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Experimental and Numerical
Investigation of Forming
Limit Differences in Biaxial
and Dome Test

For centuries, metals and materials have been characterized using a traditional method
called a uniaxial tension test. The data acquired from this test found to be adequate for
operations of simple forming where one axis stretching is dominant. Currently, due to the
demand of lightweight component production, multiple individual parts eliminated by
stamping a single complex shape, which also further reduces many secondary operations.
This change is driving by the new fuel-efficiency requirement by corporate average fuel
economy of 55.8 miles per gallon by 2025." Due to complex part geometry, this forming
method induces multiaxial stress states, which are difficult to predict using conventional
tools. Thus, to analyze these multiaxial stress states limiting dome height tests and bulge
tests were recommended in many research publications. However, these tests limit the
possibilities of applying multiaxial loading and rather a sample geometry changes are
required to imply multiaxial stresses. Even this capability is not an option in bulge test
due to leakage issue. Thus, a test machine called a biaxial test was devised that would
provide the capability to test the specimen in multiaxial stress states by varying the inde-
pendent load or displacement on two independent axis. In this paper, two processes, lim-
iting dome tests and biaxial tests were experimented, modeled, and compared. For the
biaxial tests, a cruciform test specimen was utilized, and conventional forming limit
specimens were used for the dome tests. Variation of sample geometry in limiting dome
test and variation of loading in biaxial test were utilized to imply multiaxial stress states
in order to capture the limit strain from uniaxial to equibiaxial strain mode. In addition,
the strain path, forming, and formability investigated and the differences between the
tests provided. From the results, it was noted that higher limit strains were acquired in
dome tests than in biaxial tests due to contact pressure from the rigid punch. The litera-
ture shows that the contact pressure (which occurs when the rigid tool contacts the
deformed body), increases the deformation and thus increases the limit strains to failure.
This contact pressure parameter is unavailable in biaxial test, and thus, a pure material
behavior can be obtained. However, limit strains from biaxial test cannot be considered
for a process where rigid tool is processing the metal, and thus, calibration is necessary.
[DOI: 10.1115/1.4039587]

Chetan P. Nikhare
Department of Mechanical Engineering,
Penn State Erie—The Behrend College,

Erie, PA 16563
e-mail: cpn10@psu.edu

nuew/g/z//29/S00180/8/0 L /4pd-ajonue/aousiosbulinoenuew/b10 swse: uoijos||oo|elbipswse//:dny wolj papeojumod

80 Ovl !

Introduction behavior in various deformation modes is necessary to mimic in
predictions.

Traditionally uniaxial simple tension tests were dominantly
used to characterize the plastic deformation of materials but were
found to be insufficient for large strain data while feeding the
material, resulting in inaccurate predictions. The reason for this is
that the simple uniaxial tension test only provides one mode of
deformation, and the data from this test, when used in numerical
models, fail to capture other deformation modes and thus need
more accurate data-driven models [2]. Uniaxial data lacks to pro-
vide enough information on other strain states that are critical to
understanding the limitation of the design [3]. It was noted that
stresses generated in equibiaxial mode for a particular anisotropy
value was much higher than what was found in uniaxial testing
[2,4]. In this study, a method called biaxial testing will be numeri-
cally simulated for a number of strain states on 5083 aluminum
alloy and compared with equivalent hemispherical dome tests by
determining the forming limits in each case.

The concept of the forming limit curve (FLC)/forming limit
diagram (FLD) on major and minor strain axes was first proposed

