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Abstract: Regulation structures such as submerged vane are needed to reduce and eliminate environ-
mental damage due to increased flooding in rivers. In particular, scours on the outer bank due to
increased flow velocities cause the river bed to change and deteriorate. In this study, the effect on flow
velocities was investigated experimentally by using 3-array submerged vane structures in areas close
to the outer bank. The experimental vane results were performed in the open channel setup. The
Computational Fluid Dynamics (CFD) results obtained with the numerical model were also verified
and compared with experimental results. It has been observed that the CFD model gives results close
to the real experimental results. The standard-based k-ε model was used as the turbulence model. In
the outer meander, the 3-array submerged vane with a 3-vane structure was found to affect the flow
velocity by 16–27% in the region behind the vane. The flow velocities were investigated along with
depth using the CFD and found that the mean velocity was reduced by 14–21% along the depth. It is
also recommended that submerged vane structures can be applied as an effective method in reducing
flow velocities and directing flows.

Keywords: submerged vane; meander; experiment; computational fluid dynamics; open channel flow

1. Introduction

Regarding, river meandering regulation and especially submerged vane studies, the
complexity of the subject matter is unsteady and nonlinear due to the effect of more parame-
ters on the event, and has been studied by very few researchers in the past. Therefore, there
is very limited laboratory study. Studies conducted with a submerged vane in meander
curves in the 1980s by Odgaard and Kennedy, Odgaard and Lee, Odgaard [1–4] pioneered
the entry of submerged vane into the literature as a new method. Marelius and Sinha [5]
conducted a study to create the optimum vane angle required to create the strongest sec-
ondary circulation in the open channel flow. Voisin and Townsend [6] investigated the
optimal size of submerged vanes to protect meandering riverbanks. Gemici [7] investi-
gated the effects of different Froude numbers, vane arrangement, vane length/vane height
and approach angle combinations on flow velocity. Mohammediun et al. [8] conducted
their research to reduce sedimentation and erosion potential at the junction of curved and
straight channels. Fathi et al. [9] investigated the effects of submerged vanes on scrubbing
around a vertical wall and overflow abutments with laboratory results. Kalathil et al. [10]
used submerged vanes to control sediment entry into the inlet channel with a physical
model. Zarei et al. [11] investigated the effects of submerged vanes around the bridge
pier and on bed topography changes. Lake et al. [12] investigated the effect of river-based,
submerged vane structures in Australia. Gumgum and Cardoso [13] investigated the effects
of different vane parameters and water discharge ratios on the bed morphology around a
90◦ lateral water diversion. Bor [14] studied a 90◦ water intake to study 3D flow patterns
and sediment distribution using submerged vanes. 3D velocity components were measured
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using acoustic Doppler velocimetry (ADV). According to her study, downstream corner of
the intake, high velocities were measured where scouring occurred.

In this study, the vane experiments were further validated by the numerical method.
As a numerical approach, Computational Fluid Dynamics (CFD) was applied to the open
channel flow conditions. Ansys-Fluent program containing CFD rules was used. CFD
is a branch of fluid mechanics in which problems affecting fluid behavior are analyzed
by solving them in 3 dimensions with numerical methods and algorithms. In complex
geometries, viscosity, flow velocity, temperature differences etc. the solution is very difficult,
if not often impossible, when the parameters are applied to the fundamental equations of
fluid mechanics. In CFD methods, the three basic equations governing the fluid motion,
continuity, momentum and energy equations are taken as a basis. These equations are
solved numerically to reach the pressure, velocity etc. of the flow variables depending
on these parameters [15–18]. The flow domain is divided into finite volumes in which
discretized versions of the equations governing the flow are written.

When the past studies were examined, it has been determined that there were very
few or limited studies to reduce/prevent scours caused by high flow velocities in the
meandering of the rivers. This study focuses on the effect of the submerged vane, which
is accepted as a new method [19], on the meandering open channel. In this study, exper-
iments at the open channel laboratory were performed on the bend part with 3-array 9
submerged vane and without submerged vane. CFD models are verified by Open channel
experiments without vane and 3-array with 9 submerged vanes situations. The submerged
vane experiments conducted in this study will contribute to the subject by researching the
originality of the river meanders and the effect of the vane. In addition, flow velocities in
the open channel were modeled with the CFD method and the cross-sectional flow velocity
changes were investigated along the depth.

