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The separation point of the flow around a circular cylinder has been numerically
and experimentally investigated in the regime of Reynolds number less than 280. The
present results reveal that the long-existing discrepancy in the data concerning the
time-averaged separation angles reported in the literature results mainly from the oscil-
lating characteristics of the flow separation on the cylinder surface and the experi-
mental methodologies rather than the commonly mentioned blockage-ratio effect. In
the present experiment, the time-averaged separation angles are obtained by averag-
ing the instantaneous images from a soap-film flow visualization instead of from the
commonly used streakline images from finite time exposures. Excellent agreement has
been achieved between the present experimental results and numerical simulations by
the spectral element method. Particle-streak visualization in a towing tank has also
been conducted to compare with that of the two-dimensional soap-film experiments.
It reveals that the separation angle is insensitive to the three-dimensional effect.
Variations of the time-averaged separation angles with Reynolds number can be
represented by a four-term θs–Re−1/2 relationship in the range of 7 � Re � 200. More-
over, if the data in the very low Reynolds number region are excluded, a simple linear
θs–Re−1/2 relationship can be derived for 10 � Re � 200. Since the dimensionless
boundary layer thickness and the Strouhal–Reynolds number relationship for the
circular cylinder are also known to be proportional to Re−1/2, this linear relationship
offers direct evidence that the flow characteristics of the boundary layer extend
downstream along the cylinder surface to the separation point in this Re-range. The
blockage effect on the separation angle has also been quantitatively analysed.

1. Introduction

The vortex shedding phenomena associated with flow separation from the boundary
layer of a circular cylinder have attracted the interest of scientists and engineers for
a great many years. Among the large number of investigations, some studies have
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Figure 1. Relationships of separation angle and Reynolds number from different authors,
among which a clear deviation band, shown as a grey region, exists.

focused on the separation angles in the laminar flow regime, since the flow structure
around the separation point has been recognized as the origin of vortical instabilities
in the wake. However, it is surprising that, as shown in figure 1, the existing data in
the literature concerning the separation angle of the flow around a circular cylinder
do not agree with each other. There is an approximately 10◦ deviation band (shown
as the grey area) for the observed separation angles among various researchers. The
deviation becomes larger when the Reynolds number increases. The discrepancy seems
especially significant in a regime in which unsteady wakes behind the circular cylinder
occurs. It is worth emphasizing here that almost all the existing experimental and
numerical data are located at the edge of the grey band. From the results in figure 1,
it is really difficult to say which data are ‘the most correct’. Thus, there is confusion
in declaring that the numerical result is consistent with that of the experiment. This
motivated the present researchers to initiate this study in order to determine the origin
of the vortex shedding phenomena. Whether there is a bifurcation in the separation
angle for flow around the cylinder in this regime or whether there are parameters
such as unclear systematic errors in different experimental and numerical methods, the
commonly mentioned blockage ratio of the test model and the three-dimensionality
of the flow need to be addressed.

For an experimental study of the cylinder wake, streakline visualization, especially
by continuous release of tracers (dye, smoke, bubbles, electrochemical material, etc.)
from the cylinder wall, is the most commonly used method in the literature, since
vorticity is generated from the solid boundary. For example, Thom (1933) investigated
this problem by an ink-injection technique, and Grove et al. (1964) used both the
bubble-tracer technique and variation in the refractive index due to the change in
the density caused by slightly heating the cylinder. Dimopoulos & Hanratty (1968)
employed an electrochemical technique to probe the separation point of the boundary
layer on the cylinder. Due to the restriction of the visualization methods and the
strong reflection of the illuminating light from the cylinder wall, the separation point is
commonly obtained by an extrapolation of the observed streakline from the boundary
of the recirculation bubbles behind the cylinder.
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All researchers observed the averaged separation angles directly from finite-time-
exposed photographs (i.e. time-averaged images), although the actual separation
criterion should follow the basic definition that the instantaneous wall-shear stress is
zero. However, as indicated by many authors, e.g. Merzkirch (1974) and Coutanceau &
Defaye (1991), vorticity diffuses considerably more rapidly than tracers, and the
observed tracer filament contains information that is integrated all along the path
of the tracers from the point of introduction. This might lead to misinterpretation
of the corresponding recorded patterns, especially for the unsteady wake flow when
Re >ReC , where Re is the Reynolds number and ReC is the critical Reynolds number
for the onset of vortex shedding. The Reynolds number is defined as Re ≡ UD/ν,
where U is the free-stream velocity, D is the diameter of the circular cylinder,
and ν is the kinematic viscosity of the working fluid. As a result, it is uncertain
whether the images of streakline patterns result from the flow distortion or the tracer
memory.

Another visualization method is to observe the instantaneous streamline patterns.
The paths of individual particles that are randomly dispersed within the fluid initially
are recorded for a very short time. Compared to streakline-pattern visualization, the
streamline method has the advantage of giving direct access to the velocity field and
information concerning the flow topology. Homann (1936) and Taneda (1956) used
this method by adding aluminium powder to the fluid to form streamline patterns of
near wakes and show the structural evolution of the flow with the Reynolds number.
Difficulties also arise in streamline-pattern interpretations in the case of unsteady flows
and free-surface flows that may be affected by interfacial effects and the non-identical
pressure condition.

In the foregoing review, all the flow visualizations were implemented in three-
dimensional flow facilities. None of these experiments adopted end-manipulating
methods. In recent experiments, simple parallel end-disks (or end-plates) have been
widely used at both ends of the cylinder to provide controllable and symmetric end
conditions and isolate the central test region from unwanted lateral disturbances.
The aspect ratio, defined as the cylinder length between the end-disks to the cylinder
diameter, has been found to be significantly influential in the shedding frequency and
the critical Reynolds number for the onset of vortex shedding in the flow around a
circular cylinder. Moreover, in a laminar flow regime, the vortices shed from a circular
cylinder become oblique rather than parallel to the cylinder axis under the influence
of the so-called end effects caused by the end-disks (Williamson 1996). Different
end-manipulating methods to isolate the end effects from the test region of a cylinder
have been developed (Eisenlohr & Eckelmann 1989; Williamson 1989; Hammache &
Gharib 1991; Miller & Williamson 1994; Wang, Trávnı́ek & Chia 2000). It is still
unclear whether the oblique vortex shedding changes the separation angle.

