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Abstract

Here, we review the history, theory, measurement technique and experimental results on
gyrotropic phenomena including optical rotation (optical activity), electrogyration, the Faraday
effect and magneto-electrogyration in transparent crystals, including examples of structural
phase transitions. Relations to the absolute structure are discussed and model calculations are
performed on the basis of electronic polarizability and crystal structure.
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1. Introduction

1.1. Aim of the review

Light propagation in a transparent medium is usually described by refraction and reflection.
Introducing polarized light and optical anisotropy at the same time causes additional effects
when the intensity output of an optical arrangement relative to the initial light wave is
considered. The task, however, becomes even more difficult if not only effects such as linear
birefringence (n′′ − n′) (due to the direction dependence of refraction in crystals), but also
optical effects of a chiral nature (gyro-optical effects or, for short, gyrotropy) are taken into
account.

Linear birefringence is evident when for example two images of a single light source are
seen through a calcite crystal (CaCO3) (figure 1) which are found to be both linearly polarized.
The electric light fields of the two images are perpendicular to each other. They vibrate in only
one direction perpendicular to the propagation direction of the light wave and their velocities
inside the crystals are c/n′ and c/n′′, respectively. If a plane wave enters a prism made from
calcite, the difference of speed of the two modes is visible in a different amount of refraction
of the waves from the initial direction of the wavevector (figure 2(a)). These two images are
observed for any directions of the initial light wave except those parallel to the optic axis in
calcite (figure 2(b)).

Figure 1. Linear birefringence causing the light beam to take two different paths through a calcite
rhombohedron. The two modes with refractive indices n′ and n′′ are mutually perpendicularly
polarized (source: Bergmann L and Schäfer C 1978 Optik (Lehrbuch der Experimentalphysik,

Band 3, Optik, 7. Auflage) (Berlin: de Gruyter) p 487, figure 4, 37 Doppelbrechung des Lichtes
durch ein Calcitrhomboeder.

If one allows the vibration direction (=polarization) to rotate around the propagation
direction, the result is a circularly polarized wave. Given two opposite senses of optical
rotation, there are circumstances in which one observes different velocities for the two circular
polarizations c/nR and c/nL, where nR and nL are the refractive indices of the circularly
polarized modes.

The circular birefringence (nL − nR), which is related to several chiro-optical effects, is
typically about 103–105 times smaller than linear birefringence, (n′′ − n′), but the state of
light is affected much more than expected from that small numerical value. Moreover, if for
example, integrated optical circuits are assumed to be as sensitive to polarization effects as an
electronic circuit is to the resistance of a conducting component, it becomes obvious that even
effects of the order of 10−6 of linear refraction cannot be neglected.

Although circular birefringence is just another effect among many other optical
observations, it is special because of the close relation to the chiral nature of condensed matter.
If there happens to be a difference between left and right circularly polarized light waves, the
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Figure 2. (a) Linear refraction of a non-polarized light wave by a calcite prism. Two polarized
waves, which are polarized perpendicular to one other, are emerging from the prism. (b) The
orientation of the refractive index no > ne in the case of an ‘as-grown’ rombohedral piece of
calcite. n′ is the projection of the extraordinary refractive index ne. The principal vibration mode
with refractive index ne is called the optic axis; in the case of calcite it connects the two opposite
corners of a rhombohedron (threefold axis in calcite).

matter itself must possess a handedness, which may be characterized as laevo (L) or dextro (D).
Different handednesses (figure 3) are frequently observed in nature and are of extreme

importance. Almost 15% of the earth’s crust (most of it is crystalline) is estimated to be chiral.
Moreover, if we consider drugs such as L- and D-thalidomide we find the structures of the two
versions of the drug (L and D) to be absolutely identical (all distances between the atoms and
the moduli of the angles are equal), but when thalidomide was prescribed to pregnant women
as a racemic mixture (L + D), deformed babies were born (figure 4), whereas a pure drug with
only L-thalidomide caused no complications. We notice here the importance of chirality in
nature.

Below we describe all chiral effects which contribute significantly to the interaction of
light with crystals on the basis of empirical results and model calculations based on the x-ray
structural parameters of the crystals. Because minute structural variations can cause large
changes of the optical features, studies of structural phase transitions are included to serve as
a further test of the model calculations.

The basic aim of the present text is to contribute to the fundamental understanding of the
interaction of light with transparent crystals and their chiral features. A review of the available
experimental data is given and we discuss which of the optical effects can be estimated from
model calculations. A critical review of experimental techniques for determining chiral optical
properties is presented since the success of a comparison of theory and experiment depends
on the reliability of the experimental data.

1.2. State of polarization of the initial light wave

The properties which are the subject of this paper affect the way in which a light wave propagates
through a crystal. The interaction with the medium is ‘visible’ in the resulting intensity and
the state of polarization.

The report is restricted to that part of the light spectrum which is far from any absorption so
that the average of all possible photon induced transitions contributes to the observed effects.
The discussion is further restricted to what is seen in transmission. Effects which are related
to absorption or to second-harmonic generation (SHG) are excluded here as well as optical
properties of gases, fluids, ceramics, liquid solutions or liquid crystals.

In the following, the incident plane light wave is assumed to be linearly polarized and
monochromatic. These three features of the wave (plane, linearly polarized, monochromatic)
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Figure 3. A drawing by Escher of two hands. The physiognomies of these hands are related to
each other by point inversion (M C Escher’s Drawing Hands © 1999 Cordon Art B V, Baarn, The
Netherlands. All rights reserved).

(a) (b)

Figure 4. (a) The D-thalidomide molecule and (b) its victims (source: CNN-News, 4 September
1997). The drug, banned in 1962, which was responsible for 12 000 babies born with all kinds of
defects, has been reconsidered since 1997 for treatment of painful sores that afflict leprosy patients.
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Figure 5. Realistic polarized light. Top: the divergence
of the light wave, described by an angle. Middle: the
linewidth, which is usually a continuum of wavelengths
varying statistically around λ0. Bottom: the ellipticity
Eo

‖/E
o
� of the light wave, which usually carries a non-

polarized component.

have never been perfectly realized. The line width, however, is negligibly small if the
measurements are carried out with laser light, but the linear polarization of the incident wave
is typically not better than 1 : 10−5 (figure 5).

As a result, the incident light wave is more or less elliptically polarized; the polarization
can be described by the superposition of a left- and a right-handed circularly polarized wave
of different amplitudes. The difference in velocity of these two waves when travelling through
the crystal is related to circular birefringence.

In the presence of linear birefringence the polarization of two circularly polarized waves
changes and the situation is, in short, confusing. As part of this review, the theory which
relates the measured polarization and intensity to the circular birefringence, which produces
a gyrotropy under the obscuring effect of linear birefringence, is summarized. The resulting
approximate expressions are suited for use in realistic experiment.

1.3. Gyrotropy

The optical phenomenon which can be related to circular birefringence is called gyrotropy.
This can result from a number of effects with totally different physical origins. Table 1
summarizes which of these effects will be discussed here and gives a short description of the
leading physical mechanisms. Some of the mechanisms have been a matter of controversy.

Circular birefringence (nR − nL), where nL and nR are the refractive indices for left
and right circularly polarized light, respectively, can arise naturally in non-centrosymmetric



Circular birefringence in transparent crystals 1581

Table 1. The different effects which contribute to gyrotropy. An electron cloud shift arises when
an external electric field is applied to the crystal structure. The amount of the shift between the
electron cloud and an atom it surrounds is in proportion to its polarizability. The magnetic light
field is related to the derivative of the electric light field with respect to time.

Name of the effect Rank Leading physical mechanism

Optical rotation 2 axial Dipole–dipole interaction
Faraday effect 2 polar Zeeman effect
Electrogyration 3 axial Dipole–dipole interaction and electric polarization of atoms
Piezogyration 4 axial Dipole–dipole interaction and induced structural changes
Electro-Faraday effect 3 polar Zeeman effect and electric polarization of atoms
Magneto-activity 3 polar Spatial dispersion of the magnetic light field and interaction

with an external magnetic field
Magneto-electrogyration 4 polar Electric polarization of atoms and spatial dispersion of the magnetic

light field and interaction with an external magnetic field

Figure 6. Intrinsic (spontaneous) Faraday
rotation in an approximately 10 µm thick
yttrium–iron garnet (YIG), diameter 70 mm,
epitaxially grown on a single-crystal wafer
made from yttrium–aluminium garnet (YAG).
Analysers are at approximately + and
−40◦ with respect to the polarizer. The
ferromagnetic domains are easily switched
with a magnetic field.

crystals and is usually called optical activity.
However, this historical term has been misused in recent years to describe SHG and related

effects. Instead of optical activity, and to avoid further confusion, the effect is better named
‘optical rotation’, which is used in the following text.

(nR −nL) can also result from a spontaneous magnetization of a ferromagnetic crystal and
will be called the intrinsic Faraday effect in that case (figure 6). The intrinsic Faraday effect
changes sign when the light path is reversed, whereas optical rotation, which in contrast to the
Faraday rotation depends on the square of the wavevector, does not.

When an electric field is applied to a crystal it is possible to change the optical rotation or
produce gyrotropy even in the case of a centrosymmetric crystal. An optical rotation produced
via spontaneous polarization in a ferroelectric crystal is in principle indistinguishable from
natural optical rotation except that the latter cannot be switched by an electric field†. The
electric field induced optical rotation is called electrogyration. Similarly, an external magnetic
field induces circular birefringence, which leads to the classical Faraday effect or produces
magnetic field induced optical rotation (magneto-activity). When an external electric field and
a magnetic field are applied to the crystal at the same time, either an electric field induced
Faraday effect (electro-Faraday effect) or a magnetic field induced electrogyration (magneto-
electrogyration) is observed. The greater the number of different external fields that are applied,
the more tensor components are required to describe the effect.

Figure 7 shows the essential features of an experiment for measuring gyrotropy. Initial
linearly polarized light is passed through the sample and the resulting rotation is measured

† The structure of a ferroelectric crystal depends on the sign of the external electric field, and as such can produce
intrinsic optical rotation switched by an external field which still is not related via electrogyration to the spontaneous
polarization.
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Figure 7. A simple polarimeter with a hexagonal shaped sample, which
could be a piece of quartz cut on its optic axis (c-axis).

Figure 8. Jean-Baptiste Biot. Born 21 April 1774 in Paris, France. Died 3 February 1862 in Paris,
France. Dominique Francois Jean Arago. Born 26 February 1786 in Estagel, Roussillon, France.
Died 2 October 1853 in Paris, France. John Wilhelm Friedrich Herschel. Born 7 March 1792 in
Slough, UK. Died 11 May 1871 in Hawhurst, UK (source: The MacTutor History of Mathematics

Archive).

with another polarizer, called the analyser, which is rotated until the intensity of the light wave
observed on looking through the analyser towards the light source is minimized. The deviation
from the perpendicular configuration arises from the gyrotropy. In reality, polarizer and anal-
yser do not polarize perfectly. The consequences of such imperfections are discussed below.

A clockwise rotation when viewed towards the light source is called ‘positive’ or
‘dextrorotatory’ (a ‘negative’ or anti-clockwise rotation arises in ‘laevorotatory’ substances)†.

However, in the Faraday effect, the definition of the sign was historically made independent
of that of optical rotation. Here, it was defined to be positive if a clockwise rotation arises when
looking along the direction of the magnetic field and the light path. With the exception of the
Faraday effect, we will speak of a positive rotation if it is clockwise when looking towards the
light source and when the inducing fields are parallel to the wavevector.

1.4. A brief history of gyrotropy

Optical rotation was formulated in 1812 by J B Biot (Biot 1812; figure 8) after an observation
by F Arago (Arago 1811; figure 8) that polarized light from the sun, on passing through a
quartz crystal, gives a solar image whose colour changes when an analyser crystal is rotated.

† This definition has developed through history and is unfortunately inconsistent with a mathematical definition of a
right-handed screw along the wave propagation.
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Figure 9. Idealized pictures of laevorotative left quartz (space group P3121) on the left and
dextrorotative right quartz (P3221).

Figure 10. Augustin Jean Fresnel. Born 10 May 1788 in Broglie, France. Died 14 July 1827 in
Ville-d’Avray, France. Louis Pasteur. Born 27 December 1822 in Dole, France. Died 28 August
1895 near Paris, France (source: The MacTutor History of Mathematics Archive).

Biot discovered also the optical rotation of liquids. This happened about 150 years after the
discovery of linear birefringence (Bartholin 1669), which started the modern history of crystal
optics with polarized light. Optical rotation was then measured over a wide spectral range in
different isotropic media. John Herschel (figure 8) made the correlation of optical rotation
with the habit of quartz (Herschel 1822; figure 9).

It was A Fresnel (Fresnel 1824; figure 10) who proposed the idea of circular birefringence
(nL −nR), introducing the rotatory power ρ (given usually in degrees mm−1), which is defined
as ρ = 180 nL−nR

λ
, λ = wavelength in metres.

L Pasteur (figure 10) established a link between the handedness of crystals of sodium–
ammonium tartrate and the sign of optical rotation of the tartrates in solution (see the examples
of tartaric acid crystals in figure 11), which demonstrated the connection of molecular
and crystalline chirality. After Pasteur proved the difference of optical rotation of the
enantiomorphs of tartaric acid salts to the aged and very sceptical Biot, in Pasteur’s own
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Figure 11. Crystals of tartaric acid showing monoclinic symmetry. The twofold axis is marked.

Figure 12. Michael Faraday. Born 22 September 1791 in Newington Butts
near London, UK. Died 25 August 1867 in Hampton Court near Richmond,
UK (source: The Oxford Interactive Encyclopaedia CD version).

apocryphal recollection of events, Biot’s response was ‘My dear child, I have loved science so
much throughout my life that it makes my heart throb’ (Pasteur 1897).

Just some years earlier, in 1845, M Faraday (1846; figure 12) found that magnetic fields
induce gyrotropy in glass rods. Since then, most measurements have been carried out in
directions where the material is optically isotropic, i.e. not birefringent, because the gyrotropy
is obscured by the linear birefringence. This effect was demonstrated at the end of the 19th
century on the Faraday effect of dilated glass rods (Wedding 1888, Wiener 1888).

Many attempts were made to describe the Faraday rotation empirically by adding up the
specific molar ionic rotations (Schütz 1936). Figure 13 shows a ‘periodic system’ of specific
molar Faraday effects from which the Faraday effect in an isotropic direction of a compound
with any chemical composition can be calculated with satisfying accuracy.

The first reliable result of a gyrotropy measurement in a birefringent direction was obtained
in quartz (Szivessy and Münster 1934). Further measurements of optical rotation in birefringent
directions and the method in use are discussed below.

The first measurement of electrogyration in Bi12GeO20 was claimed by Lenzo et al (1966),
where a change of optical rotation was induced by application of static electric fields. However,
it has been shown that the electro-optic effect was responsible for almost all that had been
measured (Miller 1973), thus electrogyration was observed most probably for the first time in
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Figure 13. The periodic system of molar Faraday rotations to derive the Verdet constant of any
(ionic) substance at 633 nm and at temperatures between 210 and 310 K. With the chemical formula
represented by niAi , Ai is an ion and ni its occurrence in the substance, V = ni�i(T )ρ(T )M

−1,
�i is the molar ionic Verdet constant of ion Ai , ρ = density of the substance (g cm−3), and
M = niMi the molar mass (g mol−1), Mi = the atomic mass and T = temperature. The
temperature coefficients can be used to estimate the thermal variation of the Faraday rotation
ϕ. d logϕ/dT = d log�/dT − 2α, where α is the thermal expansion coefficient.

low quartz by Miller (1973).
At about the same time, piezogyration was studied with success in NaClO3 by Meyers

and Vedam (1965, 1967) and later by Weber (1979).
Even more difficult, because of its smallness, is the measurement of magneto-

electrogyration and related phenomena. The first report of Faraday rotation induced by an
electric field via the magneto-electric effect in Bi12SiO20 was given by Odell and White (1970).
A complete tensor determination of magneto-electrogyration was reported on cubic Pb(NO3)2

(Kaminsky et al 1992). Below we will discuss the symmetry and the physical mechanism of
the effect. The electro-Faraday effect was found recently in Cd0.49Mn0.51Te (Koyanagi et al

1989). A reliable measurement of magneto-activity has not been reported so far (Pisarev 1994).

1.5. Further reading

Some ideas of the following sections are the subject of books and other reviews on optical issues.
The reader may refer to these for additional information (only books written in English or
German are included). Technical aspects of ellipsometric measurements (Azzam and Bashara
1977) as well as a detailed treatment of optical rotation and the Faraday effect is covered by
means of transition moments (Barron 1982, Caldwell and Eyring 1971, Charney 1979, Mason
1982, Piepho and Schatz 1983, Michl and Thulstrup 1986). Induced effects are discussed
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elsewhere (Yamaoka and Charney 1972, Fredericq and Houssier 1973, Kielich 1976, Atkins
and Miller 1968, Stedmann 1985, Haussühl 1983). A beautiful review of the history of optical
activity is given by Applequist (1987). History and aspects of symmetry of optical rotation
are discussed in detail by O’Loane (1980). A treatment of linear and circular birefringence by
means of Poincare spheres is given in Ramachandran and Ramaseshan (1961).