2. Materials and Methods

The performance of without vane and 3-array with 9 submerged vanes models in
meandering open channel flows has been investigated by using a flow discharge of 25 L/s
in this study. Detailed information about the experimental setup, experimental conditions
and mathematical model for the without-vane and with-vane experiments conducted in
the open channel are given below.

2.1. Experimental Set-Up

In Bartın University Hydro-mechanic Laboratory, a 30 cm wide curvilinear channel
was built within a 50 cm wide rectangular channel within the existing open channel system.
Flow condition details for the experiment are given in Table 1. Q, B, d, A, T, Rh, Fr and Vmean
denote the discharge flow, channel width, depth of flow, wetted area, wetted perimeter,
hydraulic radius, flow Froude number and inlet mean flow velocity in Table 1. In this study,
since the Froude number is less than 1, it was observed that there is a subcritical flow or
river regime.

Table 1. The Flow conditions for the submerged vane experiment.

Q (m3 s−1) B (m) d (m) A (m2) T (m) Rh (m) Vmean (m s−1)
(m s−1) Fr

0.025 0.300 0.095 0.0285 0.490 0.058 0.900 0.94

In order for the flow to occur in river conditions, the bottom of the channel was laid
with 15 cm of sediment (gravel) material and the base of the vane was placed on the sand
of 5 cm. The experimental conditions prepared for the “with vanes” situation was also
provided for the without vane situation. With the start of the pump, the water drawn from
the main reservoir passes through the gravel filters and reaches the rectangular channel.
With the ultrasonic flow meter, the flow discharge given to the channel through the pipe
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was determined. For the desired test set, the flow discharge is fixed by adjusting the
vane. It was waited for 10–15 min for the flow conditions to stabilize. Flow discharge
adjustments were made with an ultrasonic flow meter (Figure 1c). When the measurements
were completed, the base of the channel was corrected, and a new setup was created for the
other set. Details of 9 submerged vane experiments with 3 arrays were given in Figure 1a.
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velocity determination (c) Flowmeter for channel flow.

The flow discharges were measured by an Acoustic Doppler Velocimetry (ADV)
flowmeter (Figure 1b). Measurements were made at 60% (0.6 d) of the depth. The working
principle of the velocity meter is that the 2 acoustic receivers at the end determine the flow
velocity by sending a signal.

In order to reduce the turbulence of the flow entering the channel, the energy of the
water was reduced by taking the water entering with the pump into the settling tank. The
open channel assembly in which the submerged vane experiment was performed had a
base slope of 0.0003. A meandering channel, approximately 3 m long and 30 cm wide, was
constructed along the 50 × 50 sectioned rectangular channel. A curved 30◦ channel bend
connects to the upstream and downstream channels. The center radius of the curvature is
R = 3.60 m. The vane is made of sheet metal with a thickness of 2 mm. On the bottom of
the submerged vane, a 5 mm thick sheet of material was mounted in accordance with the
slope/dimensions of the meandering channel and was removed and installed during each
experiment. These dimensions have also been considered in the numerical simulations.
The experimental setup and sectional information were shown in Figure 2.

The submerged vane experimental setup is given in the above Figure 3. for the “with
vane” case. The design for submerged vane experiments, 3D flow velocity modeling and
analysis of the experimental results will be emphasized. The presented submerged vane
and previously experimental details were given in Table 2.
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Figure 3. According to “with vane” situation, all sections and points measured in the channel.

Table 2. Presented submerged vane and previously experimental details.

Presented Study Odgaard [19]

Vane height/length (cm) 10/10 7.4/15.2
Meander angle (◦) 30 90
Bend radius (m) 3.60 11.89
Flow discharge (m3/s) 0.025 0.11–0.15
Mean velocity (m/s) 0.900 0.396
Water surface slope 0.0003 0.00064
Mean flow depth (cm) 11 (V0 case), 12 (V1 case) 17.4 and 18.2

2.2. Mathematical Model

The flow conditions of modeling are turbulent flow and free surface flow which is di-
rected by gravity. According to the literature, this kind of free surface flow can be simulated
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by the volume of fluid (VOF) method as water-air 2-phase flow problems. The standard k-ε
turbulence model was used in the three-dimensional numerical simulation of flow. The k-ε
turbulence model was a possible method for the free surface flow simulations [20,21].