The demand for light-weight and compact-design vehicles is at
the apex of the need for manufacturing due to cost savings as well
as continuously growing fuel prices. The need for better fuel per-
formance and crashworthiness in vehicles has grown. The recent
changes in economic and environmental regulations are pushing
engineers’ and researchers’ ideas to the limit and forcing them to
construct increasingly efficient designs. The struggle lies in how
to combine the construction of an efficient design and the require-
ments for stricter environmental regulations. One way that better
design can be created while meeting all the restrictions is to use
better materials in construction. An ideal example would use a
higher density, high-strength material, and reducing the gage
thickness to provide good formability or use a less dense material
that somehow lacks in ductility and safe indication in fracture
behavior [1]. In both cases, a proper investigation of material
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by Keeler and Backofen [5]. Further on this FLD became one of
the useful and powerful tools to analyze a material in various
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deformation modes as well as its failure and fracture behavior.
This graph uses axes of major and minor strain to plot a failure
point for a plane of metal, while it is deformed in various strain
states. When these neck points are joined together for strain states
from uniaxial to equibiaxial modes, it creates the FLC. This curve
provides an indication of how, when and where the material
would fail in a particular deformation mode and also provides
information that can be used to properly design the die for manu-
facturing to stop the failure. Strain points above the curve indicate
the material failure by necking or tearing and points below refer
to the safety of a material [6]. For better viability, the concept has
further experimented extensively on various metal grades [7,8].
Further detail studies were performed on the effect of various
parameters on this limit curve. It was identified that this limit
curve is very sensitive to these parameters: (a) planar and normal
anisotropy value “r-values” [2,9-12], (b) strain-hardening
exponent “n-value” [13], (c) temperature [14], (d) strain rate “e/s-
value” [13-15], (e) size of grain at start of deformation [16,17],
(f) prestrain [13,17], (g) path dependence [12,18,19], (h) tool
geometry [20], (i) in and out of plane forming [21], (j) coefficient
of friction between sheet metal and tool which changes the strain
path [17], and (k) blank holding force [22]. Traditionally hemi-
spherical dome tests were used to identify the limits of a material
in various deformation modes [3]. However, in this method, the
punch was in contact with the sheet metal and the deformation
plane did not remain on the plane. This contact condition can
come in the form of either pressure or friction [23,24]. Friction
becomes prevalent simply because the punch is in contact with
the sample while manipulating it. This is an unwanted variable
that can cause variations in testing and data collection [25-27].
Pressure is the other contact condition that can cause the sample
to fail at higher forces or time because of how the pressure makes
the material behave while under stress [28-37].

Due to all of the previously mentioned difficulties, a new biax-
ial test method was developed that can pull the specimen in two
directions while varying the pull speeds and generate any number
of strain states from uniaxial to equibiaxial modes. A cruciform
specimen with a thinner section at the center can be used for this
test method where it can provide a uniform strain region when all
four arms are pulled in tension. It was observed that the thickness
has no influence on the forming limit curve in the biaxial test
method [38].

In this paper, forming limit strains were analyzed for specimens
tested using the hemispherical dome and biaxial tests. For this
purpose, cruciform specimens with a thinner diamond gage at the
center were stretched on a biaxial machine to capture different
strain paths from uniaxial to equibiaxial strain conditions. Simi-
larly, conventional specimen geometries were considered to eval-
uate strains from uniaxial to equibiaxial strain condition using
hemispherical dome test. In both tests, the failure strain from uni-
axial to equibiaxial deformation modes was determined experi-
mentally. Further, the results were compared with thickness
gradient criterion (TGC), Marciniak—Kuczynski model, and
numerical instability. The differences between limits strains were
noted and discussed.

Material

An AAS5083 alloy is considered as a part of this study. The
material properties were taken from the previously published
work by the author [37]. All specimens for the tests were annealed
at 500°C for Smin to produce softness as the received material
showed brittle behavior. Each test was repeated for a set of three
specimens in order to establish repeatability. Figure 1 shows the
true stress—strain relationship of the uniaxially deformed sample.
It can be observed that the material exhibits luder’s bands. In
order to further examine the tensile response of the material, the
data were fitted with the power law. The power law fits best from
2.5% to 7.5% strain. The material data that were used for numeri-
cal simulation were a combination of actual material data (initial
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Fig. 1 True stress—true strain curve along with fitted power
law (Permission to reprint from ASME @ 2017 [37])

Table 1 Mechanical properties of annealed AA5083 as deter-
mined by testing [37]

Engineering Engineering Elongation K
yield stress (Mpa)  tensile stress (Mpa) (%) (MPa) n
150 290 26 680 0.39

constant stress for some plastic strain) plus the fitted power law.
The mechanical properties characterized from testing are detailed
in Table 1, where K is the strength coefficient, and » is a strain-
hardening exponent.

