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Abstract. A comprehensive rational methodology for the structural assessment of existing 

bridges is presented and specifically applied to a historic reinforced concrete arch bridge. 

The methodology is based on the use of non-destructive testing tools and structural model up-

dating procedures and involves: (a) preliminary documented research and on-site geometric 

surveys (aimed at collecting information on the “as built’’ geometry); (b) ambient vibration 

testing performed by using a grid of conventional high-sensitivity accelerometers, aimed spe-

cifically at investigating the vertical dynamic characteristics of the bridge and c) development 

of an updated Finite Element (FE) model of the structure. 

The investigated bridge, completed in May 1917, crosses the Adda river between Brivio 

(province of Lecco) and Cisano Bergamasco (province of Bergamo), about 50 km North-East 

from Milano, Northern Italy. Given the still strategic position of the bridge in the current 

road transportation network and within a systematic surveillance program of main infrastruc-

tures by the Province of Lecco, dynamic tests were performed under operational conditions.  

Main results in terms of Operational Modal Analysis and FE modelling and updating are pre-

sented and discussed. A hierarchy of FE models with different levels of refinement is devel-

oped, with the purpose of a future selection of the model that better reproduces the current 

structural properties of the bridge. In this paper an automated system identification proce-

dure has been developed and applied to the simplest of the assembled (consistent) FE models, 

whose results will constitute a benchmark for further studies upon the other most refined 

models. The aim is to perform a final baseline reference model to be used for reliability as-

sessment within Structural Health Monitoring (SHM) purposes. 
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1 INTRODUCTION 

Nowadays the development of methodologies for accurate and reliable condition assess-

ment of bridges, or other typologies of civil infrastructures, is becoming increasingly im-

portant. The process of developing or improving methodologies for determining and tracking 

the structural integrity of infrastructures based on automated monitoring systems is a main 

scope of SHM [1]. 

FE models play a key-role in the ordinary design process of new structures and in the as-

sessment of existing ones [2]. With the current advances in numerical modeling and computa-

tional capabilities, it is generally expected that a FE model consistently based on original 

technical design drawings, on-site geometric surveys, engineering judgment and assessment 

processes, shall reliably reproduce both static and dynamic behaviors of a structure. 

However, acquired experience shows that the process of developing a FE model of a struc-

ture involves assumptions and simplifications that may induce considerable errors, which are 

a consequence of the underlying complexity of the structural modeling, of the uncertainty of 

the boundary conditions and of the real mechanical behavior of materials and structural ele-

ments [3]. Moreover, variations in these features during the lifespan of a structure may occur 

due to the appearance of smeared or localized damage, causing final discrepancies between 

the characteristics of the structure at design stage and at the current state of duty and conser-

vation. 

Structural identification via modal dynamic analysis [4] and subsequent Finite Element 

Model Updating [5,6] represent consistent and widespread tools towards condition assessment 

of existing civil constructions, like bridges or structures endowed with historical values. In 

fact, it is well known that changes in the physical properties of a structure correspond to 

changes in the modal parameters (notably frequencies, mode shapes, and modal damping rati-

os) [7]. In most of Model Updating techniques the stiffness, mass and damping distributions 

of a numerical model chosen as reference configuration, are iteratively updated, so that the 

differences between the measured and the analytical values of the modal parameters are min-

imized [2]. There appear several works in the dedicated literature in which the results ob-

tained from modal identification have revealed useful for performing model updating of a 

numerical model of existing bridges [2-3,8-14]. Within such a field, this paper presents the 

results obtained from a research study that involved both experimental and analytical modal 

analysis as well as subsequent finite element model updating of a reinforced concrete bridge 

with parabolic arches, namely the Brivio bridge (1917), Italy, as described below. 