2. Theory

2.1. The interaction of linear birefringence and gyration

A general direction in a non-cubic crystal exhibits linear birefringence (normally called simply
‘birefringence’), which usually obscures the chiral effect. The involved relations need to
be closely inspected. We therefore derive the equations connecting the intensity of light
after having passed through crossed polarizers with a birefringent sample between them
which exhibits gyrotropy up to quadratic order in the polarizer and analyser angles from
first principles. We start by deriving the relevant expression with a perfect alignment of the
crystal and perfect optical components. The effect of real experimental conditions (mainly
due to parasitic ellipticities) is introduced later.

The constitutive equation, which forms the basis of the description in idealized form of the
interaction of birefringence and, for example, optical rotation, results from a Taylor expansion
of the dielectric displacement D (Born 1933), which in turn is related to the electric field E

via the relative dielectric constant tensor ε and the gyrotropy (see also below, section 2.6),
represented by a vector g. Comparing this with the wave equation, an equation is formulated,
which describes the propagation of a light wave in a gyrotropic medium (ε0: permittivity of
free space):

ε · E + ig × E =
1

ε0
D = n2[E − (κ · E)κ] (2.1.1)

where κ = k/|k|, is a unit vector along the wavevector k and n the refractive index governing
the speed of propagation of the plane wave D = D0ei(k·x−ωt). ω is the angular frequency, D0

is the amplitude of the dielectric displacement associated with the light wave and x is a vector
in real space.

In specifying a Cartesian reference system with its axes along the principal vibration
modes of the indicatrix ni and choosing† κ‖n1, D0‖n2, the resulting equation is written as
(see, e.g., Haussühl 1983):

(n2 − n2
2)(n

2 − n2
3) = (κ · g)2. (2.1.2)

There happen to be two modes D′, D′′ (figure 14) which describe the wave propagation with
refractive index n′ and n′′ and which are the solutions of this quadratic equation.

After passing through the crystal of thickness L and choosing the initial polarization
parallel, say, eo

2, D′ and D′′ interfere to form a wave D(x|eo
1 > L), resulting in (eo

i are
principal modes of the refractive indices, see Kaminsky and Haussühl 1993)

Re (D2) ≈ D0 cos(A), Re (D3) ≈ 2uD0 sin

(

d

2

)

cos(A − d),

A = A0 + k · x − ωt, d = 2L(k′ − k′′) u ≈
g1

n2
3 − n2

2

< 1,
(2.1.3)

where terms quadratic inu are neglected. The azimuthϕ of the D-mode is found by eliminating
A in equations (2.1.3): tan(2ϕ) = −2Do

2D
o
3 cos(d/2)/(Do2

2 −Do2
3 ), where Do

2 = D0 and
Do

3 = 2uD0 sin(d/2).

† This means explicitly κ parallel to the vibration mode eo
1 of n1.
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Figure 14. An initially linearly polarized wave D passes through
the crystal in the form of two elliptically polarized waves of different
amplitudes, ellipticities, speeds ct/nR–L and rotation senses. The
result is an azimuthal rotation ϕ which is much smaller than that
which would be observed if the crystal where not birefringent.

Figure 15. The variation of the magnetic field
induced Faraday rotation of a (001) cut KH2PO4
sample. Experimental (filled circles) and the
theoretical representation of the measurement, using
equations (2.1.4).

For a small azimuth and neglecting again terms in u2 it follows that ϕ ≈ u sin(d). The
ellipticity ε is found from ε ≈ tan(ε) ≈ Re (D2(A = ϕ))/Re (D3(A = ϕ + π/2)).

With δ = kL(n2−n3)
∼= d , ϕ0 = g1Lk/2n2. The final result for the ‘idealized’ experiment

(see below, equations (2.1.6), for a real experiment) is, neglecting terms of magnitude u2

(Kaminsky 1989),

ϕ = ϕ0
sin(δ)

δ
, ε = ϕ0

sin2(δ/2)

δ/2
. (2.1.4)

The expressions in equations (2.1.4) are easily generalized, assuming only that the
birefringence is not too large (<0.2), replacing g1 by the effective chiral component in the
direction of the wavevector and replacing (n2 − n3) by the birefringence of an arbitrary cross-
section of the crystal normal to the wavevector. The equation is valid even for vanishing δ. The
above equations were verified experimentally using an induced gyrotropy (Faraday effect) in
a birefringent material (KH2PO4). (Figure 15 shows for example the dependence of azimuth
rotation ϕ on phase δ.)

However, parasitic ellipticities of the polarizer and depolarizing effects of the sample
cannot be neglected in the real experiment when gyrotropy is intrinsic. This means gyrotropy,
like optical rotation, cannot be modulated, in contrast to the Faraday effect, which can be
switched on and off with an external magnetic field to separate it from other contributions.

The intensity I behind the sequence light source, polarizer (parasitic ellipticity εP, rotated
by Y ), sample, analyser (εA, rotated by �) (figure 16) is in a first approximation related to the
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Figure 16. Principal components for
measuring a gyrotropy (Kaminsky 1997).
The polarizer is rotated by the angle Y .
The vibration modes n′ and n′′ are inclined
(relative to Y = 0) by θ . The azimuthal
rotation of the light wave is denoted by ϕ

and its ellipticity by ε. The analyser is
rotated by �.

Table 2. The origin of different contributions to the azimuthal rotation ϕ and ellipticity ε of the
light wave after passing through the sample. The incident linearly polarized wave is assumed to be
polarized close to the slow axis of the sample.

Effect Contribution to ϕ Contribution to ε

Analyser (�, εA) � εA

Gyrotropy (ϕ0) ϕ0δ
−1 sin δ 2ϕ0δ

−1 sin2(δ/2)
Extinction (θ ) θ(1 − cos δ) −θ sin δ
Polarizer (Y , εP) Y cos δ + εP sin δ Y sin δ − εP cos δ

azimuthal rotation ϕ and ellipticity ε of the light after the sample by

I ∼= I0[ϕ2 + ε2] (2.1.5)

where I0 is the initial intensity, and the polarizer and analyser are perpendicular: their angular
position angles Y and � = 0. Y and � are considered to be small (see figure 16 for a definition
of Y and �).

The contributions to the azimuthal rotation ϕ and ellipticity ε of the elliptic polarized
wave, resulting from different optical effects and the parasitic ellipticity of the polarizer, are
summarized in table 2, where we assume that the extinction θ between the polarization of the
refractive index, say, n′′ and the initial polarization of the polarizer (Y = 0) is small as well.

ϕ ≈ � + ϕ0
sin δ

δ
+ Y cos δ + 2θ sin2 δ

2
+ εP sin δ

ε ≈ εA +
2ϕ0

δ
sin2 δ

2
+ (Y − θ) sin δ − εP cos δ.

(2.1.6)

The resulting expression is written in the form of a bi-quadratic polynomial inY and�. To make
that equation realistic, we have to introduce an error Y0 of the polarizer adjustment towards
the assumed perfect vertical position and a similar error of the analyser, where Y − � = 2Y0

(with θ = θ0 − Y0).
Furthermore, we introduce the difference ) between εP and εA: ) = εP − εA. In )

are also summarized all other parasitic effects: if the surface of the sample interacts with the
incident light wave, this may increase the value of εP, and inhomogeneous samples increase
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the value of εA. We find (neglecting products of the small parameters ϕ0/δ, θ , εP, ) and Y0)
I

I0
= a0 + a1� + a2Y + a3�Y + �2 + Y 2

a1 = 2
(ϕ0

δ
+ εP

)

sin δ + 2θ(1 − cos δ) − 2Y0 cos δ

a2 = 2
(ϕ0

δ
+ εP − 2)

)

sin δ − 2θ(1 − cos δ) − 2Y0 cos δ

a3 = 2 cos δ

(2.1.7)

where δ = 2πL(n′′ − n′)λ−1 is the phase factor, L is the length of the light path inside the
sample and λ is the wavelength (see Kaminsky and Glazer 1996).

2.2. Gyrotropic measurement techniques in birefringent directions

The fraction I/I0 depends on the externally accessible angles Y , �, θ , the retardation δ, the
gyration ϕ0 and ellipticities εP, εA. In a real experiment some or all of these properties are
varied to separate out the different contributions to I/I0. In most of the techniques in use, the
azimuth ϕ of elliptic polarized light is found from a variation of �. From equation (2.1.5) it
follows that such a modulation is equivalent to ∂(I/I0)/∂� = 0. This derivative has indeed the
result � = −ϕ, so this approach can be used to find ϕ (Bruhat and Grivet 1935, Konstantinova
et al 1969), where in ϕ are summarized the different contributions given in table 2.

If it is only of interest whether a material exhibits optical rotation, measurements on
powdered samples embedded in refractive index-matching matrices can help to give an answer
(Bartus and Vogel 1994, Bartus et al 1993, 1994a, b, Xi et al 1993, Berlin et al 1989). However,
these experiments are not considered further because they provide no information about the
anisotropy of the chiral effects.

Similarly, measurements with probably the most sensitive method, the Sagnac
interferometer (see e.g. Dodge et al 1994) seem to be restricted to optically isotropic directions.
This technique therefore is of less importance for the determination of gyro-optical tensors.

If the ellipticity of the analyser of an ordinary polarimeter with Y = � = 0 is modulated
by inserting a Pockels modulator between sample and analyser, and for εA = εo−

A cosωt , εo
A

small, we find from equation (2.1.5) and table 2

I/I0 = const + 2εo
A cosωt(ϕ0δ

−1(1 − cos δ) − θ sin δ − εP cos δ) − 1
2 (ε

o
A)

2 sin 2ωt

= const + Iω cosωt + I2ω sin 2ωt. (2.2.1)

From the averaged retardation δ of 〈Iω〉δ and 〈I2ω〉δ we find, independent of θ and εP,

|ϕ0| = εo
Aδ〈Iω〉δ/4〈I2ω〉δ (2.2.2)

but without the sign of ϕ0 (Horinaka et al 1980). However, an offset in εA does contribute to
|ϕ0|.

Often, the condition Y = � = 0 is required. When trying to set � = 0, it has to be taken
into account that this angle depends also on the parasitic ellipticities of the optical components
(Kobayashi and Uesu 1983, 1985).

One problem which has not been treated explicitly is related to non-homogeneity of the
sample. If the retardation varies, say, linearly from δ to δ + x, x ≪ 1, the average is

〈cos(δ)〉x =
∫

cos(δ) dδ
∫

dδ
≈ cos(δ)

sin(x)

x
. (2.2.3)

Similarly (see Kaminsky and Hartmann 1993; figure 17)
〈

sin(δ)

δ

〉

x

≈
sin(δ)

δ

sin(x)

x
. (2.2.4)



1590 W Kaminsky

Figure 17. The additional modulation of a
gyrative signal in a birefringent crystal that is
inhomogeneous with respect to the retardation.
Here, a TeO2 crystal plate cut on (110) was
slightly wedged. Increasing the illuminated region
introduced a variation of retardation due to a linear
variation in thickness. The gyrotropy was induced
through the Faraday effect.

In case of an induced gyrotropy such as the Faraday effect, it is straightforward to separate
out parasitic effects from a modulation of the gyrotropy itself (Kaminsky 1994). However,
for the intrinsic Faraday effect, intrinsic electrogyration and optical rotation, further steps are
required. So far, four different ways have been followed to reduce the obscuring effects of
parasitic contributions:

(a) using optical components and samples of best possible quality and restricting
measurements to large chiral effects at the same time (quartz for example);

(b) averaging two measurements with the sample at θ = 0 and θ = 90◦ (Moxon and Renshaw
1990);

(c) using additional compensator and polarization modulators to eliminate at least the parasitic
contributions of the optical components (Becker et al 1990) and

(d) using a complete analytic expression of the equations relating I/I0 and θ to δ. A variation
of δ is introduced, for example, from a change of the sample orientation with respect to
the direction of the wave vector when the sample is tilted. This allows a Fourier analysis
of the different parts in equations (2.1.7) (Kaminsky and Glazer 1996).

For a small intrinsic gyrotropy, only (b) and (d) promised reliable results (where, of course,
optical components and samples of good quality are still an advantage).

Equations (2.1.7) were approximated to quadratic order in the polarizing angles and for
small azimuthal rotation and ellipticities. An exact solution with no restrictions was presented
by Moxon and Renshaw (1990), who used the Jones matrix formalism. At the same time Becker
et al (1990) derived similar expressions with an almost identical approach to the problem. Their
final approximation up to quadratic order in the polarizing angles agrees with equations (2.1.7).
On the same basis, Kremers and Meekes (1995a) derived approximate expressions up to fourth
order in the polarizing angles.

Independently, and probably ignorant of the above results because of logistic problems,
Konstantinova and co-workers found expressions equivalent to those of Kremers and Meekes
(Konstantinova et al 1994, Fillipov et al 1994, Evdishenko et al 1991). In a recent paper,
Konstantinova and Nabatov (1995) reported a technique more or less related to that of Szivessy
and Münster (1934), where the optical parameters are derived from the rotation of the sample
about the wavevector with arbitrary angles Y and �.

The different developments are summarized in table 3, where the expressions relating the
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Figure 18. A stereographic projection showing the
geometric relations of the indicatrix orientation and the
laboratory reference system defined by the wavevector k

and the tilt axis. n = plate-normal vector. eo
i = principal

axes of the indicatrix. β = tilt angle. n′, n′′ = vibration
modes of the incident wave. θ = extinction angle. βo, µ,
χ = orientation of the indicatrix (Kaminsky 1994).

gyrotropy ϕ0 to the measured values are easily derived from equations (2.1.5) and (2.1.7) and
table 2.

The most recent experimental method (d), the ‘tilter’, is described below. The method
is based on the idea proposed by Bruhat and Grivet (1935), and realized experimentally by
Kobayashi and Uesu (1983), where I/I0 is scanned against polarizer angle Y and analyser
angle �, as well as Kurtzig’s tilting of an FeBO3 sample (Kurtzig et al 1969). In order to
avoid retardation values δ where sin δ and cos δ reach unity or vanish, and to allow an analytic
separation of optical rotation from parasitic effects, a plane-parallel shaped sample is tilted by
an angle α with respect to the wavevector. The initial polarization is chosen parallel to the tilt
axis. The variation of δ(α) and θ(α) is expressed analytically (β is measured ‘between’ nj
and ni ; see figure 18):

β = arcsin

(

sin α

ni

)

, β ′ = β − βo,

1

n′2 (β) =
cos2 β ′

n2
k

+
sin2 β ′

n2
j

, n2
i =

1

a0
ii

(2.2.5)

tan 2θ = 2
(akk − ajj )χ sin β + (akk − aii)µ cosβ

akk − ajj sin2(β − βo) − aii cos2(β − βo)
. (2.2.6)

The polarization tensor {aij } is defined by ε0Ei = aijDj , where ε0 is the permittivity of
free space, E the electric field vector and D the dielectric displacement vector of the light
wave. β and βo are the tilt angles inside the sample and its offset with respect to the wavevector,
respectively. µ and χ describe the orientation of the indicatrix with respect to the wavevector
k and k × t, respectively. The direction of vector t is along the tilt axis (figures 19(a) and (b)).

The intensity as a function of Y and � follows equations (2.1.7). A numerical method
was developed to find (a) ϕ0, µ, χ , (b) refined values of ni − nk , nj − nk , βo and (c) .Y , the
effective deviation from Y = 0 = � as a result of parasitic ellipticities and the primary set-up
of the polarizer (figure 20) (Kaminsky 1997, Mucha et al 1997).

The advantage of the tilter technique (d) over method (b) is its speed, resulting from a much
higher initial intensity I0 when using a laser. In (b) a monochromator is used in combination
with a white-light source (Moxon et al 1991). The parasitic ellipticities are separated out in
repeating the measurement with the sample rotated by 90◦, which transforms δ into −δ. The
average scan calculated from the first and the repeated wavelength scan is independent of the
parasitic contributions. However, the .Y error is not completely eliminated with method (b)
when the primary adjustment of the polarizer is not perfect.
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Table 3. Historical developments in measuring gyrotropy. The results are obtained from equations (2.1.5) and (2.1.7), and table 2. For Horinaka et al (1980) see the text, section 2.1.
In cases where the constraint Y = θ or � = 0 is considered, an additional term arises which depends on εA and εP due to the parasitic ellipticities of the polarizer. The equations are
approximated for small ϕ0/δ and ε◦

A. ∂(I )/∂� = 0 indicates the use of a lock-in amplifier to find the azimuthal rotation of the light after passing through the sample. Becker et al (1990)
detect with a lock-in amplifier, in dependence of the problem, on ω1, ω2, ω3, ω1 − ω2, ω1 − ω3, ω2 − ω3.