Experimental Methodology

Biaxial Test. Figure 2 shows the cruciform geometry with a
diamond-shaped center that was used to perform the tests from
uniaxial strain to equibiaxial strain mode on an National Science
Foundation-funded biaxial machine. Figure 2 also provides the
critical dimensions of a cruciform sample. To produce the maxi-
mum deformation at the center, the specimen was milled to a dia-
mond shape from both sides such that the remaining thickness
was 0.762 mm. A smooth radius was made in the diamond profile
in order to reduce the stress concentration at those locations. From
previous studies on the cruciform specimen geometry, it was
observed that the recess (gage area) is needed to imply the maxi-
mum strain at the center [3], similar to the gage length in the
ASTM tensile specimen [39]. With a circular section at the center,
it was observed that a more severe stress concentration occurred
at the arm intersection corner. Thus, a diamond geometry was
chosen, which proved to reduce the stress concentration at the arm
intersection and provides a uniform strain gage region. In a previ-
ous work by the author [37], digital image correlation (DIC) was
used to capture the strain in equibiaxial tests. The tests provided
good agreement with the simulation results. To keep consistency
between the biaxial tests and dome tests (DIC is difficult to use in
current dome testing), 2.54 mm circles were etched (Fig. 2—right
image) on the samples to measure the strain at critical regions.

The specimens were then mounted on the biaxial machine such
that the two jaws of both of the horizontal and vertical axes were
holding the end of each cruciform spoke (Fig. 3). Additionally,
the specimens were preloaded with 100 N manually to make sure
that there was sufficient contact between the specimen and the
jaws. Once confirmed, the horizontal and vertical axes were pulled
independently at set conditions (either load or displacement)

Transactions of the ASME

nuew/g/z//29/S00180/8/0 L /4pd-ajonue/aousiosbulinoenuew/b10 swse: uoijos||oo|elbipswse//:dny wolj papeojumod

80 Ovl !

220z 1snbny 0z uo 3senb Aq 4pd-G001.80



15.5 mm

Fig.2 Cruciform specimen with diamond center

Controller

Fig. 3 Biaxial experiment setup with DIC

to provide strains from uniaxial to equibiaxial on the samples.
Table 2 provides the experimental pulling speeds on each axis to
generate the strain pattern. The machine was manually stopped at
the onset of neck/crack. Further, major and minor dimensions of
deformed circles were measured and the strains were calculated.

Hemispherical Dome Test

Due to an inability of cruciform specimens to provide the
strains in various deformation modes other than only in equibiax-
ial strain mode in a dome test (previous study [37] by author
shows the equibiaxial deformation of cruciform specimen in a
dome test by pinching all four spokes between a die and blank-
holder), conventional samples with varying sizes were used as
shown in Fig. 4. As compared to single cruciform dimension spec-
imen, these seven sample geometries are able to provide the strain
pattern from uniaxial to equibiaxial strain mode. Due to the nature
of the dome test where the movement of hemispherical punch
deforms the sheet metal, which is constrained in die and blank-
holder, a variety of specimen geometries were needed to achieve
the strain paths from uniaxial to equibiaxial strain conditions.
Similar to the biaxial testing, all specimens were electrochemi-
cally etched with 2.54 mm circles (Fig. 5) in order to measure the
strain after deformation. Three successful dome tests were con-
ducted for each sample geometry. The Nakajima hemispherical
dome test setup is shown in Fig. 6 [40]. The specimen was placed
between the die and blankholder and was held in place using tight-
ened bolts. A lock-bead (not shown in the figure) was used to pre-
vent material from feeding inward during the test. The
hemispherical punch was set to move with a constant speed of
5 mm/min. To keep the frictionless contact between hemispherical
punch and blank, a three-layer sandwich of thin/thick/thin