The investigation dealt within this paper involves: (a) exploiting OMA techniques to Am-

bient Vibration Testing (AVT) [3]; (b) establishing three FE models of the bridge with in-

creasing levels of detail, based on the available design drawings and on surveys performed in 

situ; (c) exploring the sensitivity of the natural frequencies of a 2D FE model of the bridge to 

changes in some uncertain structural parameters; (d) setting the parameters of such 

2D FE model, that appear good candidates for the updating procedure and (e) identifying such 

parameters, in order to enhance the fitting between experimental and theoretical natural fre-

quencies and mode shapes. The aim is to create an improved FE model which can be adopted 

as a benchmark for further scheduled analyses on more complex and detailed numerical mod-

els. 

Report on this present research investigation is organized in two companion papers. Com-

panion work [15] focuses on the analysis of the various data coming from the different adopt-

ed instrumentation, accounting also for data fusion and for reliability and uncertainty 

assessment of the acquired data, while the present note exposes the detailed AVT performed 
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with conventional high-sensitivity accelerometers and the development of an updated FE 

models of the bridge, specifically in terms of prediction of modal properties. 

The present paper is structured as follows. Section 2 describes the main characteristics of 

the Brivio bridge, which is the benchmark structural object taken for this study. In Section 3 

the results of the output-only model identification performed on the bridge are presented. In 

Section 4 the three performed FE models are described in detail. Section 5 concerns the sensi-

tivity analysis for the selection of the parameters to be considered within the model updating 

procedure, which is explained in Section 6. Finally, main conclusions are outlined in closing 

Section 7. 

2 SALIENT FEATURES OF THE BRIVIO BRIDGE 

The Brivio bridge (Figs. 1, 2), designed by Italian engineer Giuseppe Banfi on June 1912 

and completed on May 1917, is a three-span historical reinforced concrete bridge with para-

bolic arches located in Lombardia, Northern Italy, about 50 km North-East away from Mila-

no [16]. It crosses the Adda river at about 8 m from water, between the municipalities of 

Brivio and Cisano Bergamasco, linking the two provinces of Lecco and Bergamo. The spans 

of the bridge are 43.40 m, 44.00 m and 43.40 m long respectively, and consist of a deck 

joined on each of their sides to two lateral parabolic arches. The suspension is performed by 

means of sixteen hangers, per each side of each span, with rectangular cross-section that is 

32 cm wide and 60 cm high. All structural elements are made of reinforced concrete. 

The total width of the deck is 9.20 m, hosting a double-lane road and two pedestrian walk-

ways, each 0.80 m wide. The deck cross section (Fig. 2) is constituted by two outer longitudi-

nal girders framed by floor beams; girders, spaced 8.60 m center to center, display 

approximately rectangular cross sections with width of 45 cm and height of 100 cm, and 

floor beams, provided every 2.30 m, also show rectangular cross sections with width of 

28 cm, but variable height along the beam axis. The floor beams are further connected to oth-

er two longitudinal ribs of width of 20 cm, placed symmetrically at a distance of 1 m with re-

spect to the vertical longitudinal middle plane of the bridge. The resulting frame is covered by 

a reinforced concrete slab of 15 cm of high, which constitutes the support of the road. 

Figure 1: Contemporary views of Brivio bridge seen from Brivio’s riverside (right bank). 
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Figure 2: Historical representation of the technical drawings of the bridge [17]. 

The arches of the bridge show a span of about 42.80 m between the two ends and a rise of 

8.00 m at the keystone. They display a rectangular cross section characterized by a constant 

width, equal to 60 cm, and a variable tapered height starting from around 1.50 m at the 

extrema to 1.25 m at the middle. To achieve higher structural stability, the arches are linked in 

the upper part by eight transverse girders, tapered from the end to the center. 

Each span rests on either a pier or an abutment, where outer longitudinal girders end, 

through a mechanical system made of trusses, in order to allow little axial elongations, due e.g. 

to changes of temperature. 

3 MODAL DYNAMIC IDENTIFICATION OF THE BRIDGE 

This Section reports the modal estimates that have been obtained from output-only identi-

fication techniques based on the operational response data acquired on the bridge by using 

conventional high-sensitivity accelerometers. 

The response of the bridge was measured at eighteen selected points, as shown in Fig. 3. 