Authors Property Constraints/modulation Equation

Szivessy and Minister (1934) ϕ Y = θ = ϕ = 0 ϕ0 = δ(θ [cos δ − 1] sin−1 δ − εP )

Bruhat and Grivet (1935) ϕ Y = θ = ϕ = 0/δ(λ) ϕ0 = δ(θ [cos δ − 1] sin−1 δ − εP )

Konstantinova et al (1969) ϕ, ∂(I )/∂� = 0 Y = θ = 0/δ(λ), �(ω) ϕ0 = δ(ϕ sin−1 δ − εP )

Kurtzig et al (1969) ϕ Y = � = θ = 0/g(H, α), δ(α) ϕ0(H) = δ(ϕ(H) sin−1 δ)

Anderson and Phil Won Yu Park (1974) I/I0 Y = � = θ = 0/δ(λ) |ϕ0| = (I/I0)
−1/2δ/ sin δ/2 + O(εA, εP)

Horinaka et al (1980) 〈Iω〉δ/〈I2ω〉δ Y = � = θ = 0/εo
A cosωt , δ(λ) |ϕ0| = εo

Aδ〈Iω〉δ/4〈I2ω〉δ + O(εA)

Kobayashi and Uesu (1983) I/I0 � = 0/Y, θ Equations (2.1.7)
Moxon and Renshaw (1990) I/I0 � = 0/Y, θ, δ(λ) Equations (2.1.7)
Becker et al (1990) I/I0, ϕ, ε εP = 0/Y (ω1)εA(ω2)�(ω3) Equations (2.1.7)
Kaminsky (1994) ϕ, ∂(I )/∂� = 0 Y = 0/g(E)δ(α)θ(E, α)�(ω) Table 2, equations (2.2.5), (2.2.6)
Kaminsky and Glazer (1996) I/I0 No constr./Y , �, θ(α), δ(α) Equations (2.1.7), (2.2.5) and (2.2.6 )



Circular birefringence in transparent crystals 1593

(a)

(b)

Figure 19. (a) The working principle of the tilter. 1, light source; 2, polarizer; 3, sample, where
t is the direction of the tilt axis, x the direction normal to t and the direction of the light wave
and finally µ, χ describe the orientation of the sample; α is the tilt angle; 4, analyser; 5, detector.
3a shows the vibration modes of n′ and n′′. (b) A photograph of the first tilting polarimeter (size
50 × 50 × 15 cm3) to measure intrinsic optical rotation.

2.3. Theory of optical rotation

Circular birefringence effects are discussed in the following in the long-wavelength
approximation, i.e. for a light wave far outside absorption.

As there are several explanations describing the origin of optical rotation, the question
arises as to their differences. In the first interpretation, optical rotation is explained by the
generation of a circularly polarized reflected wave in a pile of birefringent plates, the thickness
of which then is successively lowered (‘Reuschsche Glimmersäule’). A theoretical description
of the small reflections arising from the discontinuities between the plates, which are arranged
in a helix, i.e. each plate is rotated slightly with respect to the previous one, results in (see
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Figure 20. A flow chart of a data analysing program used for tilt scans measured with the tilter
method. The program needs as its input the retardation Ŵ = L(n′ −n′′) of the crystal section where
L = thickness of the sample and n′ and n′′ are refractive indices of the section. Further, the basic
orientation of the section has to be specified (acute bisectrix, obtuse bisectrix, optic axis plane (flash
figure), the tilt offset βo), and the refractive index n(E) is basically equal to either n′ or n′′ parallel
to the polarization of the incident wave. The input data are the raw parameters as in equation (2.2.4)
with data pairs y1(α) representing the contribution assigned with the tilter procedure to sin δ, y2(α)

assigned to (1−cos δ) and parasitic effects and y3(α) assigned to cos δ. This results from a fit to the
intensity surface, equations (2.1.7) and tilting of the sample, see equation (2.2.3). The program first
finds from y3(α) the start values n1, n2 for the refractive indices along the principal directions of the
indicatrix relative to that of n(E) by a numerical procedure which enables an analytic expression
δ(β), where β is the tilt angle inside the sample. Further refinements of these values (n′

1, n′
2, β ′

o;
n′′

1 , n′′
2 , β ′′

o ) and exclusion of the parasitic effects leaves as output the refined birefringence, the
orientation of the indicatrix (β ′′

o , µ, χ ) and the optical activity ϕ(β), as well as the filtered function
ϕ(β) sin[δ(β)]/δ(β) by subtracting from y1(β) the excluded parasitic effects.

Bergmann and Schäfer 1978)

ρ =
180

p

r2

λ′2(1 − λ′2)
, λ′ =

λ

pn
, p = pitch of helix,

r =
n1 − n2

n1 + n2
,

n1/2 = refractive indices of each plate.

(2.3.1)
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Figure 21. A light with wavevector k passes through a helix. Atoms are
coupled in such a way that an oscillating current moves along the helix
chain, which produces an oscillating magnetic field H .

Figure 22. This drawing by Olaf Gulbransson shows nicely the interaction
between a single individual with all the others in a periodic structure.
(Courtesy of Albert Langen Georg Müller Verlag, München. From
Gulbransson D B 1977Das Olaf Gulbransson Buch.)

This explanation could be considered to be related to the effect of texture of an anisotropic
material rather than describing intrinsic optical rotation.

Optical rotation is also connected to the electric dipole R and magnetic dipole M as well
as electric quadrupole moments Q (Rosenfeld 1928, Condon 1937) of a single molecule (see
figure 21), where the effect of an incoming field generates an oscillating current in the chiral
molecule along the helix. It should be pointed out that this current is possible only if the atoms
on the helix interact.

The effect of a periodic infinite structure is that an atom has to be related to the effect of all
other atoms within the structure due to the long-range nature of electrodynamics interactions
(see below and figure 22).

For the sake of simplification, depolarization effects (to be taken into account in dense
media) are neglected when describing the electrical and magnetic moments. The following is
an expression of the complex refractive index n (Michl and Thulstrup 1986):

n = 1 +
2Nπ2

hvk3c3

∣

∣

∣
〈f |

e

m
eik·re · p|i〉

∣

∣

∣

2
(S ′ + iS). (2.3.2)

Here, N is the number of particles in volume v, h is Planck’s constant, k is the wavenumber
(k = 1/λ), c is the vacuum velocity of light, e AND m are the charge and mass of the electron,
e is the polarization of the wave at space point r, |i〉 and 〈f | are initial- and final-state
wavefunctions, S ′ is the dispersion line-shape function and S describes spectral dependence
on dissipation.

Next, the exponential needs to be expanded in a Taylor series:

eik·r = 1 + ik · r − 0.5(k · r)2 + · · ·
and the polarization has to express left and right circular polarization:

e → eL = (x1 + ix2)/
√

2, e → eR = (x1 − ix2)/
√

2,
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respectively, k = kx3, where xi are the unit vectors of a Cartesian reference system. From the
difference of circular birefringence nL −nR as a result of insertion of the circular polarization,
the optical rotation (◦ m−1) is calculated (Rosenfeld equation):

δ = 180
2kNπ

nhvc

{

Im [Rf i

j M
if

j ]j=1,2 +
k

2
[Rif

2 Q
f i

13 − R
if

1 Q
f i

23 ]

}

(S ′ + iS) (2.3.3)

where R
f i

j = 〈f |erj/m|i〉 (electric dipole moment), M if

j = 〈i|e(rxp)j/2mc|f 〉(magnetic

dipole moment) and Q
f i

jk = 〈f |erj rk|i〉 (electric quadrupole moment).
This model in principle describes optical rotation of organic molecules in solution (Michl

and Thulstrup 1986). Since all possible transitions contribute, the optical rotation is to be
calculated from the sum over all excited states f , which in general does not converge (Eyring,
Walter and Kimball 1944). Amos (1982) applied a static field approximation to the Rosenfeld
equation, and a practical solution is found when simplifying further, introducing linear response
functions. When neglecting the quadrupole terms, the sum over Im [Rf iM if ]S ′ is replaced by
the sum over all states k in 〈n|R|k〉〈k|M |n〉/(ω−ωk +ωn)−〈i|M |k〉〈k|R|i〉/(ω +ωk −ωn).
Here, n and k denote ground and excited states, i.e. no excited state wavefunctions have to
be computed. Within this approximation, R and M are interpreted as interaction operators
(Jørgensen et al 1988, Helgaker et al 1994). Further details are given by Kondru et al (1998,
1999), who applied the theory successfully for assigning stereochemistry using optical rotation.

The following will attempt to show the close connection between the Rosenfeld equation
and other models, and especially the dipole–dipole interaction theory. Condon, Altar and
Eyring (1937) introduced an anharmonic oscillator potential which takes account of the bond
in which a valence electron moves (A: anharmonic ‘amplitude’):

V = 1
2mω2

i x
2
i + Ax1x2x3. (2.3.4)

The bond is oriented along x1, x2, x3, and only bonds with orthorhombic symmetry are
described by this potential. The matrix elements of the Rosenfeld equation are calculated
from this, using first-order perturbation theory and neglecting quadrupole terms. The model
connects the matrix elements to an anharmonic potential but does not specify what the physical
origin of this potential is related to. The constant A is taken from experiment and, because
the model describes the nonlinear effect of frequency doubling (SHG) as well, it is possible
to compare an experiment with a calculation of optical rotation, using an A-value for such a
calculation which stems from the independent measurement of the SHG coefficients (Jeggo
1972).

Optical rotation of transparent crystals was calculated from self-energy correction to the
local density approximation theory without success because of a strong deviation from the
experimental results despite the fact that the same theory describes well the linear and second-
harmonic susceptibilities (see the review by Levine (1994)). It was shown recently that ‘scalar
local fields’ resulting from an interaction between the atoms within a structure have to be
introduced, which changed the calculations by a factor of seven in quartz, for example (Jonsson
et al 1996), and the final result of these nearly first-principles calculations is within 30% of
the experimental result in quartz.

Another example employing the local density approximation theory was published
recently (Yabana and Bertsch 1999). Here, time-dependent local density approximations
are used to produce spectra of optical rotation and circular dichroism in R-methyloxirane and
the double-helical fullerene C76. The theory outlined in this paper automatically satisfies sum
rules and the Kramers–Kronig relation between circular dichroism and the rotatory power. The
chiroptical properties are described qualitatively as considerable deviations (a factor of two to
four) are found in the dichroism of the lowest states and in C76 the spectra are all shifted along
the wave energy.
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Figure 23. Max Born. Born in Breslau, Germany, 11 December 1882. Died
Göttingen, Germany, 6 January 1970. Nobel price 1954 (source: The MacTutor

History of Mathematics Archive).

Figure 24. Two coupled oscillators, tilted towards each other by an angle θ

(Chandrasekhar 1961).

There had been earlier attempts to work out how optical rotation is related to the interaction
phenomena between atoms. Born (1915) (figure 23) writes for example ‘Wenn ein Partikel mit
den übrigen nicht mechanisch gekoppelt ist, so trägt es nichts zur optischen Aktivität bei’ (‘if
a particle is not mechanically coupled to the others it does not contribute to optical rotation’).
Chandrasekhar (1961) took advantage of the theory by Born and introduced a coupled oscillator
model to derive the dispersion of optical rotation. Two oscillating electrical dipoles qr1 and
qr2, separated by a distance d , are tilted with respect to one another about d by the angle θ

(figure 24).
The anharmonic dipole–dipole interaction contribution to the potential energy is

q2r1r2 cos θ/d3. It is different from Condon’s potential but depends also on a product of all
three coordinates of the reference system. It is to be expected that, using first-order perturbation
theory, again an expression for the matrix elements is obtained which leads to optical rotation
as is described by the Rosenfeld equation. The dispersion derived by this model† describes
well the observed wavelength dependence for example in quartz along the optical axis:

ρ =
Ne4λof

2 sin θ cos θ

2πm2d2c4

λ2

(λ2 − λ2
o)

2
. (2.3.5)

Further work by Ramachandran and Ramaseshan (1961) based on the anisotropic
polarizability theory resulted in the following expression for optical rotation:

ρ =
3pl2π2(n2 − 1)(α2

r − α2
t )

4λ2[πR5(αr − αt ) + (3l2 − R2)αrαt ]
(2.3.6)

where l is the distance from an atom to the helix axis, R the distance between neighbouring
atoms, p the helix repeat distance, λ the wavelength of light, n the (ordinary) refractive index

† Although there is an error in the equations leading to (2.3.5), this expression is a good appproximation at least.
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Figure 25. Paul Peter Ewald, 1888–1985 (courtesy of the AIP Emilio Segri

Visual Archives).

and αr and αt are the polarizability components directed parallel and perpendicular to the
distance l, respectively.

The above treatment does not take account of the special case of a crystal lattice and its
periodicity. However, the Hertz-vector potential and formalism (Born and Goeppert-Mayer
1933, Beurskens-Kerssen et al 1963, Van Laar et al 1968) does take account of all interactions
between the atoms inside a crystal acting on an atom at position s in the unit cell l:

Z l′

s ′(r
l
s) = exp(−iωt)

∑

s ′

ps ′ exp(ik · rl
s)

{ ′
∑

l′

exp[iko|rl
s − rl′

s ′ | − ik(rl
s − rl′

s ′)]

4πε0|rl
s − rl′

s ′ |

}

. (2.3.7)

ps ′ is the polarization of atom s ′, rl
s = (rixi)

l
s is the local vector of the atom s on which all

fields act and rl′

s ′ points to all other atoms.
The term in curly brackets is independent of the choice of unit cell index l′ and has the

periodicity of the lattice. The sum† which represents a series of only conditional convergence
is decomposed into a Fourier series, and the Ewald theorem (Ewald 1921; figure 25) is used
to produce convergence by splitting the Fourier series into a part in real space and a part in
reciprocal space, each absolutely convergent.

The electric field E(rl
s) at atom rl

s , which originates from the dipole waves emanating
from all the other atoms (point dipoles) in the structure, is given as

E(rl
s) = grad divZ l′

s ′ −
∂2Z l′

s ′

c2∂t2
= α−1

s pl
s =

∑

s ′

Ass ′pl
s ′

=
∑

s ′

(

Qss ′ +
δij − n2kikjk

−2

vε0(n2 − 1)

)

pl
s ′ (2.3.8)

where αs is the polarizability volume of atom‡ s and where Ass ′ is the complex tensor
independent of cell choice l from which optical rotation is derived (Reijnhart 1970, Devarajan
and Glazer 1986) as

ρ(k) =
∑

ijk

−eijkki

2nv
Im

∑

ss ′

(α−1
s δss ′ − Qss ′)−1

jk ,

eijk = Levi-Cività symbol.

(2.3.9)

† The Ewald sum is not just summing up the polarizabilities of the atoms in a unit cell. It is instead a sum of all
interacting fields and possesses as such a completely different symmetry.
‡ Summations are written out explicitly in equations (2.3.8) and (2.3.9).
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Figure 26. The structure of laevorotative α-quartz (SG P3121). (a) Thermal ellipsoids, shown
at their 99% probability value. (b) Anisotropic polarizabilities calculated with the dipole–dipole
model. The letters L, l, d are positioned in the centre of a helix. L: laevorotative helix with tangential
thermal ellipsoids. l, d: laevorotative or dextrorotative helices with radial thermal ellipsoids.

The symmetrical real part of (α−1
s δss ′ −Qss ′)−1

jk = Css ′ is taken to calculate the refractive
indices and an ‘effective’ anisotropic polarizability according to

εij = δij +
1

ν

∑

ss ′

(Css ′)ij ; αeff
s = ReBs ′Css ′ . (2.3.10)

The effective polarizabilities αeff
s , however, are not to be mistaken for the atomic

polarizability. Instead, they result from a superposition of isotropic polarizability volumes αs

and the effects of the dipole–dipole interaction. Along short atomic distances, this interaction
is expected to be larger than elsewhere in contrast to the thermal motion of the atoms, which
is restricted in these directions. Thus, an inverse correlation is observed between the thermal
ellipsoids of a structure and the shape of the effective polarizabilities.

In analysing expression (2.3.6) optical rotation ϕ can be discussed qualitatively from a
known structure and the anisotropic polarizabilities (Glazer and Stadnicka 1986):

ϕ ∝
l2tnN

u
(α2

r − α2
t ). (2.3.11)

This relation enables one to determine the sign of optical rotation by inspection of the
helical arrangements of atoms in a structure according to the following principles.

(1) All N helixes found in the structure contribute to optical activity independently.
(2) The highly polarized atoms will give the main contribution.
(3) The directions of shortest distances between polarized atoms will correspond to the

direction of highest polarizability.
(4) Incident light will be rotated in an opposite sense to that of the helix if the component of

the anisotropic electronic polarizabilities in the direction of the helix axis is largest (radial
polarizabilities, αr > αt).

(5) The effect increases with the distance l of the atoms towards the screw axis and number
of turns t per screw and decreases with the pitch u of the screw (but increases if the unit
cell is larger).

(6) The effect is largest for n = 4 atoms per screw unit.

As an example, let us consider laevorotativeα-quartz, SiO2. Figure 26 shows the structure,
space group P 3121 (Le Page and Donnay 1976). The four laevorotative and one dextrorotative
helices found in the structure along the c-axis favour a laevorotative optical rotation along the
c-axis.
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Figure 27. Zeeman splitting of energy, E of s, p and d orbitals in a magnetic
field, H .