Table 2 Biaxial test machine axis pulling speed to create a strain pattern

Strain mode Vertical axis pulling speed (mm/min) Horizontal axis pulling speed (mm/min)
Uniaxial 5 Free (specimen not mounted on this axis)
Plane—strain 5

Between plane and equibiaxial strain 5 2.6

Equibiaxial strain 5 5

Journal of Manufacturing Science and Engineering
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Fig. 4 Seven specimen geometries to provide strain from uniaxial to equibiaxial strain in hemispherical
dome test (diameter = 101.6 mm, radius = 38.1 mm, x=12.7, 25.4, 38.1, 50.8, 63.5, and 76.2 from specimen

1 to 6) [41]

Fig. 5 Electrochemically etched circles on samples

polypropylene was used. In between each layer and between thin
polypropylene and blank and punch, a mixture of grease and WD-
40 was used. With this method, the failure occurred very near to
apex of the dome.

Numerical Methodology

Biaxial Test. ABAQuS/EXpPLICIT 6.13-2 was used to simulate all
numerical models. To simulate the biaxial tension test on the sam-
ple, four outer edges of the sample were constrained to specify the
condition. Displacements 61 and 62 were applied to the end circu-
lar arc edges to create various strain paths from uniaxial to biaxial
as given in Table 3. A three-dimensional modeling approach was

081005-4 / Vol. 140, AUGUST 2018

used to simulate this test (Fig. 7(a)). As measured on the experi-
mental samples, an average representation of thickness on the
specimen of 2mm and 0.762 mm at the center diamond was used
[37]. The specimen was kept as a deformable body with S4R shell
plane stress elements (four-node quadrilateral, reduced integra-
tion). Finer mesh (element size = 0.5 mm) was applied at the cen-
ter portion of the sample, while the spokes meshed with coarse
elements with size =2 mm (Fig. 7(b)) [37]. Five integration points
were used through the thickness to accurately predict the necking.
The mesh sensitivity was considered to match the experimental
results and is published in the previous work [37]. Three methods
were used to predict the neck (a) numerical instability, (b) thick-
ness gradient criterion, and (c) MK model.

Transactions of the ASME

nuewW/8/2//29/500180/8/0 | /spd-ajoie/sousiosbuLinoenuew/B10 swse’ uoios||0o[enbipswse//:dny woly papeojumod

80 Ovl !

220z ¥snbny oz uo 3senb Aq ypd 500180



*BlankHolder

Die

Fig. 6 Nakajima hemispherical dome test setup

Table 3 Displacement of cruciform arm for different strain
paths

Sample J1 (mm) J, (mm)

1 Free 15 (Uniaxial)
2 1.75 15

3 3.5 15

4 9.25 15

5 15 15 (EquiBiaxial)
Dome Test

Similar to the biaxial model, hemispherical dome tests were
also simulated using a three-dimensional model approach. The
numerical setup is shown in Fig. 8(a). Instead of lock beads, the
specimen circumference edge at the lockbead location was
constrained as zero displacements. The tooling was assumed as
rigid surfaces, while S4R shell elements (four-node quadrilateral,
reduced integration) were used to mesh the specimen (Fig. 8(b)).
The thickness of the specimen considered was 2 mm, the same as

Fig. 8 Nakajima hemispherical dome test (a) numerical model,
(b) specimen general dimension, and (¢) mesh specimen

measured in experiments. The interaction between the specimen
and the tooling was modeled as surface-to-surface contact with no
friction, similar to the experiments to avoid the friction effect. To
create a strain path spectrum from uniaxial to biaxial strain condi-
tions, different specimen sizes were created as shown in Fig. 8(c)
and Table 4. Again, three methods as mentioned earlier were used
to predict the neck.