2.2.1. Basic Equations

The investigated open channel flow was a 3D, turbulent, unsteady free surface flow.
For the k-ε turbulence model given by [22], the continuity equation, the momentum equa-
tion, and the equations for k-ε were given Equations (1)–(6).

Continuity equation:
∂ρ

∂t
+

∂ρui
∂xi

= 0 (1)

Momentum equation:

∂ρui
∂t

+
∂

∂xj

(
ρuiuj

)
= − ∂P

∂xi
+ ρg +

∂

∂xj

[
(µ + µt)

(
∂ui
∂xj

+
∂uj

∂xi

)]
(2)

Turbulence kinetic energy (k) equation:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xi

[(
µ +

µt

σk

)
∂k
∂xi

]
+ G − ρε (3)

Turbulence dissipation rate energy (ε) equation:

∂(ρε)

∂t
+

∂(ρuiε)

∂xi
=

∂

∂xi

[(
µ +

µt

σε

)
∂ε

∂xi

]
+ C1ε

ε

k
G − C2ερ

ε2

k
(4)

where, t is the time; ui is the velocity components; xi is the coordinate components; ρ is
the density; g is the gravity; µ is the molecular viscosity; P is the correct pressure; µt is the
turbulent viscosity, which can be derived from the turbulent kinetic energy k and turbulent
dissipation rates:

µt = ρCµ
k2

ε
(5)

G = µt

(
∂µi
∂xj

+
∂uj

∂xi

)
∂ui
∂xj

(6)

σk and σε are turbulence Prandtl numbers for k and ε equation, respectively, σk = 1.0,
σε = 1.3, C1ε and C2ε are ε equation constants, C1ε = 1.44, C2ε = 1.92. Cµ = 0.09 is a constant,
determined by experimentally.

VOF model
In this study, the VOF method was used to calculate the water-air interface. This

method was used for 2-phase air-water flow simulation [23] and to compute the free sur-
face of the flow [24]. The VOF method essentially determines whether the element volumes
in the computational mesh are empty, partially filled, or completely filled with water. Rep-
resenting the volumetric filling ratio of the mesh elements, the mesh element is fully filled
for F = 1, empty (filled with air) for F = 0, and partially filled with water for 0 < F < 1 [25]. In
this approach, the tracking interface between air and water is accomplished by the solution
of a continuity equation for the volume fraction of water:

∂αw

∂t
+

∂αwui
∂xi

= 0 (7)

where, αw is volume fraction of water. In each cell, the sum of the volume fractions of air
and water is unity. Volume fractions of air denote αa can be given as,

αw + αa = 1; 0 ≤ αw ≤ 1 (8)
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In open channel flows, Ansys-Fluent internally calculates the volume fraction based
on the input parameters specified in the boundary conditions. For subcritical inlet flows
(Fr < 1), Ansys-Fluent reconstructs the volume fraction values on the boundary by using
the values from the neighboring cells. For subcritical inlet flows, node values of volume
fraction at the boundary must calculate using the cell values and volume fraction at each
face of the boundary must calculate using the interpolated node values. For supercritical
inlet flows (Fr > 1), the volume fraction value on the boundary can be calculated using the
fixed height of the free surface from the bottom [26].

2.2.2. Boundary Conditions for Submerged Vanes

Flow field boundary conditions must be specified differently on walls, channel inlet,
outlet and free surface, due to unsteady and channel flow. Since the boundary and initial
conditions are different for each variable, they must be selected separately. Velocities
on free surfaces and at side-bottom channels, velocities on submerged vane faces were
obtained using the standard wall function based on the recommendation of Launder and
Spalding [22]. This wall function accepts a log-law velocity profile close to the wall and
was determined as in Equation (9):

up

u∗
=

1
K

ln
(

E
u∗yp

v

)
(9)

where, “up” is the average stream flow velocity at the “p” point; “K” von Karman constant
(0.418); “yp” is the distance from point p to the wall; empirical constant “E” has the value
of 9.79; “u*” is the friction velocity. The “u” uniform velocity distribution was given to
the horizontal velocity component in the x-direction at the inflow boundary. The vertical
velocity component “v” in the y-direction was set to zero. The inlet velocity field to the
channel consists of a forward ‘u’ horizontal velocity and zero ‘v’ vertical velocities at all
points except points close to the channel.