Since it was decided to simultaneously use ten wired accelerometers during the tests, two set-

ups were performed to measure the acceleration at opposite sides of eight cross-sections of the 

deck, considering two sensors as reference transducers, which were kept at the same locations 

in all the set-ups. 

Two time windows of 3600 s were collected for each sensor layout, with a sampling rate of 

200 Hz, which is higher than that required for this bridge, as the natural frequencies of the 

dominant modes are below 20 Hz. Hence, low pass filtering and decimation were applied to 

the data before the use of the identification tools, reducing the sampling rate from 200 Hz to 

25 Hz. 

The output-only modal identification was carried out by using both the Frequency Domain 

Decomposition (FDD) [18] and the data-driven Stochastic Subspace Identification (SSI-data) 

methods [19] available in the commercial software ARTeMIS [20]. 

The results of modal identification are summarized in Figs. 4-5 and in Table 1. The natural 

frequencies of the identified modes can be easily identified in Fig. 4 from the local maxima of 

the first Singular Value (SV) line resulting from the application of the FDD method; the cor-

responding mode shapes are shown in Fig. 5. 

2340



R. Ferrari, D. Froio, E. Chatzi, C. Gentile, F. Pioldi, E. Rizzi 

(a) (b) 

Figure 3: Points instrumented using wired accelerometers: (a) Set-up 1; (b) Set-up 2. 

The inspection of Fig. 5 highlights that: (a) almost all mode shapes exhibit regular and 

smooth shape with dominant bending or torsion, with the exception of the 7th mode, which is 

characterized by coupled bending and torsion; (b) the first two modes exhibit different fre-

quencies but practically the same mode shape. In addition, the 7th vibration mode also exhib-

its complex behaviour (i.e. the modal deflection phases significantly deviate from 0 or π). 

Figure 4: Singular value (SV) lines and identification of natural frequencies from the wired accelerometers data 

(FDD). 

Mode N. fFDD (Hz) fSSI (Hz) ζSSI (%) MAC 

1   3.564   3.449 4.60 0.997 

2   3.857   3.887 4.09 0.991 

3   6.018   5.968 3.17 0.998 

4   7.178   7.146 1.51 0.989 

5   7.690   7.592 2.82 0.991 

6   9.009   8.928 1.67 0.990 

7 11.377 11.390 1.28 0.938

8 13.086 13.040 2.01 0.987

9 17.017 16.990 1.44 0.935

Table 1: Identified frequencies fi [Hz], first span, wired accelerometers. 

Very close results, in terms of natural frequencies and mode shapes, are obtained by apply-

ing the SSI-data method, as it is summarized in Table 1. Furthermore, Table 1 reveals that the 

damping ratios of the first two modes are larger than 4%. 

It should be noticed that the “splitting” of 1st mode (with quite high damping ratios) and 

the complex behaviour of the 7th mode deserves further investigation since both the observed 

phenomena might be related to the poor state of preservation and cracking of some vertical 
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hangers. In more details, the co-existence of two close spectral peaks with similar mode 

shapes in place of one single mode is sometimes referred to as “dispersive phenomenon” [21] 

and was mainly observed in the response of cracked reinforced concrete structures. The same 

physical behaviour has been recently detected in ambient vibration testing of two different 

arch bridges [22]. 

(a) f = 3.56 Hz (b) f = 3.86 Hz (c) f = 6.02 Hz 

(d) f = 7.18 Hz (e) f = 7.69 Hz (f) f = 9.01 Hz 

(g) f = 11.38 Hz (h) f = 13.09 Hz (i) f = 17.02 Hz 

Figure 5: Vibration modes identified from the wired accelerometers data (FDD). 

4 FE MODELING OF THE BRIDGE 

Three Finite Element models of the Brivio Bridge with different levels of refinement have 

been assembled [16]. In particular, one two-dimensional model and two three-dimensional 

models have been implemented within the commercial FE code ABAQUS [23]. 