2.4. The Faraday effect

The Faraday effect can be described as (Bequerel and de Haas 1928, Schütz 1936, Smith 1976)

ρ =
∂n

∂E
.E +

∂n

∂R
.R +

∂n

∂N
.N (2.4.1)

where E is the energy of a transition, n the refractive index of the material, R the dipole
moment and N the number of states of an energy level in a paramagnetic ion. However,
these three terms do not follow from optical rotation. Zeeman splitting (figure 27) of a single
transition i → f into d energy levels i → iα and the splitting of final states f → fλ
changes the interpretation significantly and the calculations start directly from inserting the
circular polarization into the refractive index in equations (2.3.1). .R∂n/∂R is that part of
the Faraday rotation which depends on the dipole transition moments R(B) changed by a
magnetic induction B. The effects on the dipole transition moment, number of states N and
energy levels E are calculated from first-order perturbation theory (Stephens 1965, 1974);
([ρ] = ◦ m−1). Bj is the component of the magnetic induction along the magnetic dipole
moment Mj :

ρ = 180
2Nkπ

nhcv
Bj

[

1

d

∂(S ′ + iS)

∂E
Im (Rfλiα × Riαfλ)j (M

fλfλ
j − M

iα iα
j )

+2

(

(Rif × Riα)j
M

iα
j

Eα − Ei

+ (Rf i × Riλ)j
M

fλ
j

Eλ − Ef

)

(S ′ + iS)

+
1

d
(Rfλiα × Riαfλ)j

M
iα iα
j

KT
(S ′ + iS)

]

(2.4.2)

(K Boltzmann constant, T temperature). Within this expression the sum of all possible allowed
transitions has to be taken to find the magnetic field induced rotation outside an absorption peak.
It is obvious from equation (2.4.2) that any Faraday rotation vanishes if the wavevector and
the magnetic induction are perpendicular to each other, because then the effective component
of the magnetic moment is a linear combination of the effective electric dipoles†.

Since B = H + M , the Faraday tensor depends on the direction of the applied field,
the angle between the wavevector and the applied magnetic field H and any macroscopic
magnetization M :

δ(k,H) =
1

kH 2
HiHjVij (k · (H + M)), (2.4.3)

† The dielectric dipole moments Rif = 〈f |er/m|i〉 are in proportion to the vectors r, which are the displacements
of charges perpendicular to k of the transitions (i–f and f –i); any electronic magnetic moment M is parallel to the
magnetic induction B; ρ ∝ (Rif × Rf i) · M ∝ k · B.



Circular birefringence in transparent crystals 1601

Figure 28. The nuclei inside the atoms are assumed to
be slightly dislocated along the direction of an external
static electric field. Because this effect depends on the
polarizability of the atoms, the positions of which are
mainly fixed via the interactions between the electron shells,
the symmetry of the structure is changed.

where Vij is the Verdet constant. Equation (2.4.3) implies that a transversal Faraday rotation
in a monoclinic or triclinic crystal is possible when the effective magnetic induction B is not
perpendicular to the wavevector.

Although the induced changes of the electric dipole moments are small, a change of the
dipole–dipole interaction may contribute to the rotation in a crystal (magneto-activity).

According to observation the Faraday effect is rather insensitive to the structure and, in the
case of a phase transition, is affected mainly through an additional birefringence or changes of
the sample’s density (Kaminsky and Bismayer 1993, Kaminsky and Haussühl 1993, Haussühl
and Effgen 1988).

Some kind of spontaneous Faraday effect may exist in antiferromagnetic crystals. A
careful and thorough study of high-order contributions by electric octupole and magnetic
quadrupole moments lead to a characteristic geometry of this effect in cubic antiferromagnets
(Graham and Raab 1991).

Another theoretical approach to explain the Faraday rotation of semiconductors was
derived by Boswarva et al (1962), which takes account of the details of semiconducting bonds.
However, the result does not describe well the Faraday effect of transparent organic or inorganic
crystals.

2.5. Electrogyration

The effect of a static electric field on the structure is, first, to polarize the atoms, which in
a crude approximation can be seen as a shift x of the nuclei along the field relative to the
electron clouds which surround the atom’s nuclei. Second, the field affects the wavefunctions
governing the electronic transitions (see below), which, in classical terms, leads to a change
of the polarizability volume due to the electric field and results in Miller (1973)

ρ(E) =
∂ρ

∂x

∂x

∂E
+
∂ρ

∂α

∂α

∂E
. (2.5.1)

The shift of the cloud of the kth atom is† (figure 28)

xi(k) =
4πε0

e
αij (k)E

loc
j , (2.5.2)

where αij is the polarizability volume tensor, e the electron charge and Eloc
j the electric field

at the atom.
A simple method of calculating electrogyration uses the dipole–dipole interaction model

of Devarajan and Glazer (1986) as a starting point, which calculates the optical rotation and the
refractive indices via the optical dielectric tensor εo

ij (see above). n = average refractive index,
polarizability tensor {aij } is the inverse of {εo

ij }, λ = wavelength, ρij (◦ m−1) is rotatory power

† In a static field, the polarization results from a shift of the nucleus in the direction of the electric field vector because
the electron clouds (in the hard-sphere approximation) cannot move in a crystal. At optical frequencies these clouds
vibrate about the position of the nuclei, the position of which is used for the calculations.
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and ε′ the effective (low-frequency) dielectric constant along the external electric field E.
Assuming a spherical depolarization field (Lorentz depolarization), it follows that

ρij (Ek) − ρij (0) =
180

nλ
Ekgijk,

aij (Ek) − aij (0) = Ekrijk,

Eloc
j =

ε′ + 2

3
Ej ,

(2.5.3)

where gijk are the tensor components of the electrogyration and rijk those of the linear electro-
optic effect at constant strain (Kaminsky and Glazer 1997, 1998).

Using this model (dipole–dipole interaction and electron-cloud shifting: DES model, with
minor modifications) the d-coefficients of SHG are calculated with some success (Kaminsky
and Glazer 1997). However, in neglecting the change of the polarizability, the model is limited
to structures consisting of atoms with a relatively small polarizability.

In general, the shift or splitting of energy levels due to an electric field (linear Stark effect)
is small or forbidden by parity rules. The wave functions, however, are affected by the field
(Hameka 1970):

|i〉(E) = |i〉 − Ek

∑

α

〈α|erk|i〉
Ei − Eα

|α〉,

〈f |(E) = 〈f | − Ek

∑

α

〈f |erk|α〉
Ef − Eα

〈α|,
(2.5.4)

|α〉 are all states belonging to energy niveaus different to the ground state |i〉 with energyEi and
final state 〈f | with energy Ef ; erk is the electric dipole of the atom. Following the Rosenfeld
equations (2.3.1), we find (neglecting quadrupole terms) with wavevector k = (0, 0, k)

ρ(Ek) = 180
2Nkπ

nhvc
Ek(S

′ + iS)Im

[

∑

α

(

Riα
j

R
αf

k

Eα − Ef

+ R
αf

j

Riα
k

Eα − Ei

)

M
f i

j

]

j=1,2

.

(2.5.5)

The correction to (2.3.2) related to perturbed wavefunctions seems to be approximately in
proportion to the square of the electric dipole transition moments to which the polarizability
volume is correlated. The states α, i, and f need to be non-degenerate to allow for
electrogyration which may result from internal crystal fields.

Stasyuk and Kotsur (1985a, b) argue that one can treat electrogyration in a similar
way in the degenerate case, introducing ‘proper’ wavefunctions describing the ‘zero-order’
approximation of electrogyration.

Further, a result of Miller (1973) can be used to derive an expression relating the magnitude
of the two different contributions to electrogyration:

∂ρ

∂x

∂x

∂E
:
∂ρ

∂α

∂α

∂E

∼= ±
4πa3

1

(n2 − 1)a3
0

(2.5.6)

which depends on the difference of stiffness constants describing the difference in the mobility
of the atoms (a1) inside the structure with lattice constant a0 and the magnitude of the
polarizability, which is crudely in proportion to (n2 − 1)a3

0/4π , confirming that the effect
of the electric field on the polarizability is to be considered only in strongly polarized atoms.

The second conclusion is that the simple electron cloud shifting model is not able to
calculate electrogyration or any other electric field induced effect in monatomic crystals such
as Te or those which consist of very similar atoms. The applicability of the model to other
structures is demonstrated below when its results are compared with experimental values.
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In addition, Miller (1973) proposed the idea that nonlinear third-rank optical properties
tijk are described by a constant = tijk(n

2 − 1)−2(ε − 1)−1, which was found to be consistent
with experiment in case of the SHG and the electro-optic effect (Miller 1964). However, Weber
and Haussühl (1976) showed that this rule is not applicable to electrogyration.

2.6. Combined effects

A Taylor expansion of the constitutive equation gives insight into some relations concerning
high-order effects (see also Kharchenko (1994), Graham and Raab (1992)):

1

ε0
Di = εijEj + zijk

∂Ej

ω∂t
Hk + zeFr

ijkl

∂Ej

ω∂t
HkEl

+goa
ijk

∂Ej

∂xk
+ g

egy
ijkl

∂Ej

∂xk
El + gmoa

ijkl

∂2Ej

ω∂xk∂t
Hl

+gmeg
ijklm

∂2Ej

ω∂xk∂t
ElHm + g

p
ijklm

∂Ej

∂xk
σlm (2.6.1)

where we find the Faraday tensor zijk , electro-Faraday rotation zeFr
ijkl , optical rotation goa

ijk ,
electrogyration gegy

ijkl , magneto-activity gmoa
ijkl , magneto-electrogyration gmeg

ijklm and piezogyration
g

p
ijklm. ω is the angular frequency of a plane light wave E = E0ei(kx−ωt). These expressions

are allowed in dia- or paramagnetic materials satisfying time inversion symmetry. If this plane
wave is inserted for Ej , it follows that

∂Ej

∂xk
= ikkEj = kk

∂Ej

ω∂t
(2.6.2)

and reversal of time t results inH(t) = −H(−t),Ej (t) = Ej (−t), kk(t) = −kk(−t). If only a
non-dissipative contribution of the different effects is allowed we have gijklm... = eijpkŴpklm...,
and zijk... = eijpZpk.... eijp = −eipj : Levi-Cività symbol, κ = k/k. With these definitions
the equation becomes

1

ε0
Di = εijEj + eipj

∂Ej

ω∂t
[ZpkHk + ZeFr

pklHkEl + κk(Ŵ
oa
pk + Ŵ

egy
pklEl + iŴmoa

pkl Hl

+iŴmeg
pklmElHm + Ŵ

p
pklmσlm)] = εijEj − i(g × E)i . (2.6.3)

The fact that the coefficients for magneto-activity and magneto-electrogyration are imaginary
shows that this formalism may be insufficient to treat them as a gyrotropy. More details are
given in section 3.2.3.

Equation (2.6.3) is connected with the wave equation. In using equation (2.1.2) and
assuming cubic symmetry (εij = ε = n2) it follows that

(n2
L/R − n2

o)
2 = (κigi)

2

ϕ =
180L

λ
(nL − nR) =

180

nλ
Lκigi .

(2.6.4)

A rotation of the sample by 180◦ perpendicular to the wavevector changes the sign of the
electric field and of the observed electrogyration Ŵ

egy
pklEl . In an isotropic medium such rotation

is not distinguished in Ŵpkl ≡ Ŵ and electrogyration cannot exist in gases or fluids. The same
argument holds for the magneto-electrogyration. Further crystal symmetry related restrictions
are derived in analysing the transformation of tensors†:

tij,...,k = uiαujβ · . . . · ukχ tαβχ (2.6.5)

† Again, we use the Einstein convention for sums which have to be carried out over each pair of identical indices.
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where uij represents one of the point symmetry operations of a point group. If we ask for
invariance of a tensor component tij,...,k it has to be equal to tαβχ . This often leads to the
relation tij,...,k = −tij,...,k and this component is forbidden by symmetry (see further Haussühl
(1983) or Nye (1957)).

An external stress or electric field deforms the crystal, causing additional birefringence
via the electro- and piezo-optic effect (.aij = rijkEk + qijklσkl). This results in optical
effects which are difficult to separate from intrinsic gyrations and exceed them often by several
hundred-fold!

In most common electro-optic experiments the crystals under investigation are
mechanically unconstrained. The stress in these experiments is constant and tensors derived
under such conditions have to be marked as ‘unclamped’. The quasi-static electric field causes
an additional strain via the inverse piezo-electric effect (εij = dkijEk). This in turn changes the
gyration by an effect called elastogyration g

elagy
ijkl . Similar, the elastic compliance Sijkl changes

the crystal dimensions (εij = Sijklσkl) and causes elastic-compliance gyration (gelcomp
ijkrs ).

1

ε0
Di = · · · + g

egy
ijklm

∂Ej

∂xk
(clmpq[drpqEr + Spqrsσrs])

= · · · + (g
elagy
ijkr Er + g

elcomp
ijkrs σrs)

∂Ej

∂xk
. (2.6.6)

clmpq are the stiffness constants of the crystal. If the electric polarization caused by an external
force in a piezo-electric crystal is not short-circuited, a contribution to the piezo-gyration arises
as secondary electrogyration. This effect may be small if the susceptibility of the crystal is not
large. Weber (1979) showed that the secondary effects in NaClO3 are almost as small as the
error limits of the experimental tensor coefficients.

Semiconductors under stress have been studied in detail elsewhere (see the reviews by
Koopmans et al (1996, 1998)). The gyrotropy is related to interband coupling in the electronic
band structure of these materials. Likewise for the treatment of the Faraday effect by Boswarva
et al (1962) the reader is referred for details to the articles of above authors.

3. Experiment

3.1. Intrinsic effects

3.1.1. Natural optical rotation at room temperature. Here we give a summary of optical
rotation measurements in optical isotropic directions, where for most of the examples the
absolute structure assignment is known (table 4). The detection of complete tensors in non-
cubic crystals requires measurements in birefringent crystal sections. Methods applicable to
those cases are outlined in section 2.2. Measurements have been excluded where a correction
for parasitic ellipticities has not reliably been made (when measured with method (a) in
section 2.2 and g/.n is equal to or smaller than g11/.n in quartz) and where a connection to
the absolute structure has not been established. The result of this review is listed in table 5.

As an example of a tensor determination with the ‘tilter’, the spectra of ϕ0(δ) sin(δ)/δ
against tilt angleα for different crystal sections in tartaric acid, C4H6O6, are shown in figure 29.
The over-determined system of equations and additional information is found in table 6 (Mucha
et al 1997). Another case is orthorhombic mannitol, C6H14O6, where similar large tensor
components are observed (Kaminsky and Glazer 1997).

A speciality of the tilter method is the determination of tensor components in a direction
perpendicular to the normal vector of the crystal plate. As shown in KH2PO4 the component
ρ11, and in RbOTiAsO3, K2ZnCl4 the component ρ12 is found with the same or even a better
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Table 4. Optical rotation along isotropic directions and absolute configuration in crystals.

ρ = k
ρ
o +

∑

i

k
ρ
i
λ2

(λ2−λ2
i
)2

; ρ = k
ρ
D

(λ2−λ2
D
)
; n2 = 1+ko +

∑ kiλ
2

λ2−λ2
i

; [λ]: µm. The rotatory powers may be

compared with those of AgGaS2 (ρ11 = ±950.0◦ mm−1 at 485 nm, Hobden 1968), poly-L-lactic
acid (ρ = 9200◦ mm−1 at 514.5 nm, Kobayashi et al 1995a). The thermal coefficients for quartz
are ∂ρ/ρ∂T = 1.06 (170 K); 1.60 (370 K); 1.96 (570 K).

Substance SG ρ (633 nm) i K
ρ
i Ki λi (µm) Reference

α-AlPO4 P3221 −14.6 Schwarzenbach (1966)
(C6H5)2(CO)2 P322 −23 0 no : 1.08 — Chandrasekhar (1961)
(Benzil) 1 0.535 0.240

2 0.0150 0.398
0 — ne : 1.35 —
1 6.27 0.370 0.240
2 0.0138 0.395

α-GaPO4 P3221 −16 Glazer and Stadnicka (1986)
α-HgS P3121 320 1 19.13 0.243
α-LiO3 P6a

3 −86.7 D −28.8 0.238 Stadnicka et al (1985)
α-SiO2 P3221 19.1 0 — — — Chandrasekhar (1961)

1 no : 1.35 0.092 63
1 7.19 ne : 1.378 0.092 63

Bi12GeO20 I23a −19.5 Abrahams et al (1977)
Bi12SiO20 I23a −20.5 Abrahams et al (1977)
Bi12TiO20 I23 > − 6 Swindells and Gonzales (1988)
Ca2Pb[C2H5COO]6 P41 −10 Singh (1984)
Ca2Sr[C2H5COO]6 P41212 −6.2 Glazer et al (1981)

Itoh et al (1981)
Cd2(NH4)2(SO4)3 P213 0.28 1 0.115 0.158 3 Ivanov and Koniak (1975)
Cs2[(2R, 3R)-C4H4O6] P3221 −9.67(9) 1 −3.640 0.150 Stadnicka and Brozek (1991)
K2S2O6 P32a

1 −6.57 Gomes et al (1996)
NaBrO3 P213a −1.65 Chandrasekhar (1961)
NaClO3 P213a 2.44 0 0.123−0.0086λ2 — Chandrasekhar (1961)

1 −1.238 1.1825 0.090
2 0.1374 0.0799 0.185

Rb2[(2R, 3R)-C4H4O6] P3221 −8.65(8) D −3.201 0.185 Stadnicka and Brozek (1991)
Rb4LiH3(SO4)4 P41 −0.28 Zuniga et al (1990)
Te P312 −740 Brown and Forsyth (1996)

a See structural coordinates (appendix, table A.2).

precision as if a cut along the direction with maximum effect had been examined (Kaminsky
and Glazer 1996; figure 30; Kim et al 2000; figure 31). Figure 32 presents the result of a tilt
scan in another uniaxial material: LaBGeO5. The reinvestigation of the absolute structural
configuration revealed the space group P 32 (Kaminsky, Corker and Glazer 2000). The sign
and magnitude are in accord with a calculation using the dipole–dipole model.