The wall y+ is a dimensionless distance similar to the local Reynolds number often
used in CFD to indicate how the mesh is for a particular flow. It determines whether the
effects in cells adjacent to the wall are laminar or turbulent [27].

y+ =
uτy

ν
(10)

uτ =

√
τw

ρ
(11)

where uτ is the friction velocity, y is the height from the wall to the mid-point of the wall-
adjacent cells, v is the kinematic viscosity, τw is the wall shear stress and ρ is the fluid
density at the wall. Values of y+ close to the lower bound (y+ ≈ 30) are most desirable for
wall functions, whereas values of y+ ≈ 1 are better for near-wall modelling [28].

2.2.3. Meshing-Grid Information

In this paper, the 3D analysis was built up for V0 and V1 cases. CFD model was
created according to the open channel experiment (Figures 1 and 2). Initial and boundary
conditions were established according to the experimental study. 1,927,650 meshes for V0
submerged vane case and for the V1 case, 1,938,869 meshes were assigned. In addition,
tetrahedron-type meshes were used in the design.

The proposed model was used to simulate the variation of submerged vane open
channel flow. The biggest problem during the implementation of the submerged vane
in the Fluent model was the skewness error of the network grid. The mesh qualities
were controlled with equiangular skewness, equisize skewness and aspect ratio in the
Gambit program. Skewness and other problems were solved by acquiring a smaller mesh
dimension grid line. Since the real shape of the vane was considered in the model, the
skewness error was increased due to the shape of the open channel. Those errors were
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defined and corrected by increasing the amount of mesh with Gambit. However, when
the mesh becomes smaller, the number of mesh was increased. Furthermore, the computa-
tional domains for all cases were approximately divided by 1,927,650–1,938,869 tetrahedral
mesh volumes to obtain acceptable skewness coefficients. This represents approximately
315,000 nodes. In the meshing cases, the convergence criterion of flow parameters was
taken at 0.01 for all runs.

The 3D analysis was built up for V0 and V1 cases. The CFD model was created
according to the open channel experiment setup consisting of 1 main meander channel
(Figures 1 and 2). According to the experimental inlet measure (Table 1), inlet conditions
and boundary layer conditions were established. The boundary conditions of the flow
formed with V0 and V1 cases have been defined. Figure 4 shows the surfaces for the CFD
model solution. According to Figure 4, the water inlet height = velocity inlet, submerged
vane − open channel surfaces = wall and outlet section (in downstream) = outflow were
accepted. In addition, for the flow discharge of 25 L/s, the water inlet height was defined
as 9.5 cm.
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The mesh independence test was performed by doubling the mesh numbers in the
lateral and vertical directions. However, no significant difference in flow velocity results
was observed due to mesh improvement. This finding showed that the flow velocity results
were independent of the mesh.

2.2.4. Numerical Solver

When the velocity fields in the open channel have complex currents such as circulation
flow, turbulent flow and secondary flow problems arise because the open channel flows
are nonlinear and velocity–the pressure field interdependent. These problems were solved
using the “Coupled” procedure approach. This procedure was the iteration method, and
it was based on the prediction-corrector approach. Fluent provides the option to choose
“Coupled” pressure-velocity coupling algorithms. The full implicit scheme was used in the
model [29]. As an initial state, the inlet channel is first filled with air and water. Next, water
at a certain height was released into the free flow at a certain rate from the inlet channel
to the upstream end. The channel flow continues until it reaches the downstream limit.
The calculation continued for about 600 s, at which point the front had already crossed the
downstream boundary and any change in flow area was ignored. A time step of 1 s was
chosen after preliminary trials to have the desired converged solution. The discretization
methods and solver settings are presented in Table 3.
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Table 3. Numerical model details.

Solver Set
Solver Pressure Based

Space-Time 3D, Unsteady

Model
Multiphase Model VOF

Viscous Model k-ε

Phase
Primary Phase Air

Secondary Phase water

Discretization
Pressure Presto

Momentum Second order upwind

Pressure-Velocity Coupling Method Coupled

Convergence Criterion Residuals
0.001 (Continuity)
0.001 (Momentum)