Nearly two decades ago, Couder (1981) first introduced using flowing-soap films to
conduct classical hydrodynamic experiments on two-dimensional flows. The thickness
of these films commonly ranges from 0.1 to 10 µm, so that the ratio of the characteristic
length of the flow structures to the film thickness routinely exceeds 104. Thus soap
films constitute the closest physical approximation to the concept of a truly two-
dimensional fluid. Therefore, unlike three-dimensional facilities, effects such as aspect
ratios, oblique vortex shedding and three-dimensional instabilities that may influence
the separation process are minimized. Recent experiments performed in soap-film
devices have focused on demonstrating certain characteristics of turbulent flow that
resemble those anticipated for a true two-dimensional system (e.g. Couder 1981, 1984;
Couder, Chomaz & Rabaud 1989; Gharib & Derango 1989; Kellay, Wu & Goldburg
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1995; Wu et al. 1995; Rutgers et al. 1996; Beizaie & Gharib 1997; Rivera, Vorobieff &
Ecke 1998; Wen & Lin 2001).

A complete demonstration to validate whether soap films obey the classical two-
dimensional Navier–Stokes equations was also presented by Chomaz (2001). A
theoretical analysis of the three-dimensional soap-film dynamics is performed, using
the asymptotic lubrication theory, which assumes only that the thickness of the film
is small compared to the characteristic length scale of the in-plane flow. The leading-
order approximation for the dynamics of a flat soap film gives both the physics of
the equilibrium in the free film and the order of magnitude of the neglected effects.
The evolution equations governing the leading-order film thickness, two-dimensional
velocities (locally averaged across the film thickness), average surfactant concentration
in the interstitial liquid, and the surface concentration are then given. This model takes
into account a large number of physical effects: film elasticity, film stiffness (curvature
effect), viscosity, diffusion, arbitrary large variations of thickness, adsorption and
desorption of the soap (solubility of the soap) and non-uniform initial soap concentra-
tion. A sufficient condition for the film velocity distribution to comply with the Navier–
Stokes equations is found to be that the typical flow velocity, U , be small compared
to that Marangoni elastic wave velocity, Ue, i.e. small Mach number, Me(= U/Ue). In
that case the thickness variations are slaved to the velocity field in a very specific way
that is consistent with recent experimental observations in the near wake.

One fascinating feature of flowing soap films is that, when observed in white light,
they show coloured interference patterns. This feature results from a small variation
in the thickness of the soap films, which can correspond to a passive scalar in the
velocity field, thus providing an instantaneous and global visualization of the flow
structure, such as the vorticity (e.g. Wu et al. 1995; Rivera et al. 1998; Chomaz 2001;
Yang, Wen & Lin 2001). No additional material is added to the fluid like the tracers,
which, as previously mentioned, might cause problems in the interpretation of the
image. This feature is expected to help determine the flow separation points. To our
knowledge, there has been no direct measurement of the separation angles at
consecutive instants to show the oscillating characteristics of the flow and to derive
time-averaged separation angles in the low-Reynolds-number regime by using two-
dimensional soap-film tunnels.

For the numerical study of the cylinder wake, there are two main approaches. The
first uses either a steady approach by neglecting the transient terms in the equations
or a time approach, by adding an artificial false transient term, to speed up the
calculations. This approach was widely adopted in the past, especially before the
emerging development of computers in the 1970s and 1980s, for example, Thom
(1928, 1933), Kawaguti (1953), Allen & Southwell (1955), Keller (1958), Keller &
Takami (1966), Apelt (1958), Takami & Keller (1969) and Nieuwstadt & Keller
(1973). Secondly, by using time-dependent calculations, Kawaguti & Jain (1965) have
shown that a steady-state solution is the limit of the non-steady-state solutions for
Reynolds numbers below 50. Jain & Sankara Rao (1969) removed the symmetry
constraints in the work of Kawaguti & Jain (1965) and obtained a periodic Kármán
vortex street for Re =60, 100 and 200.

Thoman & Szewczyk (1969) made extensive simulations of flow over a circular
cylinder for Reynolds numbers ranging from 1 to 3 × 105, and Jordan & Fromm (1972)
computed the same flow for Re = 100, 400 and 1000 by using a grid of 121 × 103 points.
They observed that the stagnation streamline and separation points oscillated in phase
with the shedding eddies. Lin, Pepper & Lee (1977) solved the flow by using finite-
difference techniques for Re = 40, 80, and 200. The separation angle appears to be



The separation angle for flow around a circular cylinder 237

affected by the mathematical approximation of the nonlinear terms that is used to
achieve numerical stability. Recently, simulations by the spectral element method have
successfully predicted the different characteristics of the cylinder flows in comparison
with experiments, even up to the turbulent wake transition (e.g. Henderson 1995,
1997; Blackburn & Henderson 1999). This method has the advantage of low numerical
dissipation and dispersion errors. However, in none of the systematic numerical studies
using this method was an attempt made to determine the separation angles for laminar
flows around a circular cylinder.

Thus, the plan of this paper is as follows. To clarify whether the discrepancies in the
separation angles in the literature, as shown in figure 1, result from the experimental
uncertainties or the inherent unsteady nature of the vortex-shedding phenomena,
both computational and experimental approaches are adopted in the present study.
In § 2 and § 3, brief descriptions of the numerical and experimental methods used in
this study are given, respectively. On the computational side, highly accurate spectral
element simulations were implemented for Reynolds numbers ranging from 5 to 200.
These calculations provide an accurate determination of the time-averaged separation
angles and detailed variations in the instantaneous separation angles with time for
different Re. On the experimental side, both the soap-film method and particle-streak
visualization in a towing tank were used. In § 4.1, the discussion is focused on the
time-varying characteristics of the separation angle. The variation in the separation
angle with the Reynolds number is discussed in § 4.2. The truly two-dimensional
experimental results from soap-film tunnels yield a direct comparison with our two-
dimensional numerical calculations. The empirical relationship of the separation angle
and the Reynolds number is established in § 4.3, which shows that the data obtained
from experiments are in excellent agreement with those from numerical simulations.
The blockage effect on the separation angle is also discussed.

2. Numerical methods

2.1. Governing equations and boundary conditions

The governing equations for an incompressible two-dimensional isothermal flow over
a circular cylinder are the continuity equation and the Navier–Stokes equations:
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and ui are the Cartesian velocity components, xi are the Cartesian coordinates, Fi

is the gravitational force, p is the pressure, and ρ and µ are the fluid density and
viscosity, respectively. Equations (2.1) are then written in non-dimensional form:
lengths are scaled by the cylinder diameter, D, and velocities are scaled by U , the
magnitude of the free-stream velocity.

