation required for each case of thermal input is 

determined experimentally and computationally by varying from RC = 10 - 30 mm.  
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4.4 Acoustic emissions 

Figure 8 shows the variation of acoustic emissions of the combustor in various combustion 

modes. Base level acoustic emissions of 84 dB were measured initially for cold flow conditions. 

After ignition, initially the combustor operated in the conventional mode with exit diameter of 90 

mm and the level of acoustic emissions increased to an average value of 102 dB. After 3 min of 

conventional combustion, the chamfered portion was mounted and the exit diameter was reduced 

to D mm (Table 2). Immediately after reducing the diameter, the sound level increased. After a 

time of 2-3 min, the swirl flow was well stabilized in the combustor and flameless combustion 

was observed. The sound level reduced dramatically to a level well below the conventional 

combustion mode. For the case of 21.1 MW/m
3
, 113.5 and 93.6 dB of sound level was observed 

in the transition and flameless modes respectively. It was observed that with increased heat 

intensity, the sound level increased during the operation of the combustor in transition mode. 

However, for all heat intensities, almost a same sound level of approximately 94 dB was 

observed during the flameless combustion mode. The overall net sound level reduction from 

conventional to flameless mode for all combustors was in the range of 8-9 dB. A similar 

reduction has been reported in the literature [7, 14].  

5 Conclusions:  

In the present work, a new combustor configuration was designed and scaled-up to achieve 

flameless combustion with liquid fuels at high heat intensities for various industrial and gas 

turbine applications. Observations are summarized below.   

1. Flameless combustion was stabilized in the base combustor with 21.5 kW thermal input 

(5.37 MW/m
3
) and maximum      of 3.2 with very low emissions. However, flameless 
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combustion was not achieved and unburned fuel accumulated in the combustor for higher 

fuel flow rates.  

2. A chamfer added near the exit in the modified combustor configuration helped increase 

the      and residence time, permitting flameless combustion at higher intensities. The 

curved profile of the combustor dome and chamfer combined to form a curved vane 

which helps increase the degree of flow reversal . A computational investigation with 

experimental evidence suggests that a chamfer radius of 20, 25 and 30 mm was sufficient 

to achieve flameless combustion for      = 10.2, 16.3 and 21.1 MW/m
3
, respectively.  

3. The peak temperature increases in the combustor and the temperature gradients decreases 

with an increase in the heat intensities. The temperature fluctuations were very small 

(1.3-1.8% of the mean value) for all cases.  

4. The overall variation of CO, NOx and HC emissions for all heat intensities (Ф = 1 to 0.6) 

were 11-41, 6-19 and 0-9 ppm respectively. These emissions are well within the range of 

emissions from flameless combustion with gaseous fuels operating at high intensity in the 

literature. Specific emissions (ppm/kW) decrease with an increase in heat intensity.  

5. The outstanding performance of the burner with very low chemical and acoustic 

emissions at high heat release rates indicate the potential for use in various industrial and 

gas turbine applications. 
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Table 1 Variation of heat intensities reported in literature (SJ: Straight Jet, Forward Flow, FF 

(i.e. reactants enters from one side and products leave from opposite side), Reverse Flow, RF 

(i.e. reactants and products from same side of the combustor), Qth: Thermal input (kW) and      : 
Heat intensity (MW/m

3
), S: Solid, L: Liquid, G: Gas 

 

Ref. Qth          Fuel Remarks 

[2] 5 10 G SJ,  FF 

[3] 580 0.024 G,L,S SJ, RF  

[5] 0.4 0.58 G, L SJ, RF  

[6] 20  0.44 G SJ, RF 

[7] 150 5.6 G SJ, FF 

[8] 6.25 453 G SJ, RF 

[9] 15 0.3 G SJ, RF 

[11] 474 240 G SJ, FF 
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Table 2 Dimensional details of the combustor             d  D                     

21.5 5.37 5 25 3.2 8.4 4.4 2.4 0.4 0.2 

40.8 10.2 7.5 29 2.758 7.241 3.793 2.068 0.689 0.258 

65.1 16.3 9 34 2.325 6.176 3.235 1.764 0.735 0.264 

84.7 21.1 11 37 2.162 5.675 2.972 1.621 0.81 0.297 
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Figure 1 Dimensional details of the combustor 
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Figure 2 Variation of      with RC (a) 5.37 MW/m
3
 (b) 10.2 MW/m

3
 (c) 16.3 MW/m

3
 (d) 21.1 

MW/m
3
 (e) Minimum and maximum      for all cases and zone length of     >2.72 (in 

parenthesis) 
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Figure 3 Residence time distribution (E(t)) for three cases based on     ,             and             
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Figure 4 Schematic diagram of experimental setup 
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Figure 5 Distribution of DND for nozzles of different fuel flow rates 
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Figure 6 Temperature distribution comparison of experimental and computational measurements 
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Figure 7 Variation of emissions with equivalence ratio for different heat intensities 
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Figure 8 Variation of acoustic emissions for all heat intensities 
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Response: The present combustor can be started with the top components in place. However, the 

present strategy of different exit diameters during the starting process is adopted to understand 

and evaluate the effect of exit diameter variation on transition between conventional (90 mm) 

and flameless combustion mode (30 mm). This information has been added in the revised 

manuscript on page 12, line 17 to page 13, line 7. 

 

8)      Section 3.2: It is stated that temperature fluctuations were measured, yet the diameter of the 

thermocouple is 1mm. A thermocouple bead of this size would have a very slow thermal 

response. How does the response time of the thermocouple compare to the turbulent time scale in 

the combustor?  