3. Results and Discussion

Flow velocity simulations at the measurement points of the Open Channel were
investigated experimental and CFD results. In addition, the numerical results of submerged
vane structures were examined along the depth for vane and no vane cases flow velocities.
In order to see the amount of change after the section, the measured and simulated flow
velocity results are dimensionless based on the average velocity (in Table results). Velocity
vectoral representation at 0.6 d for without vane and with vane models given in Figure 5a,b.
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When Figure 5a,b were examined, it was observed that high flow velocities are ob-
served at the points where the channel bending first starts. The flow velocity increases
(from green to “yellow-orange-red”) from the inner bank to the outer bank. When Figure 5b
were considered, it was observed that the flow velocity around the vane was reduced (in
green color) and between the vanes (yellow color) it had a flow velocity of 0.65–0.75 m/s. It
has been seen that flow has a velocity of 0.85–0.93 m/s, near the middle outer bank region
and in channel parts without vane (Figure 5a). In order to see the changes in the water
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surface, it is given as a velocity contour map in Figure 6 with “without vane” and “with
vanes”. As can be seen from the figures, it is observed that the flow is directed around
the vane and the flow velocity between the vanes decreases. It is seen that the vane struc-
tures are effective in directing the flow and reduce the flow velocity, and the flow reaches
balance in the inner bank and outer bank in the section of the channel bend. In Table 4,
Figures 7 and 8, CFD results are given with the measured points according to the 1-1, 2-2 and
3-3 sections.
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Table 4. CFD and experimental velocity results for without vane situation at Section 1-1, 2-2, 3-3.

Section
No Point No Location at x

Direction (m)
Location at y
Direction (m)

Experiment
Results

Fluent CFD
Results Error (%)

1-1

1 1.10 0.247 0.96 0.97 0.97
2 1.10 0.272 0.98 0.97 1.08
3 1.10 0.297 0.98 0.97 0.74
4 1.10 0.322 0.98 0.97 0.67
5 1.10 0.347 1.02 0.97 4.77
6 1.10 0.372 1.02 0.99 2.53
7 1.10 0.397 1.02 1.04 2.78
8 1.10 0.422 1.04 1.10 5.89

2-2

1 1.50 0.247 0.98 0.97 1.11
2 1.50 0.272 0.98 0.98 0.21
3 1.50 0.297 0.97 0.97 0.08
4 1.50 0.322 0.97 0.97 0.44
5 1.50 0.347 1.01 0.97 3.68
6 1.50 0.372 1.01 0.99 2.36
7 1.50 0.397 1.03 1.05 1.45
8 1.50 0.422 1.04 1.10 5.17

3-3

1 1.70 0.247 0.96 0.96 0.90
2 1.70 0.272 0.97 0.97 0.42
3 1.70 0.297 0.98 0.97 0.67
4 1.70 0.322 0.99 0.97 1.44
5 1.70 0.347 1.00 0.99 1.40
6 1.70 0.372 1.02 1.01 0.72
7 1.70 0.397 1.04 1.06 2.21
8 1.70 0.422 1.06 1.07 0.60
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Figure 7. Flow velocity variation for without vane situation at Sections; 1-1, 2-2 and 3-3.



Water 2023, 15, 659 11 of 19

Water 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

In the Figure 7 and Table 4, the flow velocity at sections was accepted as dimension-
less velocity “u/umean”. The 1st point represents the point close to the inner bank, and the 
8th point represents the point close to the outer bank. The experimental and numerical 
model velocity values obtained in all sections are shown in Figure 7. Table 4 shows the 
error rates by comparing the experimental and CFD analysis results. In Figure 8a–c veloc-
ity contours of the 1-1, 2-2 and 3-3 cross-sections (without vane situation) are given, re-
spectively. 

 
Figure 8. Velocity contours of “without vane” situation for Sections; (a) 1-1 (b) 2-2 (c) 3-3. 
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In the Figure 7 and Table 4, the flow velocity at sections was accepted as dimensionless
velocity “u/umean”. The 1st point represents the point close to the inner bank, and the 8th
point represents the point close to the outer bank. The experimental and numerical model
velocity values obtained in all sections are shown in Figure 7. Table 4 shows the error rates
by comparing the experimental and CFD analysis results. In Figure 8a–c velocity contours
of the 1-1, 2-2 and 3-3 cross-sections (without vane situation) are given, respectively.

When the table and graph are examined, it is seen that the error percentage of the
velocities is less at the midpoints than at the edges. Maximum error was observed in the
outer bank (8th points) for “without vane” situation 1-1 section (5–6%). In general, it has
been found that the test and Fluent-CFD results are in good agreement. According to
Figure 8a–c, it is seen that the velocity increases in the outer bank and decreases in the inner
bank. In addition, as can be seen in the figure, the flow water depth decreases in the inner
bank, while the water depth increases in the outer bank (the water depth changes with the
blue contour lines). For the without vane situation, it is seen that the experiment and CFD
results are generally compatible and the error rates are at a reasonable level.