The main assumptions considered in the present FE models of the bridge are the following:  

• Euler-Bernoulli beam finite elements have been used to model all the elements of the

bridge, except for one of the two 3D models in which four-nodes shell elements have

been employed to model the deck;

• uniform cross sections, homogeneous material properties and linear elastic mechanical

behavior have been assumed; Poisson’s ratio of reinforced concrete has been held

constant and set equal to 0.20;

• an additional weight per unit volume of 10 kN/m
3
 has been considered on the deck slab,

to account for the effects of the asphalt pavement and of the walkways;

• rigid links between the concrete slab and the grid of hangers and between the latter and

the arches have been applied, for taking into account the real lengths of the structural

elements; each of these links provides a rigid constraint for translation and rotation of one

node with respect to the degrees of freedom of the other one;

• the deck has been assumed to be able to rotate only on one side, while on the opposite

side boundary conditions have been modeled according to the design characteristics of
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the bearing supports (which shall allow for longitudinal displacement); hence, a hinge-

roller scheme has been assumed for the boundary conditions of each span; 

• a single representative span of 42.80 m has been considered and no continuous beam 

effects are investigated so far. 

In the following Sections 4.1-4.3 a brief description of each FE model is reported. 

4.1 2D FE Beam model 

The assembled 2D FE model of the bridge is depicted in Fig. 6. The x and y axes represent 

the longitudinal axis and the vertical axis of the bridge, respectively. The model is composed 

of 224 elements and 178 nodes, for a total of 986 free variables in the internal code represen-

tation [23]. 

 

Figure 6: Assembled 2D FE Beam model (green markers specify where lumped masses have been placed). 

According to the original design (see Fig. 2), the arches are composed of nineteen chunks 

with different heights; then, ten types of different double rectangular cross sections with 

height decreasing from the ends towards the top have been modeled. The hangers have been 

also represented by elements with a double rectangular cross section. The masses of the ele-

ments whose axes lie out of the plane of the model have been lumped at the corresponding 

nodal positions; the values of the lumped masses are reported in Table 2. Rotational inertia 

values are considered to be negligible. 

Element Mass [kg] 

Transverse deck beam  5193 

Transverse deck beam at the ends 7419 

Transverse beam of the arches 3080 

Table 2: Lumped masses added to the 2D FE Beam model. 

The global geometrical parameters which characterize the 2D Beam model of the bridge 

are reported in Table 3. As a first step, the total mass has been evaluated by assuming a rein-

forced concrete density of 2500 kg/m
3
. Further data on the geometrical characteristics are re-

ported in [16]. 

Parameter FE model value 

Total mass 754.8 t 

Component x of the center of mass 21.40 m 

Component y of the center of mass 1.93 m 

Moment of inertia about axis z on the center of mass 1.18 10
8
 kg m

2
 

Table 3: Global geometric parameters of the 2D FE Beam model (concrete density = 2500 kg/m3). 
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4.2 3D FE Beam model 

The 3D FE beam model of the bridge is shown in Fig. 7. It has been assembled via exclu-

sive use of only 3D beam elements. The x, y and z axes represent the longitudinal axis, the 

vertical axis and the horizontal transverse axis of the bridge, respectively. The FE model 

counts for 808 elements and 668 nodes, with a total number of free variables equal to 5900. 

According to the original design drawings, each arch has been modeled as in the 2D FE 

model. Eight superior beam elements with T cross section have been added to the model, set-

ting the two arches at a relative distance of 8.60 m. The deck has been modeled as a frame-

work of beams. In the longitudinal direction, six beam elements have been placed, playing the 

role of longitudinal girders, included the reinforced concrete slab above. The cross sections of 

these elements have been modeled for best fitting the shape of the deck cross section, de-

picted in Fig. 2. In the transverse direction, beams with variable rectangular cross section 

have been placed. 

 

Figure 7: Assembled 3D FE Beam model. 

The global geometrical characteristics of the 3D Beam model are reported in Table 4. Fur-

ther data are available in [16]. 

Parameter FE model value 

Total mass 762.6 t 

Component x of the center of mass 21.40 m 

Component y of the center of mass 1.92 m 

Component z of the center of mass 4.30 m 

Moment of inertia about axis x on the center of mass 1.53 10
8
 kg m

8
 

Moment of inertia about axis y on the center of mass 1.23 10
8
 kg m

2
 

Moment of inertia about axis z on the center of mass 1.20 10
8
 kg m

2
 

Table 4: Global geometric parameters of the 3D FE Beam model (concrete density = 2500 kg/m3). 