As shown in figure 2(a), the boundary conditions for the velocity and pressure fields
are required along the exterior of the calculation domain. Uniform flow conditions
are given at the inlet (on the left-hand side of figure 2a) and both top and bottom, i.e.
U ∗ = 1 and V ∗ = 0, where U ∗ and V ∗ represent the dimensionless velocity in the x- and
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Figure 2. Sketch of (a) computational domain, coordinate system and numerical element
discretization and (b) element mesh around cylinder for 9 × 9 nodal points (thick lines display
element meshes and thin lines show grid nodal points).

y-directions, respectively, normalized with the free-stream velocity. A fully developed
condition is used for the outflow (on the right-hand side) of the velocity. On the
cylinder surface, the velocities satisfy the no-slip boundary conditions (U ∗ = V ∗ = 0).

2.2. Numerical methods

The computation was performed by the spectral-element method in space. The solu-
tions were obtained from time-dependent simulations of the Navier–Stokes equations.
The velocity and pressure coupling were treated by the second-order-mixed stiffly
stable scheme in which the operator splitting proposed by Karniadakis & Triantafyllou
(1992) was incorporated. For the steady-flow calculations in the range Re <ReC , the
transient code was modified to accelerate calculations to a steady-state solution (Yen &
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Hsu 2004). Most data in the steady recirculation regime were obtained by using this
rapid steady solver.

There are three steps in solving the momentum equations. The first is to explicitly
compute the forcing term, which contains the source term Si and the convective term
ρuj∂ui/∂xj . As shown in (2.1), the source term in the momentum equation includes
the gravitational force and the effect of variable viscosity. The second and third steps
are to solve the Helmholtz equations for pressure and velocities, respectively.

The simulations were performed in the domain shown in figure 2(a), which extends
18 diameters upstream, 38 diameters downstream and 25 diameters to each side of the
cylinder axis. The computational mesh, which consists of 312 elements, is similar to
those used in computations by Barkley & Henderson (1996) for the isothermal wake
flow behind a circular cylinder. Figure 2(b) shows a close-up of the element mesh of
9 × 9 nodal points around the cylinder. Thick lines depict the element meshes and thin
lines show the nodal points in the grid. To increase the resolution of the boundary
layer development near the wall, the elements near the wall are much smaller than
those in the outer regions. The tolerance used for the iterative conjugate gradient
solvers, employed to solve the Helmholtz equations, was less than 10−7. The mass
conservation in the average value of the divergence was always satisfied to 10−3.

2.3. Derivation of separation angle and grid-independence test

The separation point in the boundary layer is determined at the position on the cylin-
der wall where the shear stress is zero. The separation angle, denoted θs , is measured
along the streamline direction from the front stagnation point to the separation point.
Since the separation angle changes with time during the vortex-shedding period, the
instantaneous separation position should be derived from the instantaneous flow
field. The instantaneous shear stress around the cylinder surface is calculated from
the tangential velocity gradient in the radial direction of the cylinder by multiplying
the fluid viscosity. All nodal points in the radial direction of the elements located
closest to the cylinder wall are used for the polynomial curve fittings of the tangential
velocity profiles. The velocity slopes are then derived by differentiation of the fitting
curves for all grid points on the cylinder surface. If the zero shear stress point
is not located precisely at the grid point, linear interpolation between these two
neighbouring grid points is used to obtain the position of the zero shear stress, i.e.
the instantaneous separation position. In this case, the wall-shear stresses of the
neighbouring grids change sign. If there is more than one point with zero shear stress
on the cylinder surface, the point closest to the front stagnation position is chosen
as the instantaneous separation position. The value of the time-averaged separation
angle is then derived from the arithmetic mean of typically the 18 instantaneous angles
for equal time-intervals in an entire shedding period. It is worth mentioning that the
value of the averaged separation angle derived from the time-averaged velocity field
is slightly different from that mentioned above for Re >ReC .

To check the numerical grid independence, seven different nodal points of 5 × 5,
6 × 6, 7 × 7, 8 × 8, 9 × 9, 10 × 10 and 11 × 11 grids inside each element were used for
different Reynolds numbers. Figure 3 shows the numerical results of the time-averaged
separation angles for different grid nodes inside an element for the cases of Re =23,
30, 80 and 160. The first two cases are in the steady recirculation regime, and the
remaining two cases are in the laminar vortex-shedding regime. These reveal clearly
that the higher the Reynolds number, the more grids per unit element are needed
to obtain a grid-independent result. However, all results show that the time-averaged
separation angles remain almost constant for calculations with grids of more than
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8 × 8. Hence, the 9 × 9 nodal points inside each element were chosen for all the calcula-
tions in this study.

3. Experimental setup

The experiments were conducted in a towing tank and two soap-film tunnels (one
horizontal and one vertical for different Re-ranges). Since the soap-film method
inherently generates a two-dimensional wake, most experimental results shown in this
paper were obtained in the soap-film tunnels in order to have a direct comparison
with the two-dimensional computations in § 2. The results from the towing tank are
used for the purpose of comparison only.

3.1. Soap-film method

A horizontal and a vertical soap-film tunnel were used to set up the two-dimensional
flows for Reynolds numbers, Re, ranging from 20 to 275. Note that the value 275 is
much higher than the value (about 180) achievable in the traditional three-dimensional
facilities, e.g. wind tunnels and water tunnels, for two-dimensional laminar flows
around a circular cylinder because of the development of three-dimensional instabili-
ties thereafter. The horizontal soap-film tunnel was originally developed by Gharib &
Derango (1989). This device consists of a frame (5 cm wide and 12 cm long, shown
at the extreme right in figure 4a) with one end positioned in a diluted soap solution
reservoir, while the other end is subjected to a planar water jet as a film-pulling
mechanism. The test section is the horizontal portion of the frame, consisting of two
parallel copper rods supported by two legs, one at each end. The size of the frame is
limited by the film’s tendency to bow due to gravity in the flat section of the tunnel.
The tunnel allows free-stream velocities, U , up to 0.9 m s−1.