3.1.2. Natural optical rotation and phase transitions

3.1.2.1. Earlier results. The temperature dependence of optical rotation has not very often
been determined. Studies in ferroelectric crystals such as KDP and related crystals (Vlokh,
Klepatch and Shopa 1986a,b) claim that the observed gyration is often accompanied by intrinsic
electrogyration. The symmetry allows only for quadratic electrogyration to contribute to the
optical rotation along the a- and b-axes in the ferroelectric phase (the linear electrogyration
does exist, but does not contribute in the case of wavevector and electric field along the a-



1606 W Kaminsky

Figure 29. Tilt scans in tartaric acid samples at a wavelength of 680 nm. (a) 45◦ cut to
approximately [100] and [010] (close to one of the optical axes), tilt axis ‖nβ ≈ [001], thickness
L = 0.130(5) mm; the optical rotation changes its sign close to the optical axis. (b) Cut ‘on’
nα = [010] (obtuse bisectrix), tilt axis ‖nγ ≈ [100], L = 0.250(5) mm. (c) Cut ‘on’ nγ (acute
bisectrix), tilt axis ‖nβ ≈ [001] (optic axis plane, flash figure), L = 0.360(5). (d) Cut ‘on’ nβ , tilt
axis ‖nγ ,L = 0.290(5)mm. (e) 45◦ cut to [010] and [001], tilt axis ‖[010](nα),L = 0.200(5)mm;
in the diagonal cut to [010] and [001] the optical rotation was found to change sign similar to the
tilt scan about the optic axes. (f ) The representation surface of optical rotation with respect to the
physical reference system (see further Mucha et al 1997).

Figure 30. Tilt scans in KDP (Kaminsky and
Glazer 1996), cut on (001) with a tilt towards the
crystallographic axis a. b, tilt towards b; m, tilt
towards the meridian between a and b. The inset
shows the representation surface of optical activity in
KDP (the sample needs special preparation to avoid a
surface related phenomenon).

or the b-axis). However, the gyration is derived from the azimuthal rotation measurements
(Konstantinova et al (1969), see section 2.3) and parasitic contributions are not properly
separated out. Nevertheless, the number of optical components has been kept small to simplify
the problem. In KH2PO4, KH2−xDxPO4, x = 89% and CsH2AsO4 peaks of the only gyration
component ρ11 = −ρ22 were found at the Curie points. In RbH2PO4 the gyration just dropped
off from the high-temperature value. The measurements were repeated later on, using the
HAUP technology, by Kobayashi et al (1987) and the existence of a quadratic electrogyration
in KDP was confirmed. In the ferroelectric phase below 123 K a linear component was found.
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Table 5. Complete tensors of optical rotation in crystals at room temperature. References 1, this
paper; 2, Stadnicka et al (1992); 3, Ortega et al (1993); 4, Kaminsky and Hartmann (1993); 6,
Kaminsky and Glazer (1997); 7, Kremers and Meekes (1995); 8, Moxon et al (1991); 9, Stadnicka
et al (1987); 11, Lingard (1994); 12, Gomez et al (1994); 14, Arzt and Glazer (1994); 15, Thomas
et al (1991); 16, Chandrasekhar (1960); 17, Mucha et al (1997); 18, Asahi et al (1992); 19, Arzt
(1995); 20, Iwasaki et al (1972); 21, Vlokh et al (1992); 22, Kaminsky et al 1999; 23, Kaminsky
(1996); 24, Matsuda et al (1990); 25, Glazer et al (1981); 26, Saito et al (1992); 27, Saito et al

(1994); 28, Vlokh et al (1986); 29, Kaminsky et al (2000); 30, Tebutt (1991); 31, Kim et al (2000).

Formula SG λ (nm) ρ11 ρ22 ρ33 ρ12 ρ23 ρ13 Reference

(NH3(CH3))5(Bi2Br11) P ca21 587 — — — −3(1) — — 11
AlPO4 P322 632.8 12(1) =ρ11 −14.6(1) — — — 19
BaMnF4 A21am 632.8 — — — — −16(3)b — 18
Ca2Sr(C2H5COO)6 P41212 632.8 ±15(1) =ρ11 −6.2(1) — — — 24, 25
Gd2(MoO4)3 Pba2b 476.5 — — — 35(2) — — 27
CsH2AsO4 I42d 632.8 −14(1) = − ρ11 — — — — 28
K2Cd2(SO4)3 P212121 670 −2.7(9) −1.8(2) 2.9(5) — — — 23
K2ZnCl4 (300 K) Pna2b

1 670 — — — 0.5(2) — — 31
K2ZnCl4 (50 K) A1a1b 670 — — — −12(2) −5(1) — 31
KH2PO4 I42d 500 −16(2) = − ρ11 — — — — 19
KLiSO4 P63 632.8 1.2(1) =ρ11 −2.5(1) — — — 3
KTiOPO4 Pna2a

1 632.8 — — — 22(2) — — 15
L(+)TA,C4H6O6 P21 670 −65(2) 79(3) 85(4) — — 32(2) 17
LaBGeO5 P32 670 −6(2) =ρ11 2.1(1) — — — 22
LiNH4C4H4O6 · H2O P21212b 632.8 1.5(1) −2.3(1) −5.3(2) — — — 26
LiRb4D3(SO4)4 P41 632.8 3(1) =ρ11 −0.29(1) — — — 11
LiRb4H3(SO4)4 P41 632.8 2.0(5) =ρ11 −0.28(1) — — — 11
Mannitol,C6H14O6 P21212a

1 600 −8(1) −3(1) −56(3) — — — 6
NaNH4(C4H4O6) · 4H2O P21212 500 3(1) −8(1) 2(1) — — — 11
NaNH4SO4 · 2H2O P21212a

1 500 −4(1) 7(1) −3(1) — — — 14
NH4H2AsO4 I42d 500 −40(3) = − ρ11 — — — — 19
NH4H2PO4 I42d 589.3 −7(1) = − ρ11 — — — — 2
NiSO4 · 6H2O P41212 632.8 0.0(1) =ρ11 −1.0(1) — — — 7–9
Pb5Ge3O11 P3a 632.8 14(1) =ρ11 −5.5(1) — — — 19–21
RbH2PO4 I42d 632.8 −7(1) = − ρ11 — — — — 28
Rb2TiOAsO4 Pna2a

1 670 — — — 17(3) — — 29
Rb2TiOPO4 Pna2a

1 600 — — — 18(4) — — 30
SiO2 P322a 632.8 −10.8(5) =ρ11 19.10(5) — — — 1, 8, 16
Sr2S2O6 · 4H2O P3b 632.8 −0.6 =ρ11 2.65 — — — 12
TeO2 P43212 632.8 −169(12) =ρ11 −85.75(1) 4

a Absolute structures are given in the appendix, table A.2.
b Not assigned to absolute structure.

Because no attempts were made to eliminate parasitic contributions to the electrogyrative
signal, it is at least doubtful whether the quadratic effects are really due to electrogyration or
to parasitic effects and the observed changes of optical activity are a result of spontaneous
polarization via a quadratic electrogyration. The author’s own observations (unpublished) are
not fully in accord with the earlier results (figure 33).

The observations of second-order electrogyration in (N(CH3)4)2ZnCl4 within the
incommensurate phase (Saito et al 1987) or at room temperature in quartz (Kobayashi et al

1987) were derived with the same technique and leave similar doubts.
Boracites such as Fe3B7O13I, Co3B7O13I and Cu3B7O13Cl were investigated with respect

to optical activity. In the course of the phase transition from a paraelectric cubic phase (43) into
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Table 6. The over-determined system of equations describing optical activity in TA (tartaric acid,
C4H6O6). ρ(k) = optical activity in direction of the wavevector k. Directions e◦

i are along nα,
nβ , nγ of the indicatrix. Direction cosines [. . .]◦ with respect to the indicatrix. The polarization of
nγ is 18◦ and the crystallographic axis a 10◦ anti-clockwise rotated towards e1 if looking towards
[010]. The tensor components with respect to ej are ρ11 = −65.1(1.9), ρ22 = 78.7(2.6), ρ33 =
85.2(3.7), ρ13 = 32.3(2.3) (see also table 5).

k direction cosines ρ(k) (◦ mm−1) ρ11 ρ22 ρ33 ρ23

[100]◦ (nα) 81(10) 1 0 0 0
[010]◦ (nβ) 90(20) 0 1 0 0
[001]◦ (nγ ) −66(10) 0 0 1 0
[0.6230 0.783]◦ −12.3(1.0) 0.388 0 0.613 0
[0 − 0.707 0.707]◦ 28(10) 0 0.5 0.5 −1
[00.707 0.707]◦ −8(10) 0 0.5 0.5 1
Tensor in [. . .]◦ ρij (

◦ mm−1) 78.7(2.6) 89.8(3.8) −69.8(1.7) −18.0(2.2)

Figure 31. Typical tilt scans in K2ZnCl4 at room temperature and at 40 K. Shown are the cos(δ)
dependence, δ = phase factor and ‘ellipticity’ signal yfiltered

1 as results from the filter algorithm
(figure 20).

a ferroelectric orthorhombic phase (mm2), in the vicinity of the critical temperatures, optical
rotation revealed high peaks of the component ρ12 (Tomizawa et al 1991, Takahashi et al 1992).
Again, quite large nonlinear electrogyrative effects for an electric field along the ferroelectric
axes were observed, which were interpreted as a result of second-order electrogyration.

Asahi et al (1992) investigated the pyroelectric–antiferromagnetic phase transition into
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Figure 32. A tilt scan in uniaxial (SG P32)
LaBGeO5. The optical rotation tensor has
cylindrical symmetry and the direction to which the
(001) plate is tilted does not have to be specified.
The figure shows Fabry–Pérot interference, which
limited the accuracy of the measurement to a small
extent.

Figure 33. Optical rotation component ρ11 versus temperature in KH2PO4 (filled circles) and
birefringence n|c −n|a (open circles). The decrease of optical rotation below the Curie temperature
of this artificially strained sample is less pronounced than previously reported. The strain was
implemented growing KH2PO4 in the presence of an organic dye (see literature on the growth
of dyed crystals: Rifani et al (1995), Kahr et al (1996), Subramony et al (1998)). The dye is
grown only into (101) growth sections and causes the whole crystal to be strained. As a result, the
Curie point is shifted slightly to a lower temperature, but the formation of multiple domains was
suppressed.

an incommensurate phase of BaMnF4. The macroscopic point groups are 2 (T < 250 K)
and mm2 (T > 250 K), where in the low-temperature phase the incommensurate modulation
is along the a-axis (= 2-fold axis in both phases). In both symmetries, the optical rotatory
component ρ23 is allowed, which has a steep increase at 250 K. In the low-temperature phase,
because of symmetry, the components ρ11, ρ22 rise from their high-temperature zero values.
However, ρ33 remains unobservably small.

The phase transition from orthorhombic to monoclinic LiNH4C4H4O6 · H2O at 198 K
causes a rotation of the optical rotation surface due to the symmetry-allowed component ρ13.
The other rather small components are all decreased by about 4◦ mm−1 (Saito, Cao and
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Kobayashi 1992). This steep change was found to be in proportion to the shear strain in
the course of the transition. A similar case will be discussed below in langbeinite crystals.
Rochelle salt, to which LiNH4C4H4O6 · H2O exhibits some similarities, was investigated
as well in unclamped crystals (Kobayashi, Uchino and Asaki 1991a; Kobayashi, Uchino,
Matasuyama and Suito 1991b). The observed effects are to be seen as a superposition of
electro-optic, electrogyrative and electrostrictive effects, where the elasto-optic coefficients
connect for example a secondary electro-optic effect to the spontaneous strains. Unfortunately,
no discussion of these contributions was made. In addition, all effects seem to be too small to
be free of parasitic contributions.

Recently, Gd2(MoO4)3 was investigated,which exhibits a phase transition at 430 K and
transforms from Pba2 into P 421m (Saito et al 1994). The optical rotation ρ12 decreases at
the transition into higher temperatures, but remains non-zero. A small but non-zero ρ12 below
232 K was found in (NH4)2SO4, which does not exhibit optical rotation at room temperature
(Higano et al 1994) since the transition leads from mm2 into 2/mm.

3.1.2.2. Langbeinites. In a ferroelastic–paraelastic transition, when the symmetry is broken
by the spontaneous strain, the optical rotation may not be accompanied significantly by intrinsic
electrogyration. If the high-temperature phase is optically isotropic, spontaneous optical
birefringence occurs as a result of the elasto-optic effect, which vanishes in the paraelastic
phase.

Baturina et al (1983, 1987) investigated the optical properties of Tl2Cd2(SO4)3,
Rb2Cd2(SO4)3, (NH4)2Cd2(SO4)3 and K2Co2(SO4)3. In the course of the phase transition
in K2Co2(SO4)3 at 125 K the optical rotation shows no distinct variation although the
birefringence drops to zero in the cubic phase at high temperature. A complete tensor
determination has not been performed.

When the birefringence becomes small in the vicinity of the transition, it is difficult to
obtain enough information on the optical properties from tilting the sample. In these cases
additional measurements may be useful where the dispersion of δ with varying wavelength is
used to avoid singularities in the measurement, which depends on cos δ and sin δ.

As an example, the ferroelastic phase transition of the optically biaxial Cd langbeinite

K2Cd2(SO4)3 is studied (Kaminsky 1996), (SG P 212121
432 K−→ P 213, Lissalde et al 1978),

where earlier Vlokh and Lyzko (1984) found a distinct variation of optical activity along the
optic axes.

A large step in the birefringence at the transition temperature was observed as well
(Devarajan and Salje 1984).

The three independent tensor components in the orthorhombic phase at room temperature
were measured with the ‘tilter’. Because the technique is fast, it was possible to scan the samples
laterally by successive repetition of the tilt procedure and shifting the sample to investigate its
optical homogeneity. Measurements where the ‘ellipticity’ was determined as a function of
the wavelength confirmed the result within the observed variations in the topography, which
seem to stem from growth sections or internal strains. However, for temperatures close to
the phase transition into the cubic phase the birefringence became too small and the relevant
signals were observed as they varied with the temperature. The effect of the phase transition
on the optical rotation is shown in figure 34, where the representation surfaces are derived for
three temperatures.

Following the first of Stadnicka’s rules in section 2.3 on the origin of optical rotation, i.e.
the optical activity is built up from the superposition of helical arrangements in a structure
where axial or tangential ‘polarizability ellipsoids’ determine the sign of the contributions
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Figure 34. Measurements in Cd langbeinite (Kaminsky
1996), showing the variation of the optical activity along
one of the optic axes against temperature. The inset
shows the representation surface of intrinsic optical
rotation at room temperature.

Table 7. The components of experimental (exp) and calculated (calc) rotatory power (◦ mm−1) for
different directions in Cd langbeinite. Missing values correspond to conditions where the tilting
of the sample did not change the birefringence enough to allow a precise measurement. Errors
are given in parentheses. The values derived with the HAUP system at room temperature (RT) for
λ = 680 nm are included. The polarization directions of n1, n2 and n3 are along [010], [001] and
[100], respectively. [0.82 0.57 0] is the direction along an optical axis.

T (K) [100] [010] [001] [0.82 0.57 0]

exp. calc. exp. calc. exp. calc. exp. calc.

RTHAUP −1.0(4) −1.6(2) 3.4(2)
298 −3.4(4) −4.535 −2.0(2) −0.110 2.3(2) 5.239 −2.5(3) −3.079
351 −4.526 0.240 2.6(2) 5.175 −2.3(2) −2.958
390 −3.894 0.305 4.512 −1.5(2) −2.513
417 −1.5(4) −3.093 −1.0(2) 0.349 1.4(2) 3.808 −1.3(2) −1.961
443 0.27(5) 0.343 0.36(5) =[100] 0.28(5) =[100] 0.30(5) =[100]

(Glazer and Stadnicka 1986), it was expected that the ferroelastic distortion of the unit cell
only shifts the balance of the different chiral contributions, conserving the trace of the optical
rotation tensor.

The expansion of the optical rotation of the cubic phase into the orthorhombic phase with
respect to the elastic strains ∈ij and the gyro-elastic tensor gijkl is

.ρij = gijkl ∈kl . (3.1.2.1)

Because the phase transition of Cd langbeinite is a Ŵ-point transition, the cell volume is
invariant, thus V0 = a3

0 + a2
0

∑

∈ii + O(∈2
ii) = const. As a result,

∑

∈ii= 0, and the trace of
the optical rotation tensor is an invariant as well:

tr(.ρij ) = (g1111 + g1122 + g1133)
∑

εii = 0. (3.1.2.2)

The measurement (Kaminsky 1996) and calculations with the dipole–dipole model by
Devarajan and Glazer (1986), based on the structure analysis by Abrahams, Lissalde and
Bernstein (1977b), confirm the quasi-invariance of trace (ρij ) (table 7).

3.1.2.3. K2ZnCl4. The ferroelectric–ferroelastic phase transition of K2ZnCl4 at 145 K has
been investigated employing the tilter method. The anisotropy of optical rotation in K2ZnCl4
showed a distinct discontinuity at the transition temperature.

The gyration tensor components ραβ and ραγ of KZC (indices with respect to the refractive
indices of the indicatrix) obtained with the tilter method are plotted in figure 35 as a function
of temperature. Both components are almost zero within the error limits above T3. However,
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Figure 35. The temperature dependence
of the gyration tensor components
in K2ZnCl4. A first-order Landau-
type discontinuity is observed at the
phase transition temperature in one
component.