4.3 3D FE Beam & Shell model 

A further improvement in the FE description of the bridge has been performed by consider-

ing shell elements, instead of beam elements, in the modelization of the deck, as represented 

in Fig. 8. The use of shell elements allows to describe the mean line of the deck cross section, 

by providing a more accurate reproduction of its peculiar shape. Twelve shell elements with 

six different thicknesses have been employed in the model. The final assembly of the FE 

model counts for 3678 elements and 4188 nodes, with a total number of 22660 free variables. 
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Figure 8: Assembled 3D FE Beam & Shell model. 

The global geometrical parameters of the 3D Beam & Shell model of the bridge are report-

ed in Table 5. 

Parameter FE model value 

Total mass 767.0 t 

Component x of the center of mass 21.40 m 

Component y of the center of mass 1.90 m 

Component z of the center of mass 4.30 m 

Moment of inertia about axis x on the center of mass 1.55 10
8
 kg m

2
 

Moment of inertia about axis y on the center of mass 1.23 10
8
 kg m

2
 

Moment of inertia about axis z on the center of mass 1.19 10
8
 kg m

2
 

Table 5: Global geometric parameters of the 3D FE Beam & Shell model (concrete density = 2500 kg/m3). 

As Tables 3-5 show, the FE models appear with a good level of similarity referring to the 

geometrical characteristics, demonstrating the consistency of the models themselves. 

5 SENSITIVITY ANALYSIS 

As mentioned in Introduction, the sensitivity analysis and the optimization procedure have 

been based on the simplest of the assembled FE models, that is, the 2D Beam model. 

It is well known that the selection of the parameters to be updated is crucial, and that sensi-

tivity analysis constitutes an efficient tool which allows for the selection of the parameters 

that most influence the structural responses. The sensitivity coefficients can be computed as 

the rate of change of a particular response of the model with respect to a change of the struc-

tural parameters [3]. Then, the sensitivity matrix S can be calculated as follows: 

j

i
ij

P

R
S

∂

∂
= (1) 

where Ri and Pj represent a structural response index and a structural parameter, respectively, 

with i=1,…,N, for N response indexes and j=1,…,M, for M structural parameters. The sensi-

tivity matrix can be computed for all physical element properties (material, geometrical, 

boundary, etc.), by using direct derivation or approximation techniques [2]. 

Eq. (1) evaluates the absolute sensitivities, which are characterized by the dimensions of 

responses and parameter values. If sensitivities for different types of parameters have to be 

compared, a normalized relative sensitivity matrix Sn should be better used: 

i

j

j

i
ijn

R

P

P

R
S

∂

∂
= (2) 
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Hence, the problem may be determined, over-determined or under-determined, depending 

on whether matrix Sn is square (N=M), tall-rectangular (N>M) or wide-rectangular (N<M), 

respectively. If the estimation of too many parameters is attempted, then the problem may ap-

pear ill-conditioned, in particular when observations are limited, as it usually occurs in vibra-

tion testing. Therefore, to achieve a well-conditioned updating problem it is necessary to 

select a smaller as possible number of updating parameters, which will be the most effective 

ones in producing a genuine improvement in the modeling of the structure [2]. 

In light of this, also concerning their influence in the overall dynamic behavior of the 

bridge, the following structural parameters have been selected to be used in the updating pro-

cedure: 

• Young’s modulus of reinforced concrete deck (Edeck); 

• Young’s modulus of reinforced concrete arches and hangers (Earch&hang); 

• mass per unit volume of reinforced concrete (ρconc). 