The vertical soap-film tunnel depicted in figure 4(b) was originally developed by
Kellay et al. (1995). The tunnel consists of an upper reservoir and a lower reservoir
connected by two nylon fishing wires. The soap film is then bounded at its edge by
these two thin lines, with the parallel vertical portion as the test section. The tunnel
height is about 2.5 m; the width (typically 5–10 cm) can be changed by varying the
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Figure 4. Sketch of (a) horizontal and (b) vertical soap-film tunnels.

separation distance between the nylon lines. The flow is driven by gravity. As the
film emerges from the injection point at the top of the tunnel through a valve, it
accelerates for a short distance but is then slowed by air friction across its surfaces.
In the test section the film nearly approaches a terminal velocity. The free-stream
velocities, ranging between 0.8 and 2.0 m s−1, can be instantly tuned by changing the
injection rate of the valve. Compared to the horizontal soap-film tunnel, much larger
models and higher fluid velocities are possible in the vertical tunnel and, thus, yield a
higher Re. The vertical soap-film tunnel supplements and extends the results for the
flow obtained by its horizontal counterpart.
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To ensure that soap films obey the classical two-dimensional Navier–Stokes equa-
tions, the flow Mach number, Me(= U/Ue), must be small as mentioned in § 1. The
Marangoni elastic wave velocity, Ue, depends on the thickness of the soap film and
the composition of the soap. Taking the example of SDS (sodium dodecyl sulphate)
soap molecules the waves travel at 4 m s−1 in a 10 µm thick film and at 13 m s−1 in a
1 µm thick film for a soap concentration of order 0.1% (see Couder et al. 1989 for
details). In the current experiments, Ue, was of order 10 m s−1 and U was kept below
1.5 m s−1 to ensure two-dimensionality.

Both tunnels are shielded from the room by curtains to prevent air currents from
disturbing the film. The tunnels are also placed on weak-spring passive isolation
systems to minimize the effects of floor vibrations. All the experiments were conducted
at night when disturbances were minimal. These measures protect the film from any
significant lateral motions (normal to the film surface) that impose arbitrary large-
scale flow on the film. Since the film is continuously fed, evaporation does not pose
a problem for either tunnel.

After the film is set into motion in quiescent air, two air boundary layers grow
on each side of the film. The flowing-soap film is then subject to nonlinear shear by
the surrounding air in the vicinity of the cylinder. This air friction effect has been
addressed in the pioneering work of Couder et al. (1989) on the hydrodynamics of
soap films. The air friction will affect the film motion and consequently its two-
dimensionality unless the inertial force of the film element is much larger than the air
friction on the film. The ratio of the inertial force to the air friction is estimated by
the dimensionless parameter C = (eρ

√
U )/(2ρa

√
νaD), where ρ and e are the density

and thickness of the film, and ρa and νa are the density and kinematic viscosity of
the air, respectively. Therefore, it is only for small diameters in thick films that the
Reynolds number retains its critical role and the effect of air damping is negligible.
In all our experiments, we have been careful about this issue and ensured that the air
friction did not affect the film motion seriously.

Experiments were performed with mixtures of distilled water and 0.5%, 1.0% and
1.5% commercial liquid detergent (Ivory Dishwashing Liquid) by weight. No glycerol
was added to the mixture. The film thicknesses were estimated to be 12, 10 and 8 µm
for the flowing soap films of 0.5%, 1.0% and 1.5% soap concentrations, respectively,
by measuring the flow rate (the discharged volume within a time period) and dividing
it with the free-stream velocity and the width of the tunnel. These thicknesses represent
thick soap films. Small circular cylinders with diameter D ranging from 1 to 6 mm
made of smooth stainless-steel rods were used in the experiments. The cylinder was
set normal to the free stream, spanning the central part of the test section. The tunnel-
wall blockage ratio, BR, defined as the ratio of the cylinder diameter to the channel
width between two tunnel walls, was kept at less than 0.08.

A commercial one-component laser Doppler velocimetry (LDV) system (TSI IFA-
750 assembly) was used to measure free-stream velocities and velocity fluctuations
in the cylinder wake. For both tunnels, the longitudinal turbulence intensity did not
exceed 1%. The free-stream velocity and turbulence intensity were uniform to within
0.007 U and 0.001 U , respectively.

In order to determine the flow Reynolds number, one also needs to find the film
viscosity. The dynamic viscosity of the soap film, µ, has been given by Trapeznikov
(1957) as µ = µb + 2µs/e, where µb is the bulk viscosity of the interstitial fluid and µs

is the surface viscosity of the superficial layers. This shows clearly that the thinner the
film, the greater the contribution of the surface layers. Although Trapeznikov does
not suggest any practical method to obtain the surface viscosity, from the equation
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we should expect obtain a viscosity of the soap film quite different from the bulk
viscosity of water by changing the film thickness and/or the surface viscosity of the
superficial layers. Due to the practical difficulty of measurement of surface viscosity
and the complex properties of the commercial liquid detergents, the evaluation of the
film viscosity is left to empirical methods. It is known that, for Reynolds numbers
(based on the diameter of the cylinder) up to about 180, the two-dimensional vortex-
shedding process of a circular cylinder at a macroscopic level has a strong similarity
to its three-dimensional counterpart (see Gharib & Derango 1989 and also Wen &
Lin 2001). As a result, the vortex-shedding approach was adopted to determine the
film viscosity and then the flow Reynolds number. By measuring the velocity and
shedding frequency of a known-size cylinder in the film, the Strouhal number, St, can
be obtained. By substituting St into Roshko’s (1954) well-known equation,

St = f d/U∞ = 0.212 − 4.5/Re, (3.1)

Re can be found. The kinematic viscosity of the film, ν, is determined consequently and
its values are 1.32 × 10−5 (e ≈ 12 µm), 2.0 × 10−5 (e ≈ 10 µm), and 3.5 × 10−5 (e ≈ 8 µm)
m2/s for 0.5%, 1.0%, and 1.5 % soap-film solutions, respectively. This shows that
the viscosity increases when the film thickness decreases. In the measurements of
Vorobieff & Ecke (1999), they also used the vortex-shedding approach to determine
the film viscosity and found ν ≈ 1.0 × 10−5 and 3.7 × 10−6 m2/s with e ≈ 3 and 12.7 µm,
respectively. Apparently, our soap films in this study are a little more viscous than
those of Vorobieff & Ecke (1999). Considering the differences in specific soap solutions
(soap brand and concentration) and film thickness, both results show that the soap-
film viscosity can be more than 10 times that of pure water. Gharib & Derango
(1989) and Wen & Lin (2001) performed detailed investigations of the uncertainty in
the measurements of the film viscosity. The estimated uncertainty of the film viscosity
was less than ± 5%, which led to an estimated accuracy of Reynolds numbers of
± 6%. Note that this estimated film viscosity includes the effect of all the experimental
factors, such as the meniscus formation around the cylinder. Further comments about
the meniscus effect are made later on.