Fig.7 Cruciform specimen with center diamond (a) with boundary condition and (b) mesh specimen
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Table 4 Specimen dimension for different strain paths

Sample x (mm)

1 12.7 (Uniaxial)

2 38.1

3 50.8

4 63.5

5 101.6 (circular disk) (Equibiaxial)

Fig. 9 Schematic illustration of a sheet with pre-existing
groove (Reproduced from [49])

Numerical Instability

Numerical instability is based on how the model is setup. Gen-
erally, two types of numerical modeling techniques are used: (i)
implicit and (ii) explicit. In implicit method, the calculations are
based on the previous step known values but also simultaneously
depend on the current step and thus have less protection on
numerical instability and can lead to diverging solution. In explicit
method, the calculations are solely based on the previous step
known values, and thus, convergence can be easier in this step
[42]. Numerical instability occurs when the load that requires
deforming the mesh is continuously dropping [43]. For example,
in uniaxial tension, when the force drops, a localized neck can be
seen just after the occurrence of the diffuse neck along with a
steeper thickness gradient. However, in a biaxial test, a localized
neck can be delayed due to uniform deformation of mesh, and a
less thickness gradient can be observed, but a diffuse neck might
have already occurred, and a force drop would have been noticed.
This information can also be seen when the major strain evolution
is at a much higher rate than the minor strain [42,44]. This tech-
nique is utilized to identify the instability stage, and major and
minor strains are plotted in FLD.

Thickness Gradient Criterion

To predict the forming limit strains from numerical simulation,
the thickness gradient criterion was used. During sheet metal

Fig. 10 Deformed samples using biaxial test machine: (a) uniaxial strain, (b) plane-strain, (c)
between plane-strain and equibiaxial strain, (d) equibiaxial strain deformation mode, and (e)
deformed diamond shape comparison for (a)—(d) deformation modes

081005-6 / Vol. 140, AUGUST 2018
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Fig. 11 All formed specimens using biaxial method captured at neck/fail frame: (a) uniaxial strain, (b) between uniaxial strain
and plane—strain, (¢) plane-strain, (d) between plane—strain and equibiaxial strain, and (e) equibiaxial strain deformation
mode (legend shows engineering major strain, i.e., NE22 in ABaqus)

forming, a localized neck generally occurs, after which the mate-
rial proceeds to failure. This localized neck is measured/predicted
in the form of thickness gradient calculation. Experimentally, it
was observed that the localized neck is indicated by the presence
of a critical local thickness gradient in the sheet. Such an indica-
tion of the neck is independent of the strain path, the rate of form-
ing, and the type of sheet metal (i.e., the material properties)
being formed. The critical local thickness gradient, R, exists at
the onset of a visible local neck. After the start of deformation, a
thickness gradient, “R,” develops in the deforming sheet which is
expressed in the following equation:

Tneck
Ry =

12 neighbor

1

where R, is the thickness gradient, f,.. is the current thickness of
a neck element, and fycighbor 18 the current thickness of a neighbor-
ing element.

During forming, this thickness gradient decreases from the ini-
tial value of 1.0. The thickness gradient becomes steeper at the
onset of localized necking, and at this transition from diffused
necking, it attains a critical value. The criterion is represented in
the following equation:

Ry <R @

The R. is experimentally estimated as 0.92. If R, is less than
0.92, the component is considered as having necked [45,46].

Journal of Manufacturing Science and Engineering

Marcianiak—-Kuczynski Model

The Marcianiak—Kuczynski (MK)-model assumes that an initial
defect in the sheet, in the form of a long groove, grows and even-
tually fails during stretching along the linear strain path in the sur-
rounding material. The pre-existing defect lies perpendicular to
the major axis. A sketch of the model is shown in Fig. 9. The 1
and 2 are rolling and transverse directions, and ¢ is the thickness
direction. This two-zone material is subjected to plastic deforma-
tion, applying a constant incremental stretching of the homogene-
ous part. When the flow localization occurs in the groove at a
critical strain in the homogeneous region, the limiting strain of the
sheet is achieved. This criterion of defining the localized neck is
provided by Eq. (3). According to this equation, the neck is
reached when the increment of major strain in region “b” is equal
or greater than ten times the major strain increment in a region
“a.”” At this state, the values of the major and the minor strain in
the homogeneous region are reported for numerical plotting of
forming limit diagrams [43,44,47-49].