Response: The response time of the thermocouple (~0.25 s) is much larger than the integral 

turbulence time scales (~ 3 ms) due to larger bead size. In the present work, the variation of 

mean temperature in radial direction is reported. Since the temperature at a given location is 

varying with time, the mean is calculated from a set of recorded temperature values over 10 – 20 

seconds and presented. This information has been appropriately modified to remove the 

ambiguity in the revised manuscript on page 14, line 11-17. 

 

9)      Section 4.1: It is noted that a range of details of the spray were measured, but only the 

droplet number density is presented (in Fig. 5). If the other measurements are not reported or 

mentioned, then it seems inappropriate to say what other characterization was done. 

Response: Detailed spray diagnostics have been carried out; however it could not be included in 

the manuscript due word limits for paper. More details are shown in the figure and table below. 

Since the word limit, this information not added in the revised manuscript. 

 



 

Figure: Spray characteristics of all four nozzles (N1 to N4) 

Table 3: Spray characteristics of all four nozzles 

Parameter N1 N2 N3 N4     (kg/h) 1.72 3.27 5.21 6.78 

D10 (µm) 28 27 28 26 

D32 (µm) 36 35 37 35 

DV10 (µm) 29 29 30 29 

DV50 (µm) 39 39 40 39 

DV90 (µm) 60 62 64 63 

 

 

10)     Section 4.2: For higher power density cases the walls were cooled: how is this non-

adiabatic behavior accounted for in the models? 



Response: For all cases of higher thermal inputs, heat loss through water cooling and combustor 

walls is considered during the modeling. This information has been clearly brought out in the 

revised manuscript on page 9, line 21 to page 10, line 5 and page 15, line 2-4.  

 

11)     Section 4.2: If the combustor is operated in non-adiabatic conditions, surely it is necessary 

to have either a constant wall temperature, or constant removal of heat from the system. 

However, it seems that neither is constant. The authors need to expand on this issue. 

Response: For a given thermal input, the heat removal rate during the burner operation is 

maintained constant. The amount of heat removal from the combustor walls is 3.2, 8.3, and 12.9 

kW respectively, for heat intensities of 10.2, 16.3 and 21.1 MW/m
3
. This heat removal rate has 

considered by applying heat loss from the walls of the combustor. This information has been 

added in the revised manuscript on page 9, line 21 to page 10, line 5 and page 15, line 2-4. 

 

12)     Section 4.2: The temperature fluctuations are reported as 1.3-1.8% -- this certainly seems a 

low fluctuation, but how much of this because of the thermal inertia of the large bead? (see 

comment #8). 

Response: The intention of the authors is only to report the variation of the mean temperature 

along in radial direction. Since the thermocouple response time (~0.25 s) is much larger than the 

integral turbulence time scales (~ 3 ms) due to larger bead size, it is difficult to record the 

temporal variation of temperature at a particular location. Thermal inertia of the thermocouple is 

expected to play an insignificant role in the measured temperature. This information has been 

appropriately appended to remove the ambiguity in the revised manuscript on page 14, line 11-

17. 

 

13)     Section 4.2: How do the experimental measurements of temperature compare to the 

numerical simulations? 

Response: The computational and experimental temperatures are compared and shown in the 

figure below.  The predicted temperatures in the central zone of the combustor are slightly lower 

than the measured temperatures for all thermal input conditions. For the outer region (next to the 

central zone) predicted temperatures are higher than the measured temperatures. This is because 

uniformly distributed temperature with low temperature gradients is observed in computational 

analysis.  These details and modified Fig. 6 has been added in the revised manuscript on page 15, 

line number 19-23. 



 

14)     Table 2: If the burner geometry needs to change for different operating conditions, how 

could this combustor be used for practical applications? If not a practical combustor, how could 

these results be used for the development of a practical combustor? 

Response: This discussion reported in the paper shows that minimum recirculation rate is must 

for achieving flameless combustion mode. For instance, in a practical combustor with fixed 

upper limit of thermal input (84.7 kW), the chamfer radius can be fixed at RC = 25 mm and same 

combustor can be used for lower thermal inputs (21.5 – 84.7 kW) without any issue related to 

combustion stability. However, it needs to be changed for higher thermal inputs. This 

information added in the revised manuscript in page No 17, line number 1-5. 

 

 

 

 

 

 

 

 

 



Reviewer #3: Excellent 

The English in this paper needs to be improved? (1 = Yes; 2 = No; 3 = See comment below) [1-

3] 2 

This paper requires review by a native English speaker or a translation service? (1 = Yes; 2 = 

No; 3 = See comment below) [1-3] 2 

The paper reports an interesting and clearly written study to scale up a flameless oxidation 

system for kerosene. While the real progress seems to have been made through experimentation, 

the authors used CFD in an intelligent fashion to guide the experimental work. The changes 

made to achieve flameless oxidation at high thermal input are all motivated physically and 

insightfully. "Despite" the more engineering character of the work presented, the work is in my 

opinion original, thoughtful and of the high quality suitable for the symposium The clear 

documentation and argumentation assure the work having impact in the field of flameless 

oxidation systems. I recommend acceptance. 

Response: Authors are happy to note that the reviewer understands and appreciates the work 

presented in the paper. Authors are thankful to reviewer for recommending this paper for 

acceptance at symposium and graded the paper as an excellent contribution. We gracefully 

accept the reviewer’s comments to improve the quality of the present manuscript.  

Point by point response to reviewer’s comments is given below and the proposed changes have 

been incorporated in the revised manuscript. 

 

1. One small point: while the paper seems within the word limit, I found the last paragraph of 

the Introduction a significant repeat of the abstract. As such, in my opinion this paragraph 

may be shortened, allowing the reader to get to the "meat" of the work. 

Response: The repetitive sentences pointed out by the reviewer in the introduction section have 

been removed in the revised manuscript.   

 