The soap-film flows were visualized using traditional flash photography and a high–
speed CCD camera. In the flash photography, the soap-film flows were illuminated
by a white-light stroboscope (Strobotac 1546) and recorded by a traditional camera
(Nikon FM-2). The pulse width of the light source was approximately 1.2 µs. A
high-speed CCD camera (FASTCAM-Super 10 K) was also used to freeze the images
of the instantaneous flow patterns and to reveal the instantaneous oscillating flows
around the test model. The resolution of each frame was set at 512 × 240 pixels;
the frame speed was set at 500 frames per second. A close-up lens (Nikon, 200 mm
Micro +PB 6 bellows) was added onto the CCD to magnify the flow image close to
the cylinder. Illumination was provided by a halogen light source (Fostec, 8375).

3.2. Particle-streak visualization in the towing tank

Figure 5 shows a schematic representation of the experimental setup for the flow
visualization conducted in the towing tank. A mixture of glycerol and water solution
(50% in volume) was contained in a 460 mm (width) × 455 mm (height) × 1500 mm
(length) glass tank. The density and viscosity of the working fluid were measured
before each series of experiments to accurately determine the Reynolds number. The
viscosity of the glycerol–water mixture was measured by a viscometer (Brookfield,
model DVII+); the density was determined by direct division of fluid weight by
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Figure 5. Schematic sketch of experimental setup for flow visualization in a towing tank.

volume. An electronic scales (Excell, EKW-6) was used to measure the weight; the
volume was measured by a beaker.

To minimize the vibrations from the laboratory environment, the entire test section
was installed on a large robust wooden desk and the particle-streak visualization
experiments were conducted at night. The cylinder model was firmly fixed on a highly
stable traversing unit (Yamaha, Flip-BLS II). The traversing speed ranged from
0.06 cm s−1 to 120 cm s−1. The maximum stroke of the traversing unit was 2 m.
Capillary glass tubes of different sizes were used as the model circular cylinder. The
blockage ratio ranged from 1/18 to 1/46. The biggest capillary glass tube had an
external diameter of 25 mm. A laser sheet, of about 1 mm thickness, generated by
a 2 W laser beam passing through a collimator and a cylindrical lens, was used to
illuminate the flow field in the dark room. A tracer consisting of 50 µm polymide
particles (Dantec) was used to reveal the flow pattern. Special care was taken to
minimize the image distortion in the flow observed near the cylinder. Either a digital
camera (Nikon Coolpix 990) or a CCD-camera (JAI CV-M10) in conjunction with
a frame-grabber (Matrox Pulsar) was used to record the image and transfer it to a
computer for storage and further processing.

4. Results and discussion

4.1. Time-varying characteristics of separation angle

Figure 6 shows a series of instantaneous streamlines and vorticity lines for flow around
a circular cylinder under the condition of Re =100 within a vortex-shedding period.
The flow is from left to right. The streamlines are plotted as the solid lines and the
constant-vorticity lines are shown as the dashed lines, revealing an overall view of how
the streamlines and vorticity field are transformed within an entire period of vortex
shedding. To acquire a better understanding of the vortex-shedding process, the flow
information close to the separation point was examined. Figure 7 shows a blown-up
view of the instantaneous streamlines, vorticity lines and also the velocity vectors
near the upper-right quadrant of the cylinder. Nine instantaneous flow patterns of
equal time intervals in a complete vortex-shedding period are displayed in this figure.
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Figure 6. Streamlines (solid lines) and vorticity lines (dashed lines) for Re= 100.
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Figure 7. Blown-up view of streamlines, vorticity lines and velocity vectors for Re= 100
near the separation point (denoted S).

The flow conditions are the same as in figure 6. The velocity vectors are displayed as
short arrows to indicate the flow directions in different grids, thereby showing clearly
how the instantaneous separation point (denoted S, and shown as a solid point on
the surface of the circular cylinder in figure 7) oscillates on the cylinder surface in a
complete shedding period. The instantaneous separation angle and the corresponding
instant are displayed at the lower-left corner of each plot. An oscillation of
approximately ± 3◦ in the separation angle is found for this flow condition.

Figure 8 shows the variations in the instantaneous separation angle (θ s) of the
laminar flow around a circular cylinder in a complete vortex-shedding period (tp)
from the numerical simulations for Reynolds numbers of 50, 80, 120, and 160. Since
θs remains constant in the steady recirculation regime, the results for Re <ReC are not
shown in this figure. The plot of θs versus time shown in figure 8 starts from any
arbitrary instant within the vortex-shedding period. The θs value decreases with
increasing Reynolds number; however, the variation in θs values increases significantly
as the Reynolds number increases for Re >ReC,. As shown in the examples, the
variations in the instantaneous θs values from the time-averaged mean values are
around ± 0.5◦ for Re =50, and ± 7◦ for Re = 160.

As part of the experimental results, figures 9(a) and 9(c) present two typical
flash photographs of macroscopic flow patterns in the soap film for Re = 35 and 100,
respectively. The flow is left to right. Figures 9(b) and 9(d) show the corresponding flow
visualization results from the towing tank. The diameter of the cylinder is 8 mm. The
shutter speed was set at 0.134 and 0.067 seconds, respectively. At lower Re (as shown
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Figure 8. Instantaneous separation angles within a vortex-shedding period for five different
Reynolds numbers from the present numerical calculations.

in figures 9a and 9b), a pair of steady eddies could be seen in the wake. The separation
point in the soap-film experiment was determined from the intersection of the cylinder
surface and the extrapolated line from the boundary of the outermost closed fringe
of the recirculation eddy (shown as the white triangle in figure 9a). As Re increases,
the wake becomes unstable, thus producing the von-Kármán vortex street (see figures
9c and 9d). The flow features of the soap-film experiments (figures 9a and 9c) are
basically the same as their three-dimensional counterpart at the same Re (figures 9b

and 9d). The separation point in the soap-film experiment was estimated near the
point where the dark streakline leaves the cylinder surface, shown as the white triangle
in figure 9(c). The error for determination of the separation angle was estimated to
be less than ± 1.0◦.