Asbl 2 10A831 (3)

Results and Discussion

Figures 10 and 11 show the deformed samples in uniaxial to
biaxial strain conditions. Figures 10(a)-10(d) show samples at
fail/neck condition (black arrow directs the failure region). Note
that Fig. 10 does not show the test sample between uniaxial strain
and plane—strain deformation mode. This is due to the inability to
control the machine variability. However, this missing data does

AUGUST 2018, Vol. 140 / 081005-7
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Fig. 12 Forming limit diagram from specimen simulated in
biaxial model

not influence the overall conclusion. For an accurate representa-
tion, the diamond shapes were placed on the deformed center dia-
mond for an approximate fit. It can be observed that all shapes
provide the accurate representation of the deformed shape except
for Fig. 10(b). This is because the crack at the corner bent the top
vertical arm and thus tilted the top right diamond edge toward
the right. If the machine had stopped right at the neck, which is

challenging, the diamond shape would have accurately fit the
deformed shape. Furthermore, all these diamond shapes without
changing their dimension place on top of each other to present
how the diamond evolved from uniaxial to equibiaxial deforma-
tion (Fig. 10(e)). The green diamond (uniaxial mode) is domi-
nantly stretch in a vertical direction and compressed in horizontal.
When the horizontal direction force increases, the diamond gets a
shape toward equisized vertical and horizontal length (refer black,
blue, and red diamonds in Fig. 10(e). Noting the failure, the uniax-
ial sample (Fig. 10(a)) fails at top vertex of a stretched diamond.
The fracture region diverts from diamond vertex to diamond cen-
ter from uniaxial to equibiaxial sample. Similar observations were
made in the numerically deformed samples. Figures 11(a)-11(e)
show simulated samples at their critical frame, where the thick-
ness gradient criterion predicted them as in neck condition. Simi-
lar predictions were made in terms of the failure region, i.e., the
strain element in the uniaxial specimen is near to top arm radius
but in the center diamond region (Fig. 11(a)). This neck region
continues to divert toward all arm radius as the strain condition
changes from uniaxial to a biaxial path and provides uniform
strained region at the center diamond for biaxial specimens. In
addition, the critical major strain value continues to decrease from
uniaxial to a biaxial specimen.

Figure 12 shows the plot of major and minor strains, which is
also known as FLD. Failed and necked circle major and minor
dimensions were measured, and their strain points were plotted on
FLD. The FLC line was plotted such that none of the failed points
should be below the line. The plane—strain point is located at
0.215. Further strain paths of a critical element in all five
simulated specimens were plotted. These critical elements were
selected based on TGC prediction of a necked element in that con-
dition. Additionally, major and minor strains of a thicker neigh-
boring element (safe element) were noted, and red solid circle (for
TGC) and red solid diamond (for MK) point were plotted on the
FLD to show the limit of a material tested in different directions
using the biaxial machine. An approximate line was drawn to

Fig. 13 Seven deformed specimens using dome test: (a) uniaxial strain, (b) and (c) between uniaxial strain and
plane-strain, (d) plane-strain, () and (f) between plane-strain and equibiaxial strain, and (g) equibiaxial strain
deformation mode

081005-8 / Vol. 140, AUGUST 2018
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Fig. 14 All formed specimens using dome test method captured at neck/fail frame: (a) uniaxial strain, (b) between uniaxial
strain and plane-strain, (c) plane-strain, (d) between plane-strain and equibiaxial strain, and (e) equibiaxial strain deformation
mode (legend shows engineering major strain, i.e., NE22 in aBaaus)

show the limit curve predicted using TGC and MK. TGC and MK
models predict the limit strain very close to each other. Upon
comparison of the strain path flow with TGC and MK neck predic-
tion during deformation, it was found that the experimental FLC
does not match with the TGC and MK prediction. The poor agree-
ment between the experimental data and TGC and MK models is
because the criteria were developed using the dome test experi-
ments, where the punch (rigid tool) presses the sheet metal to
deform further until failure. However, in the biaxial test machine,
no rigid tool contacts the specimen center where it is supposed to
fail. Thus, it can be concluded that the conventional failure predic-
tion methods developed using any contact condition would not be
able to predict the failure in specimens tested with a biaxial
machine.