The experimental and numerical model (“with vane”) velocity values obtained in all
sections are shown in Figure 9. Table 5 shows the error rates by comparing the experimental
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and CFD analysis results in V1 case. In Figure 10a–c velocity contours of the 1-1, 2-2 and
3-3 cross-sections (“with vane”) are given, respectively.
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Figure 9. Flow velocity changes for ‘with vanes’ situation at sections; 1-1, 2-2 and 3-3.
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Table 5. CFD and experimental velocity results for with vane situation at Sections 1-1, 2-2 and 3-3.

Section
No Point No Location at x

Direction (m)
Location at y
Direction (m)

Experiment
Results

Fluent CFD
Results Error (%)

1-1

1 1.10 0.247 1.10 1.07 2.81
2 1.10 0.272 1.07 1.03 4.08
3 1.10 0.297 0.88 0.87 0.83
4 1.10 0.322 0.98 0.98 0.91
5 1.10 0.347 0.90 0.92 2.08
6 1.10 0.372 1.01 1.04 3.28
7 1.10 0.397 0.97 0.98 1.46
8 1.10 0.422 1.10 1.11 0.63

2-2

1 1.50 0.247 1.05 1.10 4.53
2 1.50 0.272 1.06 1.03 3.10
3 1.50 0.297 0.91 0.89 2.31
4 1.50 0.322 0.95 0.97 1.96
5 1.50 0.347 0.92 0.90 1.93
6 1.50 0.372 1.00 1.03 3.17
7 1.50 0.397 0.97 0.96 0.71
8 1.50 0.422 1.14 1.12 1.70

3-3

1 1.70 0.247 1.08 1.10 2.35
2 1.70 0.272 1.03 1.03 0.32
3 1.70 0.297 0.99 0.93 6.32
4 1.70 0.322 0.94 0.93 0.75
5 1.70 0.347 0.93 0.93 0.37
6 1.70 0.372 0.95 0.98 2.77
7 1.70 0.397 1.03 1.00 3.48
8 1.70 0.422 1.05 1.11 5.79

When the Table 5 was examined, maximum error was observed in 3-3 section (6.32%)
for “with vane” situation. In general, it has been found that the test and Fluent-CFD results
are in good agreement.

When the table and figures were examined, maximum error was observed in 3rd
point) for “with vane” situation 3-3 section (6.32%). In general, it has been found that the
experiment and Fluent-CFD results are in good agreement.

According to Figures 8 and 10, decreases in flow velocities are seen behind the vane.
For the 1-1 section without the vane (Figures 8a and 10a), it was observed that the flow
velocity decreased from 0,89 m/s to 0,70 m/s (3. point). It has been determined that there
is a nearly 21% decrease in flow velocity. Compared to the 2-2 section without the vane
(Figures 8b and 10b), it was observed that the flow velocity decreased from 0,93 m/s to
0.77 m/s (7. point). It has been determined that there is a nearly 18% decrease in flow
velocity. Finally, the 3-3 section without the vane (Figures 8c and 10c), it was observed that
the flow velocity decreased from 0,99 m/s to 0,72 m/s (5. point). It has been determined
that there is a nearly 27% decrease in flow velocity. In addition to investigations of flow
velocities, water levels for the V0 and V1 cases were also investigated. Water level changes
given numerical contour with Vof in Figure 11 for V0 and V1 cases. In addition, CFD -water
depth changes (as cm) in V0 and V1 case at for all sections.

When the depth changes in sections 1-1, 2-2 and 3-3 are examined (Figures 11 and 12),
it is observed that generally submerged vanes increase the water depth. The most obvious
change in section 1-1 (Figure 12a) was the increase in water height from 11 cm to 11.66 cm
at the 5th point. It has been observed that it increases the water depth by about 6%. In
section 2-2, it was observed that while the depth of flow increased slightly in the middle
of the channel, the depth decreased at points 1 and 7 close to the outer and inner slope
(Figure 12b). In the 3-3 section, it showed a similar change to the 1-1 section and the water
level increased from 11 cm to 11.87 cm (Figure 12c). In the 3-3 section, the water depth
increased by about 8% in the V1 case compared to the V0 case. When the changes in %
are examined (Figure 12d), it can be said that there is a greater increase in the 1-1 and 3-3
sections than in the 2-2 sections.
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(c) Section 3-3.