It has long been expected that the vortex-shedding phenomena of a bluff body have
a close relationship with the characteristics of the boundary layer at the separation
point. However, it is surprising to note that there is relatively little information in
the literature about the time-dependent characteristics of the separation point for
the flow around a circular cylinder. It is, therefore, interesting to display how the
origin of the shedding vortex, i.e. the separation point, changes with time for different
Reynolds numbers. Figure 10 shows time-sequenced pictures of the variation in the
separation angle taken by a high-speed CCD camera from the horizontal soap-film
tunnel over a shedding cycle. The camera was oriented vertically above the cylinder.
The diameter of the stainless steel circular cylinder was 2.9 mm, the shutter speed
was 500 Hz, and the frame rate was 500 frames per second. The flow was from left
to right, and Re =100. The artificial grey portion plotted at the upper-left corner
in figure 10(a–e) is the circular cylinder, which was measured from the reference
photo taken from the same experimental setup, but without the soap film. The black
rim around the cylinder was caused by the total reflection of the illuminating light
incident in the meniscus region of the soap film that prevents the scattered light from
reaching the camera. The width of the meniscus, denoted as m, was estimated to be
about the same width as the black rim and was approximately 0.3–0.4 mm wide in the
present study. Taking into account the existence of the meniscus around the cylinder,
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(c)

(d )

Figure 9. Typical flow visualization pictures of flow over a circular cylinder at Re= 35 (a and
b) and Re= 100 (c and d); (a) and (c) are from soap-film tunnels, (b) and (d) from the towing
tank.
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Figure 10. A close-up view of flow separation from a circular cylinder at Re= 100 in the
horizontal soap-film tunnel; dimensionless time in a vortex shedding cycle, T ∗ = t/tp = (a) 0,
(b) 0.227, (c) 0.5, (d) 0.727, and (e) 1.0. In (f ) the flow structure is sketched (symbol S is
separation point; white arrowheaded lines demonstrate oscillations of the separation point;
solid black lines are instantaneous streamlines; dashed line is flow-dividing line).

Couder & Basdevant (1986) defined an effective diameter, equal to d + 2m, as the
characteristic length for calculating the Reynolds number. However, the m value is
not a constant, but a function of the surface contact angle between the fluid and
solid surface, cylinder diameter, Reynolds number, etc. This value must be determined
from each experiment. Because the flow is almost stagnant inside the meniscus from
experimental observations and the meniscus has been shown to have little influence
on the vortex-shedding characteristics in recent studies, e.g. Gharib & Derango (1989),
Vorobieff & Ecke (1999), Horváth et al. (2000), and Wen & Lin (2001), the effect of
the meniscus has been absorbed into the derivation process of the film viscosity, for
the sake of simplicity. This means that the cylinder diameter D is still used as the
characteristic length scale for the soap-film experiments, in which the film viscosity is
calculated from the existing empirical Strouhal–Reynolds numbers in equation (3.1).

Figure 10(f ) is a sketch of the representative flow pattern in figure 10(a–e). As
described previously, the separation angle θs is determined from the position of S,
i.e. the intersection of the extrapolation line of the outermost closed fringe and the
cylinder surface. Due to the existence of the dark ring caused by the meniscus,
instead of θs , only θmax and θmin are indicated as the white arrows on the edge of the
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black meniscus ring in figure 10(a–e). Here, θmax and θmin are the maximum and the
minimum angles where the line of the outermost closed fringe intersects with the dark
rim, as determined from the continuous experimental recording (2 s). The difference
between θmax and θmin was estimated to be about 3◦. Of course, from the extrapolation
characteristics (see figure 10f ), the oscillation of the separation angle should be larger
than the oscillation range of |θmax − θmin|. As a result, figure 10 reveals clearly that,
although the variation in the θs values is not large, the location of the separation
dividing line, shown as the dashed line and displayed only in figure 10(f ), has changed
from one photograph to another. In any case, figure 10 shows at least a first qualitative
view of the flow characteristics very near the separation point.

4.2. Variation in separation angle with Reynolds number

Figure 11 shows the numerically simulated flow fields near the circular cylinder for
Reynolds numbers ranging from 10 to 200. The flow is from left to right. As in figure 7,
only the upper-right quarter of the cylinder is plotted. The solid lines, dashed lines
and short arrows are the instantaneous streamlines, vorticity lines and velocity vectors,
respectively. Since the purpose of figure 11 is to reveal the variations in the separation
angles with each Reynolds number, the flow field at an arbitrary instant in a shedding
cycle for each Reynolds number is shown. The instantaneous θs and the corresponding
Re are shown within the cylinder at the lower-left corner of each figure. Figure 11
demonstrates clearly that the separation point, shown as the solid dot on the cylinder
surface and denoted S, moves upstream with an increasing Reynolds number. The
tendency for upstream shifting of the separation point for an increasing Re is relatively
small for Re � ReC in comparison with that for Re <ReC .

Figure 12 shows the relationship between the time-averaged separation angle for
flow around a circular cylinder and the Reynolds number. The present numerical
results are shown as the solid circles with vertical error bars. Each error bar indicates
the maximum oscillation range of the instantaneous separation angle around the
individual time-averaged value for a given Reynolds number. Experimental data
(only the time-averaged values) from different authors in the literature are also shown
in this figure. All the data reveal that the time-averaged separation angle decreases
as the Reynolds number increases, implying that the flow separates earlier from the
cylinder wall when the Reynolds number increases for Re � 200. The decreasing of
the separation angle with an increase in the Reynolds number is especially significant
in the steady recirculation regime, i.e. Re <ReC(= 47.5) and is relatively small in the
periodic wake regime, i.e. Re � ReC . This trend agrees with that of figure 11.

As already mentioned in the Introduction and shown again in figure 12, the
distribution of the experimental data from different authors can be split into two
groups. The lower data set (shown as filled grey symbols) includes experimental
results from Thom (1933), Homann (1936) and Taneda (1956), and the upper data
set (shown as open symbols) includes those of Grove et al. (1964) and Dimopoulos
& Hanratty (1968). A band of about 10◦ deviation in θs values exists between these
two data groups. The present numerical data overlap quite well with the lower set
of the experimental data in the steady recirculation regime, for Re <ReC (shown on
the left-hand side of figure 12). The reason the data of Grove et al. (1964) lie too
high in this regime is possibly due to the buoyancy effect caused from heating of the
cylinder, which was used to identify the separation positions. As the Reynolds number
increases, the buoyancy effect becomes less significant and the aforementioned data
are in better agreement with the present results, as shown on the right-hand side of
figure 12. In the flow regime of a periodic laminar wake (Re � ReC), the present data
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Figure 11. Variations in flow patterns for Re= 10 to 200 from numerical simulations.