ραβ seems to show a small discontinuity at T3 corresponding to the C–FE phase transition. ραβ
then decreases continuously. The behaviour of ραγ is similar, with a precursor behaviour up
to about 200 K, and reaches as much as −10◦ mm−1 at 70 K where it saturates.

The Landau theory, which is applicable to order–disorder phenomena, may explain the
critical behaviour of the rotatory power tensor component ραβ in the C–FE phase transition.
The order parameter of this proper ferroelastic phase transition (Salje 1990) corresponds
linearly to the spontaneous strain e13 ∝ constant term +(T3 − T )

1
2 (with respect to Pna21)

(Harada et al 1992). ραβ is related to the strain via the gyro-elastic coefficients gijkl of the
ferroelectric C-phase, which are taken to be almost independent of the temperature. The
independent components of the gyro-elastic tensor in point group mm2 are g1112, g2111, g1222,
g2221, g1233, g3312, g1323, g2313 and g3333. The first and second pair of indices of this axial tensor
are commutative. The only temperature dependent contribution is related to g2313 (y‖nα , z‖nβ)
and the following expression describes well the temperature dependence of ραβ :

ραβ = 2gαβ13e13 ∝ A + B(T3 − T )
1
2 .

However, a strong variation in ραγ starting at about 25 K below T3 was detected. Thus, the
assumption of a temperature independent gijkl may not be valid, and the structural changes
in the course of the transition do affect the optical rotation even more than the breaking of
symmetry due to the spontaneous strain.

3.1.2.4. Incommensurate crystals. The structures of incommensurate crystals are modulated
such that there are periodical deviations from the average structure (figure 36). The period
of these deviations is not an integer multiple of the cell parameters. The point group of such
materials does not necessarily reflect the modulation. It often happens that the translational
symmetry of an incommensurate crystal is compatible with an inversion symmetry of the
macroscopic point group. The fundamental rule to determine the existence of tensorial
properties is given by Neumann: a physical property has at least the symmetry of the crystal.
This means for example that optical rotation cannot exist in centrosymmetric crystals. Because
Neumann’s law was manifested at a time before incommensurate crystals were discovered, its
general applicability to these substances was disputed.

Thus, the optical rotation in centrosymmetric incommensurate crystals of the A2MX4 type
is controversial. First measurements on [N(CH3)4]2ZnCl4 (Kobayashi et al 1986a, Kobayashi
and Saito 1986b) and Rb2ZnCl4 (Kobayashi, Saito, Fukase and Matsuda 1988a), using the
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Figure 36. Incommensurate crystal Au1−xAgxTe2 (typical twin; Janner and
Dam 1989, courtesy of OPA (Overseas Publishers Association) NV). The crystal
faces are labelled with four integral indices. Hhklm = ha∗

1 + ha∗
2 + ha∗

3 + mq,
where a∗

i are the reciprocal lattice vectors and q = αa∗
1 + βa∗

2+γa∗
3 is a

modulation vector. If at least one of the three α, β, γ is irrational, the structure
is incommensurably modulated.

HAUP technology revealed non-zero components. However, Moxon and Renshaw (1990)
showed a new way to eliminate parasitic contributions in the HAUP measurements, which was
later adapted by others as well (Kremers and Meekes 1995b). With the improved technology,
the optical rotation was found to be below the detection sensitivity (Folcia et al 1993, Ortega
et al 1995, Kremers, Etxebarria, Folcia, Dijkstra and Meekes 1996). Still using the old method,
a non-zero component g23 was published (Kobayashi et al 1993, 1994a, b), most probably as a
result of the parasitic effects introduced by the crystal itself when entering the incommensurate
phase. A similar discussion concerns ((CH3)4N)2CuCl4, which shows no optical rotation
according to Ortega et al (1992), contradicting Saito et al (1990). This is questioned by
Kremers and Meekes (1995c), who find optical rotation and a rotation of the indicatrix, but
discuss the possibility that the incommensurate phase may not be centrosymmetric. Definitely
non-centrosymmetric is the mixed crystal ((CH3)4N)2ZnCl2.8Br1.2 (Vogels et al 1994, Kremers
and Meekes 1996), which therefore is allowed by symmetry to possess non-zero optical
rotation. In a similar light one should consider reports on optical rotation in (centrosymmetric)
(C3H7NH3)2MnCl4 (Saito and Kobayashi 1991, 1992).

Recently, a report on thiourea by Billesbach and Ullman (1994), using the rotating
polarizer technique (Suits 1971, Wood and Glazer 1980), showed strong optical rotation in the
incommensurate but still centrosymmetric phase below 200 K according to their interpretation.
However, the result is much more likely to result from twinning rather than optical rotation.

3.1.3. Intrinsic Faraday effect

3.1.3.1. General remarks. The tensor relation and field dependence of the Faraday effect in an
anisotropic medium is given according to equation (2.4.3) by the projection of the wavevector
k on the direction of the magnetic field multiplied by the effective tensor component in the
direction of the magnetic field (Kaminsky and Haussühl 1993) ϕ = −VijuiujLk(Hk + Mk),
where Vij = −180Zij/Hknλ is the Verdet constant (◦ A−1) (see also equation (2.6.2)), ui
are direction cosines of H , Lk the thickness of the sample along k, Hk the component of the
magnetic field and n the refractive index.

If a material is ferromagnetic, the magnetization can be measured from the spontaneous
Faraday rotation. The tricritical† behaviour of FeCl2 at 23.5 K was monitored in this way
(Dillon et al 1978).

As another example, Huang and Ho (1975) measured the magnetic properties of EuO near
the Curie point using the Faraday rotation. They found a small third-order term in the relation
between the Faraday rotation and magnetization. When taking into account the nonlinearity,

† Within a phase diagram, a tricritical point connects three different phases. The axes of a diagram may be temperature
and pressure, temperature and a magnetic or electric field or similar.
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Figure 37. Measurements in FeBO3. (a) Tilt scan of a sample cut on (001) with tilt axis
perpendicular to the magnetization. (b) Intrinsic Faraday rotation and rotation of the indicatrix
against temperature. (c) Topography of intrinsic Faraday rotation. (d) Topography of intrinsic
indicatrix rotation about [100] (Kaminsky 1997).

the critical parameters obtained from magnetometric measurements are confirmed. An equal
magnitude of bandwidth and bandgap is discussed as a reason for the observed nonlinearity.

3.1.3.2. FeBO3. In an FeBO3 sample cut on (001)—as a further example—the intrinsic
Faraday rotation along M‖[100] was derived from tilt scans presented in figure 37(a).
Figure 37(b) shows the effect along M as a function of the temperature and figure 37(c)
a topography of optical rotation across the sample plate (Kaminsky 1997).

The ‘tilter’ method allows us to determine the complete orientation of the indicatrix.
Figure 37(d) shows the tilting about [100] of the indicatrix which results from the Shubnikov
point group transition 3m1′ into 2/m (monoclinic–ferromagnetic/ferroelastic) and which
manifests itself in a magnetization dependence of χ (equation (2.2.4)) for a tilt axis parallel
[100] × [001] (of the trigonal phase) and a magnetization M |[100].

The Faraday effect VijMiLj = ρkLk†, with sample thickness L in the direction of the
wavevector k, is effectively represented by a single-rank property ρk (the spontaneous rotatory
power, figure 37(a)). In a sample of thickness L cut on the c-axis with M = [M1, 0, 0]
parallel to x|[100] we observe as a part of the azimuthal rotation the Faraday effect ϕ(k) ≈
LV11M1 sin β/ cosβ, where β is the angle between c and k. ρS = V11M1 is the spontaneous
Faraday effect.

The indicatrix is affected by a magnetic field according to .aij = qijkHk + qijklHkHl

† The independent components of Vij in FeBO3 are V11 = V22 and V33. The given expression describing the Faraday
effect is in accord with equation (2.4.3). However, it is not to be applied to monoclinic or triclinic crystals.
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(Kharchenko 1994); here qijk is the linear and qijkl the quadratic magneto-optic tensor‡. In the
Shubnikov point group 3m1′ of the paramagnetic high-temperature phase of FeBO3, the axial
tensor with qijk = qjik does not exist because time inversion changes the sign of qijkHk , but not
.aij . The polar tensor qijkl exists and consists of the eight independent components (Haussühl
1983) q1111, q1122, q1133, q1123, q3311, q3333, q2311 and q1313. Spontaneous magnetization along
[100], {.aij } = {q1111M

2
1 , 0, 0; 0, q1122M

2
1 , q2311M

2
1 ; 0, q2311M

2
1 , q3311M

2
1 }, results in an

effective monoclinic symmetry where the indicatrix is rotated about the magnetization by
χS = −.a23/(a

o
22−ao

33+.a22−.a33)
∼= 0.5n3

o(no−ne)
−1q2311M

2
1 withno andne the ordinary

and extra-ordinary refractive indices. Optical activity exists neither in the centrosymmetric
point group 3m1′ nor in the effective monoclinic symmetry.

The previously determined critical exponent (Eibschütz, Pfeiffer and Nielsen 1970,
Kurtzig et al 1969) describes well the temperature dependence of the intrinsic rotation and
spontaneous tilting of the indicatrix (figure 37(b)).

It was found earlier (Kaminsky and Haussühl 1993, Orushinin et al 1986) that the Verdet
constant V33 varies only a little in the course of the ferromagnetic transition. However, the
direct experiment in the direction [100] revealed a rather large temperature dependence of
V11. The first experiment was carried out with an unfavourable geometry because of which
depolarization effects affected the result.

The intrinsic Faraday effect was used previously to give contrast when studying domains
in FeBO3 with a microscope giving a higher resolution than obtained with the tilter (Scott
1974, Fedorov et al 1981, 1983). Apparently a quantitative determination of the indicatrix tilt
(χ ) has not been performed. Measurements of the spontaneous birefringence have not been
published (Pisarev 1996).

3.1.4. Intrinsic electrogyration and ferroelectric TGS. It was supposed that electrogyration
can occur in a ferroelectric crystal as a result of the field of spontaneous polarization. A
gyrotropy which was related to this mechanism was first observed for light travelling along
one of the optic axes in triglycine sulphate (TGS : NH2CH2CO2H)3 · H2SO4 (Hermelbracht
and Unruh 1970). The space group symmetry of the structures of TGS in the course of the
second-order ferroelectric phase transition are P 21/m above and P21 below Tc = 322.6 K
(Matthias, Miller and Remerka 1956, Landolt–Börnstein New Series 1969, 1979, 1990). The
direction of spontaneous polarization is parallel to the twofold axis in TGS. Crystals cut with
a plate normal vector n|[010] exhibit birefringence.

The published results of gyrotropy of TGS are summarized in table 8. The results vary
within a factor 102 (Kobayashi and Uesu 1983, 1991b, Etxebarria et al 1992, Kaminsky 1994),
far beyond the published error limits. If these discrepancies were due to different crystal
qualities, the results for the birefringence, which is sensitive to all kinds of defect would also
deviate a lot, but this is not the case. Another source for deviations could be the history of the
crystals with respect to heating temperature and time (annealing effects) which can affect the
observed properties (Ivanov and Shuvalov 1967). Underestimating the complicated relation
between the observed gyrotropy and the different optical effects including electro-optic effects
could possibly explain the discrepancies.

In point symmetry 2 the gyration g, phase δ and rotation µ of the indicatrix (see
equations (2.1.7), (2.2.3) and (2.2.4), where the wavevector is parallel to [010]) are assumed

‡ It is important to note that qijk and qijkl are defined here in close analogy to the electro-optic effect. One often
observes the definition in the form .εij = q ′

ijkHk , where aij =∈−1
ij . In the form preferred by the author it is less

likely to be confused with the definition of linear magnetostriction .εij = dkijHk .
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Table 8. Results found in the literature for the difference between properties at 318 K and
Tc = 323 K. The difference is denoted by ‘d’. The symbols are dg2 = change of spontaneous
gyration along the twofold axis of TGS; dgoa = same property for the wavevector along one of
the optical axes; d.n2 = change of birefringence (n3 − n1). d.n1 = change of (n2 − n3); dµ =
rotation of the indicatrix with rotation axis parallel to the twofold axis; λ = wavelength. Errors are
given in parentheses. Only the modulus of the observed changes is given to avoid further confusion.

Reference dg2(10−5) dgoa(10−5) d.n2(10−4) d.n1(10−4) dµ(10−3) λ (nm)

Ivanov and Shavalov (1966) 6.9(1) 540
Lomova et al (1968) 1.5(2) 4.0(2) 9(1) 529
Brezina et al (1969) 4.4(1) ?
Hermelbracht and Unruh (1970) 0.12(1) 589
Habryko and Koralewski (1981) 0.06(1) 633
Kobayashi and Uesu (1983) 0.7(1) 2(1) 5.9(2) 514.5
Kobayashi (1991b) 0.7(1) 6.3(3) 514.5
Etxebarria et al (1992) 6.5(5) 2.5(1) 5.0(2) 633
Kaminsky (1994) 0.3(1) 0.09(1) 3.2(1) 3.7(1) 4.2(1) 633

to be decomposed into

g = (goa) + gegy[D2 + Psp]
µ = µ0 + (µl[D2 + Psp]) + µq[D2 + Psp]2

δ = δ0 + (δl[D2 + Psp]) + δq[D2 + Psp]2

χ = χ0, D2 = ε0ε22E2

(3.1.4.1)

where D2 is the dielectric displacement, Psp the spontaneous polarization, goa and gegy are the
coefficients of optical rotation and electrogyration, µl , µq and δl , δq arise from the linear and
quadratic electro-optic effect. The terms in round brackets and Psp vanish in the paraelectric
phase. The azimuthal rotation observed for incident light, closely linearly polarized ‘along’
nβ (the second largest refractive index), is found with the help of table 2 and equations (2.1.5)
and (2.1.6) (Kaminsky 1994):

ϕ = θ0Cδ + goaSδ + gegyPspSδ + µlPspCδMβ + µqP
2
spCδMβ

+gegyD2Sδ + µ′
lD2CδMβ + δ′

lθ0D2Nδ

+µqD
2
2CδMβ + δqD

2
2θ0Nδ

δ′
0 = δ0 + δlPsp + δqP

q
sp, µ′

l = µl + 2µqPsp, δ′
l = δl + 2δqPsp

Cδ = 1 − cos δ′
0, Sδ =

sin δ′
0

δ′
0

, Nδ = sin δ′
0

Mβ =
cosβ

1 + sin2 β ′ .n3
.n2

, θ0 ≈
µ0.n2 cosβ − χ0.n1 sin β

.n3 sin2 β ′ + .n2
.

(3.1.4.2)

The birefringence .ni = nj − nk , i, j, k cyclic in 1, 2, 3, where n1 = nγ , n2 = nβ, n3 = nα.
θ0, µ0, χ0 and δ0 are those properties where no field is applied. For the definition of β ′ see
equation (2.2.3). In equations (3.1.4.2), higher-order terms or products of small contributions
were neglected. Inserting equations (3.1.4.1) into (2.1.7) results in an expression of similar
complexity; nevertheless, a separation of the different contributions in equations (3.1.4.2) is
already possible, using only the azimuthal rotation of a light wave after passing through the
TGS crystal.

From a Fourier analysis with respect to the external electric field strength D2 = ε22(E
ext
2 ),

the different contributions δ0(α) and β(α) to the azimuthal rotation ϕ are separated out.
The first, second and third lines in equations (3.1.4.2) differ with regard to their frequency
dependence with respect to a sinusoidally varying external electric field. A sinusoidally shaped
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Figure 38. Electrogyration and optical rotation in TGS. Topography
of gyrotropy at 300 K. The lateral dimensions are 1 × 1 mm2

(Kaminsky and Glazer 1998).

modulation of the electric field has the advantage that the results obtained from the Fourier
computation are independent of third- and higher-order contributions, although not explicitly
included in the analysis. A separation of most of the different terms would be possible if the
exact value of δ′

0 were known, but that is not the case. The precise value of the refractive indices
would be different within a collection of TGS samples on individual differences up to 10−5.
A refinement of starting values of the birefringence taken from the literature is established
by a definite variation of δ′

0. The first, second and third lines represent the static, linear and
quadratic contribution to ϕ with respect to the applied field. Each of the three lines depends
on Sδ and Cδ . However, fortunately, the properties µ′

l and δ′
l change their sign if the sign of

the applied field (and the spontaneous polarization) is switched, in contrast to gegy, which does
not change. Within the second line in equations (3.1.4.2), the chiral linear-to-Eext (gegyD2Sδ)

and electro-optic linear—but not changing sign—term (µ1
′D2CδMβ) are distinguished using

the different δ-dependence of the Fourier components Sδ and Cδ . The term δl
′θ0D2Nδ can be

kept small by adjustment. A least-squares fit to the rather large µl
′D2CδMβ versus δ′

0(α) gives
ample information to refine the birefringence. The experimental result is that µ′

l is still large
enough in the paraelectric phase for temperatures close to the critical temperature.

Additionally, this investigation revealed an offset signal in the electrogyrative contribution
to the azimuthal rotation which was assigned to the non-homogeneity of the sample resulting
from domain walls (Kaminsky 1994). The topography of optical rotation across a (010) sample
plate (thickness 0.47 mm), measured with the ‘tilter’, is shown in figure 38, showing ‘spikes’
of positive optical rotation in an otherwise laevorotatory sample. The spontaneous rotation
at room temperature obtained from the topography of approximately 2–3◦ mm−1 is larger
than that extrapolated from the azimuthal rotation measurements. This discrepancy could be
the result of extrapolation to room temperature from the experimental data points of the latter
measurement collected within a rather small temperature interval at higher temperature values.