As mentioned in the work of Brownjohn et al. [2], when performing a model updating pro-

cedure, it is very important to determine a suitable initial value of a selected parameter, i.e. a 

reasonable starting point for the optimization process; this is because if the initial value is too 

far away from its real value and large discrepancies exist between the experimental and the 

numerical model, the iterative process may result in convergence to another (local) minimum, 

or even in divergence. It is usually recommended to carry out a prior manual tuning, by engi-

neering judgment or relevant preliminarily estimations, towards obtaining a reasonable ap-

proximation of the start point and of the parameter bounds before starting the optimization 

procedure. 

To accomplish such manual tuning, a set of preliminary modal analyses have been per-

formed on the 2D FE model of the bridge by varying the three parameters listed above. At this 

first stage, the goal was that of assuring that the chosen parameters truly affected the modal 

response of the structure and to roughly match experimental and numerical modal results. 

Considering 3.564 Hz as the first modal frequency of the bridge, the manual tuning of the pa-

rameters of the FE model has provided a significant matching with respect to the experimental 

outcomes. In particular, very good results have been obtained using the values of 33.0 GPa, 

36.5 GPa and 2400 kg/m
3
, for the Young’s modulus of deck (Edeck), the Young’s modulus of 

arches/hangers (Earch&hang) and the concrete mass density (ρconc), respectively. The FE model 

characterized by this particular set of parameters will be referred to as “base model” in the 

following. Fig. 9 shows the results of the modal analysis performed through the 2D FE base 

model. 

V1 fFDD = 3.565 Hz fFE = 3.601 Hz V2 fFDD = 6.018 Hz fFE = 6.084 Hz 
 

 
 

 

 
 

V3 fFDD = 7.690 Hz fFE = 7.667 Hz V4 fFDD = 13.086 Hz fFE = 12.029 Hz 
 

 

 

 

Figure 9: First four vibration modes of the 2D FE base model of the bridge (not updated). 
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The correlation between the dynamic characteristics of the FE base model and those com-

ing from the experimental results is shown in Table 6, for the first four vibration modes, via 

the absolute frequency discrepancy and the modal assurance criterion (MAC) [24], to check 

correspondences of the mode shapes. The latter is defined as follows (MAC matrix): 

φ φ
φ φ

φ φ φ φ

expT num

i jexp num

ij i j expT exp 1 2 numT num 1 2

i i j j

MAC ( , )
( ) ( )

⋅
=

⋅ ⋅ ⋅
(3) 

where φexp

i  and φnum

j  are the i-th experimental and j-th numerical mode shape vectors, respec-

tively. Each value of the MAC matrix defined in Eq. (3) effectively represents a correla-

tion coefficient ranging from 0 to 1, where a value of 1 represents a perfect correlation of the 

two mode shape vectors (i.e. a linear dependence), while a value close to 0 indicates uncorre-

lated vectors (i.e. linear independence or orthogonality condition). In general, a MAC value 

larger than 0.85÷0.90 is considered as a good match, while a MAC value less than 0.50 is 

considered to be a poor match [3]. 

Experimental 2D Beam FE base model 

Mode identifier Mode N fFDD (Hz) fFE (Hz) Δf (%) MAC 

V1 1 3.564 3.601 1.02 1.000

V2 3 6.018 6.084 1.10 0.991

V3 5 7.690 7.667 -0.31 0.993

V4 8 13.086 12.029 -8.08 0.889

Table 6: Correlation between experimental and 2D Beam FE base model dynamic characteristics for the first 

four vertical bending modes. 

Some attempts have been also performed considering the value of 3.857 Hz as the frequen-

cy of the first vertical mode of the bridge, but the outcomes of the manual tuning have turned 

out unsatisfactory. 

The normalized sensitivities (Eq. (2)) of the first six modal frequencies of the vertical 

bending modes with respect to the parameters above are represented in Fig. 10. The sensitivi-

ties have been evaluated by varying each time one of the parameters and keeping fixed the 

others to those of the base model. The plots in Fig. 10 have been obtained by linear interpola-

tion of the point-wise values of partial derivatives of Eq. (2), which have been calculated by 

using a central difference evaluation. 