252 M.-H. Wu, C.-Y. Wen, R.-H. Yen, M.-C. Weng and A.-B. Wang

170

160

150

140

130

120

110

100
0 50 100 150 200 250

Re

Present calculations

Thom (1933)

Homann (1936)

Tanada (1956)

Grove et al. (1964)

Dimopoulos & Hanratty (1968)

θs

(deg.)

Figure 12. Comparisons of present numerical results with experimental data from the
literature for the time-averaged separation angle and Reynolds number relationship.

begin to deviate from the lower experimental data set and approach the mean values
of the upper and lower data sets as the Reynolds number increases. It is important
to point out that the variation in the instantaneous separation angle with time is
greater for a higher Re (see the size of error bars across the solid circles), due to
the oscillating character of the vortex-shedding process. The sizes of the error bars
are approximately the same as the existing differences between the upper and lower
experimental data sets. This means that the oscillation band precisely matches the
deviation band in the literature. On the basis of the above observations from figure
12, one can reasonably conclude that the data from Thom (1933), Homann (1936)
and Taneda (1956) coincide with the lower bound, and that of Grove et al. (1964)
and Dimopoulos & Hanratty (1968) coincide with the higher bound of the separation
angles.

Factors such as the perspective effect of angle measurements, different limitations of
the experimental methods, and the uncertainties in the unsteady flow phenomena are
believed to cause this experimental deviation. In general, almost all the experimental
separation angles were determined from the flow visualizations (e.g. streaklines, or
pathlines of the tracers) within finite exposure times. When the tracers were released
from upstream of the cylinder, large particles, which scattered much more light,
revealed the large-scale motions of the flow pattern. In most cases, the large tracers
seldom reached the small oscillating separation regions. Moreover, the scattering light
from small tracers near the separation regions was relatively weak and was usually
suppressed by the strong reflected and refracted light from the cylinder wall. Therefore,
investigators might take only the nearest streakline or pathline from upstream around
the cylinder to estimate the separation position. The separation angles have thus
been underestimated (shifted upstream) and have typically formed the lower bound
of the measured values. The case of releasing tracers from the leeside of the cylinder
that forms the upper-band data is similar. On the basis of this viewpoint and consi-
dering the experimental measuring uncertainties, a quite good consistency of the
present calculations with the experiments shown in figure 12 is observed. On the other
hand, the data in figure 12 can explain quite well the existing deviations in the
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Figure 13. Curve fitting for the θs–Re−1/2 relationship (a) by polynomial fitting for
7 � Re � 200 and (b) by linear fitting for 10 � Re � 200.

experiments in the literature that at present remain unclear. This also suggests that
the deviations in the experiments in the literature are not caused by flow bifurcation.
Note that the values of the blockage ratios are 0.2 for Grove et al. (1964), about 0.1
for Homann (1936) and Thom (1933), about 0.08 for Dimopoulos & Hanratty (1968),
and less than 0.03 for Taneda (1956). However, the data from Homann (1936), Thom
(1933) and Taneda (1956) belong to the same data set (lower group) in figure 12
but those from the other two studies belongs to another data set. It is very clear
that no direct correlation exists between these two data sets and their corresponding
blockage ratios. As a result, the experimental deviations between different researchers
in the periodic wake regime must come mainly from the methodologies and criteria
used, rather than from the influence of the blockage ratio as suspected previously.

4.3. Empirical equation for separation angle and Reynolds number relationship

The relationships between the wake characteristics and the Reynolds number have
been frequently expressed in terms of 1/Re, e.g. the Strouhal and Reynolds number
relationship by Roshko (1954) and the drag coefficient and Reynolds number
relationship by Henderson (1995). However, as recently demonstrated by Fey, König &
Eckelman (1998) and Williamson & Brown (1998), the parameter 1/Re1/2 is a more
appropriate than 1/Re to represent the Strouhal and Reynolds number relationship
for the cylinder wake. Wang et al. (2000) revealed recently that, based on an effective
temperature concept, the parameter 1/Re1/2 is still the most appropriate one to
describe the Strouhal and effective Reynolds number relationship for flow around a
heated circular cylinder. Therefore, the relationship between the separation angle and
the Reynolds number is presented in the form θs–Re−1/2 in figure 13.

Figure 13(a) shows the relationship between the averaged separation angle and the
Reynolds number from various numerical calculations. The symbols and the solid
line designate the calculated data and the corresponding fitting curve, respectively.
From a least-square curve fitting, the four-term θs–Re−1/2 relationship is written as

θs = 95.7 + 267.1 Re−1/2 − 625.9 Re−1 + 1046.6 Re−3/2, (4.1)

which yields a root-mean-square error of 0.0004 for 7 � Re � 200. Note that no steady
separation bubble was found for Re � 6. This result is the same as that of Takami &
Keller (1969).
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Figure 14. Present θs–Re−1/2 relationship in comparison with numerical data from the
literature; equation (4.1) is plotted as a solid line.

If the fitting range is restricted to 10 � Re � 200, a linear empirical equation for the
θs − Re−1/2 relationship is obtained as

θs = 101.5 + 155.2 Re−1/2, (4.2)

which yields a root-mean-square error of 0.0005. This means that the θs–Re−1/2 rela-
tionship curve, shown in figure 13(b), is quite linear except for the very low Reynolds
number range, i.e. Re < 10. Also shown in figure 13(a) is the dashed curve of (4.2)
for comparison with (4.1). Since the dimensionless boundary layer thickness and
the Strouhal and Reynolds number relationship for the circular cylinder are also
proportional to Re−1/2 (Fey et al. 1998; Williamson & Brown 1998; Wang et al. 2000),
(4.2) provides direct evidence for the linkage of the two phenomena. The variation in
vortex shedding is governed by the flow characteristics at the separation position, the
latter being characterized by the boundary layer flow on the cylinder surface.