Table 9 summarizes the parameters for empirical analytic expressions which describe the
thermal behaviour of the different effects. The induced effects are proportional to the relative
dielectric constant ε22.

3.2. Induced effects

3.2.1. Faraday effect. Below we give some examples for the determination of Faraday
rotation in optically uniaxial and biaxial crystals. In order to illustrate the agreement between
the theoretical description (equations (2.1.4)) and experimental results we consider tetragonal
KH2PO4 (KDP) (see above, figure 15) to compare computed and experimental ϕ(α)-curves.
The measurements were performed employing a self-compensating fully automated double-
lock-in technique, where the Faraday rotation was recorded as a function of the applied
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Table 9. Empirical description of the behaviour of the different contributions to electrogyration in
equations (3.1.4.2). The equations describe the properties within 5 K below and above the transition
temperature. t = 1

Tc
(Tc − T ), Tc = 323 K; k = 2: T < Tc; 1: T > Tc. Wavelength 633 nm;

maximum electric field along [010]: 5.9 kV cm−1. Statistical errors in parentheses.

Term Formula a b c d

.n1 a + bt + c
√
t −0.0680(1) 0.35(2) 0.041(2)

.n2 a + bt + c
√
t −0.024 25(1) −0.0039(2) −0.0031(2)

µ0 a
√
t + bt 1.44(2)◦ 4.04(6)◦

goa a
√
t −1.8(2)◦ mm−1

gegyε22
a

k|t | + b
6.2(3)10−6◦ V−1 0.0038(2)

µlε22
1

ect + 1

a

k|t | + b
0.17(2)10−6◦ cm V−1 0.0042(1) 220(3)

µqε22
a arctan(c(t − d))

(k|t | + b)2
0.083(2)10−12◦ cm2 V−2 0.0081(2) −346(22) 0.0039(1)

Table 10. The Verdet tensors of some non-cubic crystals for a wavelength of 633 nm at 293 K
(Kaminsky and Haussühl 1993, Kaminsky and Glazer 1997). [V ] = 10−4◦ A−1. Errors are given
in parentheses. PSG: point symmetry group, ni : indices of refraction (in orthorhombic symmetry
along crystallographic axes ai ), d: density (g cm−3).

Substance PSG d n1 n2 n3 V11 V22 V33

KH2PO4 42 2.338 1.5074 =n1 1.4669 5.7(1) =V11 2.72(1)
NH4H2PO4 42 1.798 1.525 =n1 1.479 6.6(2) =V11 3.15(3)
(NH4)2PF7 4mm 2.015 1.3692 =n1 1.3669 1.22(4) =V11 1.51(3)
TeO2 42 6.01 2.2597 =n1 2.3935 21(1) =V11 22.5(3)
LiNaSO4 3m 2.530 1.4901 =n1 1.4959 2.49(3) =V11 2.30(1)
Cs2S2O6 6m 3.49 1.523 =n1 1.544 3.5(1) =V11 2.91(2)
K2CuCl4 · 2H2O 4mm 2.40 1.6460 =n1 1.6105 11.7(2) =V11 5.9(1)
Rb2CuCl4 · 2H2O 4mm 2.93 1.6368 =n1 1.6130 8.6(2) =V11 5.0(1)
(NH4)2CuCl4 · 2H2O 4mm 1.99 1.6722 =n1 1.6440 17.1(3) =V11 5.6(1)
(NH4)2MnCl4 · 2H2O 4mm 1.893 1.6472 =n1 1.6084 7.3(2) =V11 3.73(2)
Na2[Fe(CN)5NO] · 2H2O mmm 1.725 1.6074 1.6515 1.5560 3.4(1) 7.8(4) 8.7(1)
Li2Ge7O15 mmm 4.226 1.7194 1.7163 1.7242 7.6(1) 7.4(1) 8.3(1)
K2SO4 mmm 2.662 1.4935 1.4947 1.4973 2.22(3) 2.26(3) 2.28(2)
C6H14O6 (mannitol) 222 1.4856 1.5505 1.5169 1.5569 4.1(1) 2.1(1) 3.4(2)

Table 11. The symmetric part of the Faraday tensor of KH3(COO)4 · 2H2O. The indices refer to
the Cartesian reference system e2‖a∗

2 , e3‖a3, e1 = e2 × e3; ai are the crystallographic axes in
the setting given by Groth (1921).

V11 V12 V13 V22 V23 V33

6.3(5) 0.1(3) −3.6(2) 5.5(6) −0.5(3) 5.1(5)

magnetic field (Kaminsky and Haussühl 1993). Table 10 gives some further examples for
the anisotropy of the Faraday effect. The tensorial character was controlled from additional
cut crystal plates different to those necessary to determine completely the tensor coefficients.
Tables 11 and 12 present the details of the anisotropy of the Faraday effect in a triclinic point
group 1, KH3(C2O4)2 · 2H2O (Kaminsky and Haussühl 1993).

In measuring the Faraday effect along birefringent sections note that the observed effect
is independent of the sign of the retardation δ (see equations (2.1.4)). This feature enables
one to measure the change of the retardation in birefringent samples in the course of structural



Circular birefringence in transparent crystals 1619

Table 12. The direction cosines uij of the principal refractive indices ni and principal Verdet
constants V ◦

ii in KH3(COO)4 · 2H2O.

ni uij V ◦
ii uij

1.412 0.823 0.200 0.531 9.4 0.76 0.10 −0.65
1.535 −0.518 −0.199 0.847 2.0 −0.64 −0.10 −0.76
1.558 0.233 −0.972 0.006 5.5 0.14 −0.99 0.00

Figure 39. Tilt scans in FeBO3 at a wavelength of 632.8 nm, thickness 0.15 mm. Top: the ellipticity
signal due to spontaneous Faraday rotation. The magnetization is parallel to the external magnetic
field and points to the left in the above figure for positive tilt angles and to the right for negative
angles (sgn(β ′)-dependence). Middle: the induced Faraday effect ϕind . Bottom: the pseudo-linear
(bilinear) magneto-optic rotation of the indicatrix χ lin = (1 − cos δ)χ(HM1). The continuous
lines are calculated from theory. Larger errors arise where the induced and spontaneous Faraday
rotation is large (from Kaminsky 1997).

phase transitions independent of 90◦ domain formation (Kaminsky and Haussühl 1993, 1990,
Kaminsky et al 1994).

The case of ferromagnetic FeBO3 serves as another example of the complex relations
similar to those of the induced electrogyration and indicatrix rotation of TGS which
connect the azimuthal rotation of the light after passing through the crystal to the optical
features.

The FeBO3 sample was tilted about an axis perpendicular to the wavevector with an
additional magnetic field parallel to the wavevector (for tilt angle α = 0). The induced changes
of azimuthal rotation ϕ, where the component M1 of the magnetization is easily switched by
the component of the magnetic field along [100] which results in H |M1 when a (001) cut
sample is tilted (βo ≈ 0) is given by

ϕ ≈
sin δ

δ

[

V11 cos2 β
LH

cosβ
+ V11|M1|sgn(H)

sin β

cosβ

]

+ (cos δ − 1)
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×
[

χ0

sin β
+

n3
o

2(no − ne)
q2311(|M1H |sgn(β) + H 2 sin β + M2

1 )

]

. (3.2.1.1)

A Fourier analysis with respect to a sinusoidally varying magnetic field (Hmax =
±1000 kA m−1) is performed to separate out the different contributions of the above
equation shown in figure 39. Because the value of M2

1 is not modulated by the external
field, this contribution to the azimuthal rotation is not distinguished from the static offset
χ0/ sin β. The term H 2 sin β was not resolved from the background noise. The value

found for n3
o

2(no−ne)
|HM1|q2311sgn(β) = −2.4(5) × 10−2◦. From this follows HM1q2311 =

−0.5(1) × 10−5. Because the experimental Hmax is M1/5 at room temperature (Le Craw
et al 1969), the estimated value of M2

1q2311 is −2.5(5) × 10−5. This is to be compared with
−2.3(5) × 10−5 obtained above from the intrinsic rotation with the ‘tilter’ (section 3.1.3.2).

3.2.2. Electrogyration. With the exception of TGS described above (intrinsic
electrogyration), where induced (linear in field) electrogyration was part of the measured
azimuthal rotation observed for an electric field along the twofold axis, reliable measurements
are performed almost only in cubic crystals because a Fourier analysis is required to separate
electrogyration from electric field induced rotation of the indicatrix (Vlokh and Eksp 1971,
Miller 1973). Even then, as demonstrated in mannitol, C6H14O6 (Kaminsky 1997), it is likely
that the resulting coefficients, when measured in a strongly birefringent crystal section, are
influenced by electro-optic contributions. Only a weakly birefringent Cr-doped (<10%) K
alum has been previously studied to good effect (Weber and Haussühl 1974). This study takes
account of the effect of a small birefringence using a numerical calculation of the superposition
of small optical effects including optical rotation and circular dichroism. Table 13 reviews
results published so far. Some results are compared with calculations employing the DES
model (see section 2.5).

The electrogyrative signal is derived in almost all cases from the azimuthal rotation ϕ as
a function of the applied electric field. Using equation (2.1.5) and table 2, this results in

∂ϕ

∂E
=

∂ϕ0

∂E

sin δ

δ
+

∂θ

∂E
(1 − cos δ)

+
∂δ

∂E

[

(θ0 + Y0) sin δ − εP cos δ −
ϕ0

δ

(

sin δ

δ
+ cos δ

)]

. (3.2.2.1)

Additional contributions to the pure electrogyration thus result from different sources in a
non-centrosymmetric crystal when electro-optic effects are possible. This is the case in
measurements of electrogyration in quartz, where the .Y -error (Y0 �= 0 due to the parasitic
ellipticities of the polarizer and analyser) and a misalignment of the sample contribute to the
electrogyrative signal even in the case where a Fourier analysis or similar steps (Vlokh and Eksp
1971) are performed to separate sin δ and (1 − cos δ) terms. The measurement in mannitol is
made with transparent electrodes along [111]P where no rotation of the indicatrix was expected.
However, ∂δ/∂E appeared not to be zero. The measurement suffers from the same problem as
that of quartz†. Thus, measurements in quartz (Vlokh and Eksp 1971, Kobayashi et al 1987)

† A detailed inspection of the correction terms is necessary to elucidate the origin of the observed quasi-electrogyrative
signal. The retardation varies with the applied electric field along [111]P according to 1

L
∂δ
∂E

= k
∂.n1
∂E

+ k
.n1
L

∂L
∂E

;
∂.ni
∂E

= − n3

2
∂.ajk
∂E

, where .ajk = ajj −akk denotes the difference of the polarization tensor components aii = n−2
i .

When defining a new set of coordinates which relate the indicatrix to the direction of the wavevector along [111]P: e′
1 =

1√
3 [111]P, e′

2 = 1√
2 [011]P, e′

3 = 1√
6 [211]P, it follows (in mannitol: a22 ≈ a33, n1/2/3 = 1.5505/1.5171/1.5568)

that .n1′ ≈ −n 3
6 (a22 + a33 − 2a11) = 0.009 05. An electric field along e′

1 causes ∂.a23
∂E

= r ′
331 − r ′

221, where

r ′
ijk = uilujmuknrlmn. The rlmn are the electro-optic coeffcients. The result is r ′

331 − r ′
221 = 2

3
√

3 (r231 − r123 − r312),
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Table 13. Coefficients of electrogyration. The induced rotation ρijk is given in 10−7◦ V−1. In older publications the unit 1 rad statVolt ≡ 0.19◦ V−1. Further, for electric field parallel to
the wave vector, a positive component ρ111 describes a clockwise rotation if looking against the wavevector. ρcalc

ijk is obtained with the DES model. Polarizability [α] = Å3, α(H+) = 0,

α(C4+) = 0.10, α(S6+) = 0.05, α(N5+) = 0.05. The polarizabilities given in the table were found from a fit of the calculated refractive indices to the experimental values with the
exception of Bi12GeO20, where the experimental optical rotation served as a reference. Al → Fe := 10.4 means the value given for ρ123(KAl(SO4)2 · 12H2O) when Al is substituted by
Fe has to be increased by 10.4 × 10−7◦ V−1, which results in 12.3 × 10−7◦ V−1.

Substance ρijk ρcalc
ijk Polarizability Structure λ (nm) Reference

Bi12GeO20 ρ123 = 11 970a O : 2.0 Svensson et al (1979) 510 Lenzo et al (1966, 1967)
Bi : 1.40 Moore et al (1969)

=65 175 Ge : 0.7 600 Miller (1973)
α-SiO2 (P 322) ρ111 = 29 000a 0.12 Si4+ : 0.23 Le Page and Donnay (1976) 461 Vlokh and Eksp (1971)

=2600a O2− : 1.19 633 Kobayashi et al (1987)
KAl(SO4)2 · 12H2O ρ123 = 1.84 ρ123 = 0.101 K+ : 0.8 550 Weber and Haussühl (1974)

Al → Fe : +10.4 Weber and Haussühl (1976)
Al → Ga : −1.7
S → Se : +0.5
K → Rb : −1.1 K → Rb : −0.13 Rb+ : 1.7
K → Cs : +0.9 (O2− : 1.6)
K → NH4 : −1.6 (εr = 10)

PbMO4 ρ333 = ±1400 590 Stasyuk and Kotsur (1985a,b)
NaClO3 (dextrorotative) ρ321 = 1.25 1.7 O2− : 1.4, Na+ : 1 Abrahams and 633 Weber (1979)

Cl5+ : 0.06 Bernstein (1977)
NH3CH3AL(SO4)2· ρ123 = −15.2 550 Weber and Haussühl (1976)
12H2O Al → Ga : +1.7
NH3CH3AL(SeO4)2· ρ123 = −33.2 550 Weber and Haussühl (1976)
12H2O
Pb(NO3)2 ρ123 = −28 −34 Pb2+ : 3.8 Hamilton (1957) 633 Weber and Haussühl (1977)

Pb → Ba : +18 O2− : 1.2 Kaminsky et al (1992)
Pb → Sr : +20

TGS ρ222/ε = −0.8–−8 −0.64 O2− : 1.8 Itoh and Mitsui (1973) 633 Kaminsky (1994)
Mannitol, C6H14O6 Bρijk = 17 000a 32.2 C4+ : 0.2 Kaminsky and 633 Kaminsky and Glazer (1997)

O2− : 1.9 Glazer (1997)

a Electro-optic contributions were not eliminated. Electrogyration has also been measured in Cr2O3 (Odell and White 1970) in α-HiO3 (Vlokh et al 1973) and BaMO4 as well as SrMO4

(Belogurov et al 1979). The signs given in publications by Weber (1974, 1976, 1977, 1979) are reversed because we use a different definition of sign here, i.e. that of optical rotation.
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are by no means free of parasitic effects and one therefore has to conclude that the rather large
effect (table 13) is not at all related to electrogyration.

In a cubic crystal with a very small parasitic δ = δ0 we find

∂ϕ

∂E

∼=
∂ϕ

∂E
+

∂θ

∂E

1

2
δ2

0 +
∂δ

∂E
(εP + δ0[θ0 + Y0 − ϕ0]). (3.2.2.2)

The alums and Pb(NO3)2 are of point symmetry m3 where no linear electro-optic and
linear electrostrictive effect pollute the electrogyrative measurement, which consist only of
pure electrogyration in contrast to the case of Bi12GeO20, where the electro-optic contributions
most probably dominate the observation. It is therefore more or less correct to say that
electrogyration has not been discovered by Lenzo et al (1966), as pointed out earlier (Miller
1973).

The measurements in TGS are slightly affected in a similar way as outlined above; however,
the pure electrogyrative signal is much larger than that part related to the ∂δ/∂E term, which
in addition is separated easily from pure electrogyration as it does not change its sign when
the applied electric field is reversed.