Additionally, numerical instability points were noted, and red
solid square points were plotted. The instability in specimens of
uniaxial and near plane—strain paths was realized but not able to
capture in a specimen of equibiaxial and near equibiaxial strain
paths. Note that due to all spokes of a cruciform specimen being
in dominant stretching in equibiaxial strain and near equibiaxial
strain mode, numerical instability is hard to achieve. One of the
reasons for this is a continuous increase of stress value with
respect to strain value in a material curve that was modeled as a
power law for the higher amount of strain. Another reason is that
the numerical program does not predict the material failure unless

Journal of Manufacturing Science and Engineering

some failure criterion would have been added. A red dashed line
was plotted for the limit curve predicted by numerical instability.
The numerical instability is in close agreement with the experi-
mental FLC. From the results, it can be concluded that the avail-
able analytical methods to predict the forming limit strain that had
been developed using testing, where a rigid tool deforms the
blank, will overestimate the failure prediction in specimens using
a biaxial testing machine.

All seven deformed specimens using dome test are shown in
Figs. 13(a)-13(g). Again, the figure shows the sample at fail/neck
condition (black arrow indicates the failure region). All five
deformed specimens using dome test models are shown in Figs.
14(a)-14(e). The images were captured for all specimens, where
TGC predicted the neck/failure. Due to the frictionless condition,
all specimens were necked at the near center of the specimen. It
can be observed that neck predictions are very closely matched
with experiments (match Figs. 13(a) with 14(a), 13(d) with 14(c),
and 13(g) with 14(e)). Following a similar procedure, neck/fail
circles major and minor dimensions on all specimens were meas-
ured and plotted (Fig. 15). Further, a continuous line was drawn
such that none of the failure points go below the line, and the FLC
was created. As per the conventional forming limit curve, the
major strain at failure is highest in the uniaxial specimen, which
continuously drops for specimen near plane—strain, and then
regains the high major strain when moving toward the equibiaxial
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Fig. 15 Forming limit diagram from specimen simulated in
dome test model

specimen. The plane—strain point is located at 0.31. Further strain
paths of a critical element in all five simulated specimens were
plotted. Following the described procedure, these critical elements
were selected based on TGC and MK prediction of a neck element
in that condition. The major and minor strains of the thicker ele-
ment were noted and plotted in FLD (solid red circles for TGC
and solid red diamonds for MK). Again, an approximate curve is
plotted between those points. Also, the numerical instability
points were realized and plotted (solid red squares), and the
approximate line was drawn. When compared with the numerical
instability, it was observed that the MK and TGC prediction lies
in very close proximity with the numerical instability, and thus,
confirms that the prediction method is viable for failure prediction
in a specimen that contacts the rigid tool during deformation.
When compared with the experimental FLC, the numerical insta-
bility, TGC-, and MK-model provide very close agreement; how-
ever, a poor comparison is shown in positive plane—strain. This
may be due to the brittleness of AA5083 material, which provides
a very little to no neck region in positive plane—strain deformation
modes, and the material fails suddenly. This can be observed in
the experimentally deformed samples where a small surface mate-
rial chips during material separation (Figs. 13(d)—-13(g)).