Figure 14 shows comparisons of the numerical results from different authors (shown
as symbols) and the empirical equation (4.1) (shown as a solid curve). The present
numerical data are also plotted as open square symbols in this figure, which shows
that most numerical data from different investigations fall on the (4.1) curve, except
the data from Lin et al. (1977) and Ahmad (1996). The latter used the steady-state
approach of the Navier–Stokes equation to solve the problem in the region Re >ReC .
Overall, a quite good consistency of the present calculations with most of the numerical
work is revealed. On the other hand, the applicability of (4.1) in the entire laminar
range is also revealed.

Figure 15(a) represents the variation in the measured time-averaged separation
angle with the Reynolds number from the soap-film experiments. The mean value of
the experimental separation angle was taken from ten randomly frozen instantaneous
photographs (by using 1.2 µs illumination) at a given Reynolds number. Again, the
error bars show the maximum oscillation ranges of the instantaneous measured values
from the averaged separation angles. Also shown in figure 15(a) for comparison are the
data from the particle-streak visualization in the towing tank. Excellent agreement
between the measured data and the numerical results is observed in this figure.
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Figure 15. Comparison of separation angles of present experiments and numerical
simulations: (a) θs–Re plot and (b) θs–Re−1/2 plot.

Figure 15(b) shows an alternative presentation of figure 15(a) in the form of the
θs–Re−1/2 relationship. Equation (4.2) is also plotted in the figure. Again, excellent
agreement among the measured data from the soap-film experiments, the numerical
results and (4.2) is demonstrated.

As mentioned in § 3.1, the blockage ratio of a cylinder, denoted BR, is defined as the
ratio of the cylinder diameter to the channel width between the top and bottom walls
(with a no-slip condition). For the numerical simulations, if the free-stream boundary
condition is applied at both the top and bottom walls as shown in figure 2(a), this is
denoted the case of zero blockage ratio and is considered as the comparison standard
that free from the blockage effect. Figure 16 shows a comparison of numerical and
experimental results of time-averaged separation angles for different blockage ratios
at Re = 10 and 30. The reason to choose these Reynolds numbers is because values of
the separation angle are higher in the steady recirculation regime and the change due
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Figure 16. Comparison of time-averaged separation angle from experiments and numerical
simulations for different blockage ratios (BR).

to blockage ratio could be thus easily detected by experiments. The mean value of
the experimental separation angle was taken from nine independent runs at the given
Reynolds numbers. The error bars show the maximum variation of the measured
values of the separation angles. Very good agreement between the numerical data
and the experimental results is observed in this figure. Moreover, the higher the
blockage ratio is, the lower the value of the separation angle becomes. This could be
interpreted physically as the acceleration effect of the flow around a circular cylinder
becoming more significant when the two sidewalls approach to the cylinder. The
local Reynolds number thus becomes larger and the flow separates earlier from the
cylinder in comparison with that of lower BR-values.

To obtain more quantitative information on the effect of blockage ratio on the sep-
aration angle, figure 17 shows the simulation results of the time-averaged separation
angle at different blockage ratios in both of the steady recirculation and laminar
vortex-shedding regimes. Figure 17(a) shows the difference of time-averaged separa-
tion angle �θs (in degrees) between θs(Re, BR) and θs(Re, BR= 0). Figure 17(b)
displays the dimensionless form of the separation angle θ∗

s , which is defined as the
ratio of θs(Re, BR) and θs(Re, BR= 0). For comparison, the case without blockage
effect is shown as the dashed lines in figure 17. The figure reveals clearly that the
deviation of the time-averaged separation angle from θs(Re, BR= 0) becomes more
significant as the blockage ratio increases in all calculated cases. In figure 17(a) the
higher the Reynolds number is, the smaller the value of �θs is for the same blockage
ratio. For the cases in the periodic wake regime, e.g. Re =120 and 160, all values of
�θs are less than 0.5◦ for BR= 1/10, which is commonly considered as the maximum
allowable blockage ratio for the two-dimensional experiments. This shows clearly that
the value of �θs caused by the blockage effect is one order of magnitude less than
the well-known deviation (∼10◦ see figure 1) of the upper and lower data sets from
various articles in the literature. Regarding the blockage effect on the oscillation of
the separation angle (not shown), this is less than 0.8◦ for BR= 1/10 at Re = 120 and
160. The influence of the blockage effect is also not significant. Therefore, present
results reveal directly and clearly that the blockage effect is not the cause of the
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Figure 17. Relationship between time-averaged separation angle and blockage ratio (BR)
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normalized by that without a blockage effect (the unbounded flow, i.e. the top and bottom are
at in the free-stream boundary condition).

discrepancy in figure 1. The blockage effect has more significant effect on the time-
averaged separation angle in the steady recirculation regime than that in the laminar
vortex-shedding regime. For instance, �θs reaches about 5.5◦ and 1.5◦ for BR= 1/10
at Re = 10 and 30, respectively. As a result, the blockage effect has much more
significant influence on the separation angle for lower Reynolds number. However,
this is still within the measuring uncertainty for most experiments and, moreover, the
numerical and experimental data of previous studies are basically consistent in this
regime (see figures 12 and 14).

5. Conclusions

The separation angle of the flow around a circular cylinder has been numerically and
experimentally studied for Re < 280. The results from the numerical simulations have
clearly revealed that the long-existing deviation band of separation angles obtained
by different researchers in the literature results from the experimental methodologies
and the intrinsic unsteady nature of the separation point in this Reynolds number
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range. The blockage ratio, which is the commonly suggested reason for this discre-
pancy among experiments, has been demonstrated to be not the major issue. For the
time-averaged separation angles, the present numerical results can be well described
by a four-term polynomial curve fitting of θs = 95.88 + 264.76 Re−1/2 − 619.01 Re−1 +
1042.4 Re−3/2 for the θs–Re−1/2 relationship for Reynolds numbers ranging between 7
and 200. This fitting curve gives a root-mean-square error of 0.0004 in the investigated
Reynolds number range and agrees well with other numerical studies in the literature.
Excluding data for Re < 10, a linear empirical relationship has been proposed for
Reynolds numbers ranging from 10 to 200, written as θs = 101.45 + 155.05 Re−1/2. This
linear fitting curve gives a root-mean-square error of 0.0005.

Experimentally, the soap-film flow visualization method has been used to derive
the separation angle for the first time. This method offers minimum uncertainties
in determining the separation angle in comparison with all existing counterparts of
three-dimensional flow-visualization methods. The experimental data are in excellent
agreement with the present numerical simulations.
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