The normalized relative sensitivities in Fig. 10 show that the chosen parameters truly affect 

the modal response of the structure. In particular, the plots show that: (a) the parameter that 

most influences the variations of the lower frequencies is the concrete mass density, with all 

sensitivity coefficients over 45% and almost constant for the considered frequencies; (b) con-

cerning Young’s moduli of deck and arches/hangers, the corresponding sensitivities range 

from 10% to 20% and from 30% to 40%, respectively; (c) the fundamental frequency f1 of the 

first mode, which displays the typical antisymmetric mode shape of a vibrating arch, is indeed 

influenced mainly by Young’s modulus of arches/hangers and, if compared to the other 

modes, is less influenced by the elastic modulus of deck. 

Based on the obtained results, the parameters above have been set as the starting point for 

the optimization procedure of the 2D FE model of the bridge, as described in the following. 

Table 6 shows a fairly good correlation between experimental outcomes and numerical results 

from the base model for the first three flexural vertical modes: the higher frequency discrep-

ancy ranges up to about 1% and the MAC index is never below 0.99. The forth vertical mode 
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shapes displays large deviations, in particular for the frequency discrepancy which is about 

the 8%. Then, it has not been considered in the optimization procedure. 

 

 

 

Figure 10: Sensitivity coefficients for the first six modal frequencies of the 2D Beam FE model. 
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6 OPTIMIZATION PROCEDURE FOR MODEL UPDATING  

The optimization phase allows for obtaining the parameter values that minimize the differ-

ences between the experimental and numerical modal estimates. Then, this phase involves the 

definition of an appropriate objective function and the application of an optimization tech-

nique based on a non-linear least square algorithm. The algorithm of inverse analysis herein 

adopted is described in the following Section 6.1. It takes largely inspiration from the identifi-

cation work performed in [25], in quite a different context (material indentation tests). In Sec-

tion 6.2 the results obtained from the optimization procedure are reported. 

6.1 Formulation 

The algorithm makes use of two sources of information: experimental recorded dynamic 

results available before running, from which frequencies and mode shapes have been estimat-

ed through Operational Modal Analysis (FDD); numerical data that, depending on a number 

of modeling parameters to be identified (here three material parameters: Edeck, Earch&hang and 

ρconc), arise from numerical simulations of modal analysis (Lanczos' method [23]) from the FE 

model. 

The discrepancies among target data and simulated data are minimized, towards the identi-

fication of the material parameters allowing for most effective calibration. Such discrepancy 

minimization is measured in terms of an appropriate objective function, which quantifies, 

through a vector measure, the difference between target and predicted data. In the present case, 

the assumed objective function, ω(x), corresponds to a discrete non-negative, non-

dimensional, vector least-square discrepancy measure, and two types of terms, one related to 

the relative discrepancy of natural frequencies and another related to the MAC values [11] are 

considered:  

ω(x) φ φ
T

2
exp comp

exp num 2i i
i iexp

i

f - f
, (1 )(1 MAC ( , )) , i 1,2,3

f
α α
  
 = − − = 
   

 (4) 

where exp

if  and num

if  are the experimental and numerical frequencies of mode i, φexp

i  and 

φnum

i  are the eigenvectors containing the experimental and numerical modal information re-

garding mode i and x is the (3×1) vector including the parameters to be optimized with re-

spect to the first three flexural vertical modes. If the MAC values between measured and 

updated models are near to one and the frequency differences between measured and updated 

estimates are near to zero, the model updating is deemed to be successful. 

In Eq. (4) α represents a weight coefficient [25], bounded between zero and one (0 ≤ α ≤ 1), 

allowing to shift the importance of information from frequencies and mode shapes (possibly 

based also on their availability or estimated accuracy), towards the identification process. 

Fundamental choices are (a) α=0 (information from MAC matrix only, that is from mode 

shapes only); (b) α=0.5 (equal information from natural frequencies and MAC matrix); 

(c) α=1 (information from natural frequencies only). For other values of α ranging between 

0 and 1, both test profiles could be taken into account, with variable importance, depending 

on the specific reliability of estimated frequencies and mode shapes. 