When all the velocity changes behind the submerged vane are examined (Figure 13), it
is seen that the maximum velocity change (27%) is at the 3-3 section and at the 7. point,
while the minimum change (16%) is at the 2-2 section and at the 5. point. For the velocity
change between the vane, it is seen that the “maximum” velocity change (26%) is at the
3-3 section and at the 4. point, while the minimum change is at the 2-2 section and at the
6. Point (Figure 13).
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Figure 11. CFD -water level changes (m) in V0 and V1 case at (a) 1-1, (b) 2-2, (c) 3-3 sections.

In Figures 14 and 15, it was observed that while the mean velocities were approx-
imately 0.75–0.83 m/s in the vaneless outer meander, these velocities decreased to an
average of 0.61–0.68 m/s in the vaneless outer meander along the water depth. According
to the after-vane structure’s measurements, the submerged vanes reduced flow velocity
by 21% in section 1-1, and decreased the flow velocity by 19% and 20% in sections 2-2 and
3-3, respectively.

Flow velocity profiles made without a submerged vane are compatible with numerical
model or experiment results [19,30]. Reported laboratory experiments show flow patterns
of submerged vanes. Scour in the outer meander was caused by the increase in flow velocity
and shear stress. The submerged vane cuts off secondary circulation or cross flow cuts off
thereby reducing high velocities around the outer meander (Figures 10, 11 and 15). This
study investigated the effects of submerged vane structures on flow rates and water depth.
As a result of this study, it was determined that submerged vane structures decrease the
maximum and average velocity along the depth, decrease the flow velocity at 06 d and
direct it to the inner bank. In the meander section of the open channel, velocity distribution
diagrams of the submerged vaneless streamflow bed (Figures 7 and 8) show that it slides
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out of the meander and reaches the maximum level near the outer meander before the outlet
of the meander. This experimental pattern was consistent with experimental measurements
in the other channel meander [19]. The centrifugal force increases proportionally with the
square of the flow velocity and the upper region with high flow velocity reaches more
centrifugal force than the lower region [30]. Experimental flow velocity results measured at
0.6 d, modeled both with submerged vane and without submerged vane, showed that the
model with submerged vane decreased the flow velocity by 16–27% and directed the flow
(Figures 7, 9 and 11). When the literature studies were examined, Gemici [7] experimentally
found that submerged vane flow velocities were reduced by 7–19%. The flow models
obtained with the 3D model were examined along with the depth (Figure 11), and it was
observed that the mean velocity was reduced by 19–21% (Figures 14 and 15). The result of
this study will be useful for understanding the flow phenomenon, validation of numerical
work and subsequent design of meander protection measures.
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4. Conclusions

In this study, the performance of without vane and 3-array vane models in open
channel flows has been investigated by using a flow velocity of 25 L s−1. The numerical
results of the flow velocities were confirmed by experimental results. The effect of the
vane structure on the flow velocity measured in the flow channel was determined and the
3 sectional velocity changes of the 3-array with 3 submerged vane (“with vane”) structures
were compared experimentally and numerically to each other. The following results can be
derived from this study:

• The simulated CFD velocity for the without vane and 9 (3 × 3) vane cases were
compared with the measured data. If the results of the experiments are examined in
accordance with the CFD simulation results, a lower error has been detected. Figure 1.
Flow velocity changes for ‘with vanes’ situation at sections; 1-1, 2-2 and 3-3. When
the experimental and CFD results were examined, the maximum error was observed
as 6.32%.

• It was found that 3 vane structures in 3-array affect the mean flow velocity by 27%
and minimum flow velocity by 16% at 0.6 d.

• The flow velocities were investigated along with depth using the CFD and found that
the mean velocity was reduced by 14–21% along the depth.

• Submerged vane structures balance the flow of water depth on the inner bank with the
water depth on the outer bank within open channel flows. It reduced the flow velocity
by directing the water depth and flow velocity from the outer bank to the inner bank.

• When the depth changes in sections are examined, it is observed that generally sub-
merged vanes increase the water depth. In the sections, the water depth increased by
about 6–8% in the V1 case compared to the V0 case.

Vane structures were found to be effective in regulating flow. It is also recommended
that submerged vane structures be applied effectively in reducing flow velocities and
directing strem flows.
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