The forming limits from all criteria, i.e., TGC, MK-model and
numerical instability as well as from experiments in specimens
using both methods, i.e., biaxial test and dome test were plotted
and compared on FLD. It was observed that with numerical insta-
bility the forming limits are much higher in dome tests than biax-
ial tests. TGC and MK-model were able to predict the failure in
dome tests with a close agreement; however, they failed to predict
in specimens tested with a biaxial machine. When only the experi-
mental comparison was made between biaxial test and dome test
failure, the forming limit strains were higher in dome tests as
compared to biaxial tests (Fig. 16).

It was also observed that the plane—strain is 0.1 higher in dome
test as compared to biaxial test. This difference is due to the dif-
ferences in the deformation process. As compared to biaxial tests,
in dome tests, the punch contacts the sheet metal and pushes down
for deformation; the material is stretched in all axes on sheet
plane, but the punch applies contact force through the thickness,
and thus, through thickness normal stress influences the fracture
mechanics and delays the fracture. This increases the maximum
deformation in hemispherical dome tests. Research has shown
that application of pressure through the thickness direction
changes the thickness plasticity and softens the metals by sup-
pressing the voids [28-37]. Based on the literature, it can be con-
cluded that the difference observed in the two studied process,
i.e., biaxial tests where no contact of rigid tool is made in deform-
ing the material, and hemispherical dome tests where a rigid
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Fig. 16 Forming limit diagram for limit comparison between
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punch pushes the metal by applying the contact stress to deform
the metal, is due to the pressurization effect. Because of the pres-
surization effect in hemispherical dome tests, the FLC shifts up as
compared to biaxial tests. This shift also depends on how the
material behaves in various deformation modes. The FLC might
not shift with a constant value due to the change in fracture modes
in different deformation modes. This is observed in this study
where the difference in the limit strains is higher in uniaxial (i.e.,
0.4), but then it decreases with increase in minor strain (i.e., 0.1 in
plane—strain and 0.067 in equibiaxial strain). Three findings can
be noted: (1) forming limits are higher in dome tests than biaxial
tests, (2) the difference (or shift of FLC) might not be same in all
deformation modes and is dictated by the failure mode of a partic-
ular material in particular deformation mode (for example, it has
shown that dual phase steel provides ductile fracture in uniaxial
mode but brittle in equibiaxial strain mode [50]), and (3) failure
prediction methods developed from dome test, where a rigid tool
deforms the specimen, are not applicable for specimens tested
with a biaxial testing machine. The reason behind all findings is
the pressurization in a specimen during deformation from the
rigid tool. Due to the increase in contact pressure from the rigid
tool, the forming limits were found to be higher as noted in
Refs. [28-37].

Conclusion

This paper discusses the forming limit strains acquired from
two testing methods: (a) biaxial tests and (b) dome tests. Experi-
ments were performed on AAS5083 annealed material to measure
the limit strain in various deformation modes from uniaxial to
equibiaxial strain mode. To predict the failure strain and the strain
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path of a critical element, both biaxial test, and dome test models
were created and simulated in ABAQUS/EXpLICIT 6.13-2. Enough
cruciform specimens were utilized to create strain paths from
uniaxial to equibiaxial strain conditions by varying the arm dis-
placement. Additionally, conventional circular specimens were
considered by changing the gage width in dome tests to result in
uniaxial to equibiaxial strain paths. Thickness gradient criterion
and the Marciniak—Kuczynski model were used to predict the
strain path in both testing methods. In addition, numerical insta-
bility was considered to predict the failure. It was observed that
the thickness gradient criterion and the Marciniak—Kuczynski
model overestimate the failure in the biaxial test method; how-
ever, they closely represent the numerical instability in the dome
test method. From overall observation, it is concluded that higher
limit strains are acquired in dome tests than in biaxial tests due to
the contact pressure from the punch. This contact pressure occurs
when the rigid tool forces/compresses/contacts the metal during
deformation. This pressurization parameter is eliminated in a
biaxial test, which is used to characterize the material only and
tries to exclude any surrounding effect. It is also concluded that
the failure prediction methods developed from the traditional
method (i.e., tool forces/contacts and deforms the metal) may not
be viable for specimens tested in a biaxial machine.
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