Fig. 11 presents a synoptic flowchart that illustrates the iterative process of calibration of 

the numerical model. The process involves the concatenated use of two software packages: 

ABAQUS [23] as structural solver and MATLAB optimization toolbox [26] as optimization 

routine. In the ABAQUS environment the numerical algorithm for the eigenvalues and eigen-

vectors problem of the FE models is run based on a set of initial parameter values. In the 

MATLAB routine, based on the experimental modal information, the mode pairing between 
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experimental and numerical modes is performed through the application of a least square op-

timization procedure. The minimization of the residuals in the objective function is achieved, 

by using a Trust Region method through the “lsqnonlin” function of the Optimization 

Toolbox [21]. 

Figure 11: Flowchart of the optimization process for FE model updating (adapted from [25]). 

The “lsqnonlin” function in MATLAB requires the following entries: the evaluation of the 

objective function; a start point x0 from which the search of the absolute minimum departs; 

lower and upper bounds for the optimization variables, which are applied to the procedure to 

assure that the variations of the parameters do not lay outside some reasonable limits. Then, 

the function proceeds to an iterative search towards the absolute minimum, by varying the op-

timization variables (material parameters), evaluating through them the objective function and 

its jacobian at each iteration, and checking convergence/stopping criteria, as reported in [25]. 

6.2 Optimization results  

The updated value of Young’s modulus of the deck is 34.9 GPa, of Young’s modulus of 

arches/hangers is 35.7 GPa and of concrete density is 2437 kg/m
3
, with a percentage variation 

of 5.76%, -2.19%, and 1.54%, respectively, if compared to the initially-assumed values in the 

base model. 

The updated frequencies fi are listed in the fourth column of Table 7. The frequency per-

centage discrepancies and mode-shape correlation MAC values between the measured and 

updated modes are reported in the fifth and sixth column in Table 7, respectively. 

Experimental 2D updated model 

Mode identifier Mode N fFDD (Hz) fFE (Hz) Δf (%) MAC 

V1 1 3.564 3.564 -0.02 1.000

V2 3 6.018 6.065 0.78 0.992

V3 5 7.690 7.627 -0.81 0.993

V4 8 13.086 11.942 -8.74 0.889

Table 7: Correlation between experimental and FE updated model dynamic characteristics of the first four verti-

cal bending modes. 
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The optimization procedure has resulted quite successful. The results show maximum fre-

quency difference of lower than 1% and very high MAC values larger than 99% for the 

modes within the frequency range 0-10 Hz (first three modes). 

7 CONCLUSIONS  

Ambient vibration testing with conventional high-sensitivity accelerometers, the assembly 

of three FE models with different levels of refinement and the calibration of a simplified nu-

merical FE model (2D) of a historic reinforced concrete arch bridge have been presented in 

this paper.  

From the results of the identification analysis based on the operational response data col-

lected on the bridge it is possible to observe that: (a) almost all identified mode shapes exhibit 

regular and smooth shape with dominant bending or torsion, with the exception of the 7th 

mode, which is characterized by coupled bending and torsion and exhibits complex behaviour; 

(b) the “splitting” of first mode and the complex behaviour of the 7th mode deserves further 

investigation since both the observed phenomena might be related to the poor state of preser-

vation and cracking of some vertical hangers (“dispersive phenomenon”). 

The calibration of the 2D FE model of the bridge has been based on the estimated dynamic 

characteristics of the structure determined through an operational modal analysis and it has 

involved a prior manual tuning of structural parameters selected by engineering judgments. 

Then, a sensitivity analysis and a subsequent optimization process have been performed. The 

sensitivity analysis has confirmed as a good choice the structural parameters selected for 

model updating. The application of the updating procedure has provided a 2D linear elastic 

model of the bridge, adequately representing the modal behavior of the structure in its present 

condition. In fact, good correlations with the experimental results (natural frequencies and 

mode shapes) have been obtained in the frequency range 0-10 Hz.  

The structural parameters determined for the 2D FE model will be set as the starting point 

in the updating procedures of the more refined 3D FE models, in order to finally constitute a 

FE model as a baseline reference within a possible long-term monitoring framework of the 

bridge. 
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