When we release the restraint of extinction angle θ to be small, but still assume that optical
gyration ϕ0 is reasonably small, (3.2.2.2) can be rewritten as (Weber 1979, neglecting Y0)

∂ϕ

∂E
≈

∂ϕ0

∂E
+

∂δ

∂E

(

εP −
δ

4ϕ0
sin 4θ0

)

(3.2.2.3)

and a similar equation is found for the ellipticity of the wave after the sample:

2ε
∂ε

∂E
≈

∂δ

∂E

δ0

4
(1 − cos 4θ0). (3.2.2.4)

The latter equation depends only on the electro-optic effect. ∂ϕ/∂E and 2ε∂ε/∂E are found
from the equation that relates the variation of the light intensity ratio I/I0 to the ellipticity and
azimuthal rotation of the light wave emerging from the sample (compare with (2.1.5)). The
exact formula is given by Ramachandran and Ramaseshan (1961):

1

I0

∂I

∂E
(ε, ϕ,�) =

1

2

∂

∂E
(1 − cos 2ε cos 2ϕ)

≈
∂ϕ

∂E
sin 2� + 2ε

∂ε

∂E
cos 2� ε ≪ 1. (3.2.2.5)

This equation can be used to derive the coefficient ∂ϕ/∂E in (3.2.2.3) and 2ε∂ε/∂E in (3.2.2.4).
The coefficients are then modulated in addition to the rotation by analyser angle � in rotating
the sample to different extinctions θ0. The parasitic effects of the optical train are found
by comparing different geometrical arrangements of light wave and electric field. This
technique was used to find the electrogyration, piezogyration and electro-optic effect in
NaClO3 (Weber 1979). The coefficients for piezogyration in the dimensions of an induced
optical rotatory power in dextrorotative NaClO3 at 633 nm are Ŵ′

1111 = 30.8 × 10−7◦ m N−1,
Ŵ′

1122 = 5.7 × 10−7◦ m N−1, Ŵ′
1122 = −32.8 × 10−7◦ m N−1, Ŵ′

2323 = 3.8 × 10−7◦ m N−1.
Further details concerning piezogyration in GaAs, InP, ZnSe and CdTe are found in the review
by Koopmans et al (1998).

whereas ∂L/∂E = 2
3
√

3 (d123 + d231 + d312). Assuming that the linear electrostriction dijk is similar to or larger

in magnitude than the electro-optic effect (rijk ≈ 0.2 pm V in mannitol) we obtain kδ.n/∂E = 1.4 × 10−6 V−1,
k.n/L ∗ ∂L/∂E � 30 × 10−6 V−1. ∂θ/∂E = 0 in mannitol for this direction. With E along [111]P, 0.1◦–
3◦ = θ0 ≫ Y0, L = 0.635 mm, and ρ(111) = −22◦ mm−1, the largest contribution by far with sin δ/δ-dependence is
due to δθ0

.n
L

∂L
∂E

≈ 10−2◦ V−1 or larger. This is about as large as the observed parasitic effect of 0.3◦ V−1 (Kaminsky
and Glazer 1997). We therefore conclude that the electrogyration in mannitol is probably 100 times or more smaller
than the observed effect.
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Figure 40. Magneto-electrogyration in Pb(NO3)2 along
[111] at 632.8 nm. Top inset: the representation surface
of longitudinal magneto-electrogyration. Bottom inset:
dispersion of the magneto-electrogyration along [111]
(Kaminsky et al 1992).

3.2.3. Effects induced with combined fields. Observations of the magnetic and electric
field induced gyration are rare. Reports are given on Bi12SiO20 (Odell and White 1970),
where the magnetic field created by the magneto-electric effect causes Faraday rotation. This
effect, however, is not strictly a combined field effect. The electro-Faraday effect was found
in Cd0.49Mn0.51Te (Koyanagi et al 1989). An observation of magneto-electrogyration was
claimed by Kaminsky et al (1992) in Pb(NO3)2, where linearity in the magnetic field of the
observed excess rotation to the electrogyration has been demonstrated (figure 40).

Such an effect can result from the temperature change caused by conduction losses in the
sample which change the Faraday rotation. This effect could cause an excess rotation linear
with the magnetic field. However, the ‘thermal’ contribution is quadratic in the electric field.

Formally, we need to assume that the tensor for mangneto-electrogyration reverses sign
with reversal of time. This is the case in antiferromagnetic materials for example.

Di

ε0
= . . . g

meg
ijklmsgn(t)

∂Ej

∂xk
ElHm = . . . ikkg

meg
ijklmEj sgn(t)(ElHm) (3.2.3.1)

then describes an electric and magnetic field induced gyrotropy. Lead dinitrate is not an
antiferromagnetic material; however, considering the small size of the observed effects and
taking into account that Pb2+ containing substances interact quite strongly with external
magnetic fields, and considering also the cubic symmetry of this material, we might come
close to the antiferromagnetic case. Further studies are definitely required here.

Table 14 summarizes the complete tensor determination of the magneto-electrogyration
in Pb(NO3)2, Ba(NO3)2 and Sr(NO3)2 on the basis of a linear response of magneto-
electrogyration to each of the applied fields (Kaminsky et al 1992).

In ferroelectric substances, the magneto-electrogyration is caused by an interaction of
the spontaneous polarization and an external magnetic field (Vlokh 1981, Vlokh et al 1984,
1986a,b). These experimental results caused a controversy concerning the invariance to time
inversion and it was assumed that only second-order effects are possible in ferroelectrics
(Pisarev 1994). Magneto-electric effects were discussed by Chupis (1997), who gives a
quantum mechanical interpretation. The effect should be observed for parallel electric and
magnetic fields and should basically vanish for perpendicular external fields. This observation
would be supported by the experiments in lead nitrate (Kaminsky et al 1992).
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4. Discussion

4.1. General remarks

4.1.1. Technical aspects. Modern polarimeters (based on HAUP etc) allow the determination
of an intrinsic gyrotropy with such an accuracy in transparent crystals that in the worst case
(high values of birefringence) it is possible to obtain the sign and, at least, the dimension of
the magnitude of the gyrotropy. In general, the resolution of non-induced gyrotropy separated
from double refraction is between 0.05◦ and 5◦ in a birefringent direction†.

Many very reliable results were obtained using the Wavelength scanning HAUP method
developed by Moxon and Renshaw (1990), which, however, still is slightly affected by the so-
called ‘.Y ’-error as a result of a small misalignment of polarizer and analyser before the mea-
surement is started. The most recent achievement (‘tilter’) tries to take account of all unwanted
effects which contribute to the observed signals, including the ‘.Y ’-error, and the future will
show whether this method becomes a standard approach to measure intrinsic optical rotation.

One basic achievement of the ‘tilter’ method compared with other methods is its high
speed, because of which it is possible to derive topographies of, for example, the optical rota-
tion and the intrinsic Faraday effect within a reasonable time. As a special feature, the ‘tilter’
method can distinguish in some cases between Faraday effect and optical rotation, even if
both are mutually present. However, the ‘tilter’ is a method rather than a device and unites
most of the previous technical ideas. For example, the modulation of the intensity used in the
‘tilter’ version of the present author with the sequence quarter-wave-plate Pockels modulator
could be replaced by a combination of a Faraday rotator and a polarizer or simply by a single
mechanically driven polarizer.

Another sensitive technique which in principle could be combined with the ‘tilter’ idea is
for example the Sagnac interferometer (Dodge et al 1994). A great disadvantage of the Sagnac
interferometer in the case described here is its sensitivity only to non-reciprocal (changing sign
with time inversion) phase shifts, because it is not possible to obtain the 2Y� cos δ-contribution
in the signal, which is needed to derive the (reciprocal) phase shift.

With the technical state so far achieved it becomes possible to characterize spontaneous
changes of the polarization tensor {aij } and spontaneous gyrations such as the Faraday
rotation or optical rotation of (weakly) ferromagnetic or ferrimagnetic magnetoelectrics and
ferroelectrics at zero magnetic and electric fields‡.

The demonstration with ferroelectric TGS and ferromagnetic FeBO3 as test samples shows
how, in principle, modern, computerized polarimeters can be applied to other transparent
materials and optical effects similar to those described above. The complexity of the
interference of induced chiral and linear optical properties has sometimes been underestimated.
The separation of different Fourier components by complete use of the analytic information
available when the sample is tilted and the effects are at the same time induced by an electric
or magnetic field was shown to be successfully applied to these difficult cases.

The measurements in TGS (Kaminsky 1994) revealed a special optical anomaly of crystals
which undergo a phase transition: the inhomogeneity due to the formation of domains. The
mixture of domains and domain walls even in the para-phases, where no macroscopic order
is observed, lead to an additional contribution to a gyrotropy which is different from intrinsic
optical rotation or electrogyration. Measurements in which no modulation of the retardation
is performed are insensitive to this difference in origin of a gyrotropy. It is very likely that
non-homogeneity, whatever the origin, is basically responsible for any anomalous gyrotropy in

† As a rule of thumb, one can expect a reliability of ±50◦ mm−1.n, where .n is the double refraction of the sample.
‡ This allows the study of spin-glass systems without applying a magnetic field.
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incommensurate crystals or mysterious peaks of quasi-optical rotation at critical temperatures.
When inducing the Faraday effect via a magnetic field, the birefringence of any sample in

the course of a phase transition is measured independently of the formation of 90◦ domains,
because within the term sin(δ)/δ any change of sign in δ cancels. The change in birefringence
due to the magnetic field can be neglected (Dvoran 1993).

Other polarimetric techniques, such as the rotating analyser technique (see, e.g., Glazer
et al 1996), although of great value to study the birefringence, will probably not reach the sen-
sitivity of those techniques described above where small deviations from a crossed polarizers
settings, with the ellipsoidal cross-section closely aligned to the polarizer, modulate the inten-
sity off its minimum value. It actually can be shown that the overall resolution is a maximum
for a modulation equivalent to a rotation of the polarizer and analyser of a few degrees only.

4.1.2. Overview of experimental results. Although chiro-optical properties have been
investigated for almost 190 years, reliable data on the anisotropy of the different effects are
quite rare. Assignments of the optical rotation to the absolute structures of crystals have
recently been attempted in some cases and further work on the large number of optically active
materials (in the sense of optical rotation) has to follow†.

To find the absolute structure assignment, it is necessary to specify the so called ‘Flack
enantiopole parameter’ x: |F(h, x)|2 = (1 − x)|F(h)|2 + x|F(−h)|2 (Flack 1983). This
number is 0 if the structure of the crystal and that of the model used for the refinement are
identical, and it takes the value 1 if the model structure is the point inverse of the real crystal.
Without reasonable anomalous scattering of a substance, the Flack enantiopole parameter
cannot be derived. Recently, the high-resolution chi-scan method and the RenningerÑUmweg
interference (three-beam case) promises to be much more efficient in deriving the absolute
structural configuration (Weckert 1997).

Some confusion still remains with respect to the optical rotation of non-enantiomorphous
but still non-centrosymmetric crystals (point groups 42m, 4, mm2, m). Although predicted
as early as 1882 by Gibbs and Pockels (1906), many believe that optical rotation requires
enantiomorphism. Experiments by Hobden (1967, 1968a,b, 1969) in AgGaS2 (PG 42 m),
Futama and Pepinsky (1962) in LiH3(SeO3)2 (PG mm2) and NaNO2 (PG m), confirmed by
Chern and Phillips (1970a,b, 1972) in the latter case, showed optical rotation. It exists in
certain directions governed by the tensorial symmetry of optical rotation (figure 41). A first
complete tensor determination for PG m has just recently been accomplished in K2ZnCl4,
which enters this symmetry below 145 K (Kim et al 2000). The job of measuring such a tensor
thus has been completed 94 years after the prediction by Pockels of this symmetry. We can
say now that optical rotation requires at least the absence of an inversion centre where the
dipole–dipole interactions add up to a non-vanishing optical rotation in certain directions, and
does not necessary require a structural chirality.

Earlier on in their theoretical treatment of optical rotation, Pine and Dresselhaus (1971)
suggested a relation between the optical rotation components of uniaxial crystals of the form
ρc/ρa ≈ −2c/a, where ρc and ρa are the rotatory power along the crystallographic c- and
a-axis, respectively. There is a majority of crystals which show at least a difference in sign
between the components. However, if crystals of a lower symmetry are included, we find in
L(+)-tartaric acid an interesting case, because the rotatory power along the acute bisectrix is
opposite in sign to those along the other principal directions, which in addition are of a similar

† A difficulty arises when the optical rotation is published in form of the so called g-tensor. To find the observable
rotation the average refractive index n has to be known, since ρ(◦ mm−1) = 0.18

nλ(m)
g. Usually, n is not given and

sometimes it is not clear at which wavelength λ the measurements have been performed. Because it is the rotatory
power ρ which is measured, the given results are incomplete if only g is published.



1626 W Kaminsky

Figure 41. Representation surfaces of optical rotation in non-enantiomorphous crystals.
(a) KH2PO4 (42m), (b) RbTiOAsO3 (mm2), (c) K2ZnCl4 (m, 70 K). No measurement is known
in symmetry 4.

magnitude (table 6). This result is in contrast to orthorhombic mannitol, where all components
are of the same sign. A further exception to ‘Pine’s rule’ is TeO2.

Second-order optical rotation has been discussed but attempts to validate it by experiment
have not succeeded so far (Haussühl 1990).

Induced chiral effects of third and higher tensorial rank have been measured. Only
in those cases where the samples are centro-symmetric, the electrogyration and magneto-
electrogyration could have been observed with conventional techniques because these symme-
tries do not exhibit an induced indicatrix rotation or induced changes of the retardation as the
linear electro-optic effect is forbidden by symmetry. In other cases the contribution due to the
electro-optic induced rotation of the indicatrix or change of the retardation value are respon-
sible for the large magnitude of the observed quasi-chiral signals. When looking at published
quadratic electrogyration data, at least a doubt is left to what extent the observed signals are
connected to electrogyration, because the linear effects are already difficult to observe.

4.2. Model calculations and structure

4.2.1. Empirical models. Estimations of the Faraday rotation with the ‘periodic table’ of
specific Faraday rotations of ions (figure 2) are most reliable in cubic and other optically
isotropic materials. A similar additive rule was established earlier to describe the refractive
indices (see Tessman et al 1953). For main-group ions with closed shells the specific Faraday
rotation is in proportion almost to the square of the electronic polarizability of the ions
(figure 42). The Faraday rotation of other ions seems to be not correlated to the polarizability.

4.2.2. The dipole–dipole model. The models used in this presentation to calculate optical
rotation and electrogyration are based on the electronic polarizability of the atoms and the
atomic structure. These calculations show good accord with the experimental results with
respect to the optical rotation when the bonds are not semiconducting or metallic. Even in the
case of organic molecular crystals the model seems to estimate the anisotropy of the optical
rotation; however, the absolute values derived in organic crystals deviate quite strongly from
the experimental results. Most of the signs are obtained correctly.

When the highest symmetry in a structure is a 21-screw axis, the sign of the optical rotation
depends on the atomic coordinates and it is not possible to specify the enantiomorph as easily
as in the case of three-, four- or sixfold screw axes. The optical activity of mannitol (P 212121)

serves as an example. The structure when looking towards the c-axis is shown in figure 43,
where the ellipsoids represent the effective anisotropic electronic polarizabilities. An improper
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Figure 42. The molar ionic Faraday rotations � (see figure 15) plotted against the electronic
polarizability α[Å3] of the ions (Tessman et al 1953). The error bars result from averaging the
different values given for the polarizability. Exceptional ions are labelled. Ions of the main group
elements are plotted with filled circles, others in open circles.

threefold screw axis (this means that along a specific directions an infinite sequence of atoms
is approximately arranged in the form of a screw axis) is denoted by the numbers 1/2/3 etc,
following the atoms from back to front. The polarizabilities of the oxygens are largest in
the direction of the improper screw axis (radial orientation). According to the rules 2 and 3
outlined in section 2.3 for discussing a structure with respect to optical rotation, we can expect
the polarization to be rotated anti-clockwise when looking towards the light source, i.e. when
the beam comes from back to front. The improper fourfold axis denoted by a/b/c/d consists
of polarizability ellipsoids whose directions of largest polarizability are oriented radially as
well as tangentially to the screw axis. The axis is rather close to being a twofold screw and
does not contribute much to optical activity. According to the definition of the sign of optical
activity, this results in a negative coefficient ρ33, which agrees well with the observation.

Figure 44 shows the structure of LaBGeO5 (P 31) viewed towards the c-axis. The
bonds of this inorganic substance are mainly ionic and should be described well by the
dipole–dipole model. The ellipsoids illustrate the anisotropy of the electronic polarizability
as calculated with the dipole–dipole model. Distinguished are the anti-clockwise helix of
radial BO3 oxygen polarizabilities and a clockwise helix of tangential oriented polarizability
ellipsoids of La and Ge. Both distinct helices give a positive, i.e. clockwise, optical rotation.
However, the contribution of the other oxygens seems to be more or less opposite to these
helixes. The experimental result for space group symmetry P 31 are ρ33 = −2.1(1)◦ mm−1,
ρ11 = 6(2)◦ mm−1. The structure shows a specific behaviour, i.e. there is no unique set of
parameters which permits the correct calculation of the refractive indices: in fact there are many
equivalent sets for the polarizability volumes (table 13). However, one particular set matches
the experiment very well: αB = 0.00 Å3, αGe = 0.427 Å3, αO = 1.561 Å3, αLa = 1.45 Å3.
These polarizability volumes are not far from those published earlier (Tessman et al 1953). In
this case we find ρ33 = −2.768◦ mm−1, ρ11 = 6.466◦ mm−1.
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K
a

m
in

skyTable 14. The system of equations, geometrical arrangement and effective magneto-electrogyration Ŵ′ (10−22◦ m−2 V−1 A−1) for a wavelength of 633 nm and room temperature. G:
wavevector, Eo: direction of electric field, Ho: direction of magnetic field. The last four columns indicate the contribution of the components to the observed value Ŵ′. For example the
fourth row should be read Ŵ′ = 1

3 · Ŵ1111 + 1
3 · Ŵ1122 + 1

3 · Ŵ1133 + 2
3 · Ŵ1221 + 2

3 · Ŵ1331. Errors are given in parentheses.

g Eo H o Ŵ′(Pb) Ŵ′(Ba) Ŵ′(Sr) Ŵ1111 Ŵ1122 Ŵ1133 Ŵ1221 Ŵ1331

[100] [100] [100] −6.1(2) −4.2(3) −3.9(4) 1 0 0 0 0
[100] [010] [010] −2.0(4) −0.3(3) −0.2(3) 0 1 0 0 0
[100] [001] [001] −2.7(3) −0.2(3) −0.2(3) 0 0 1 0 0
[111] [111] [111] −19.0(8) −5.4(4) −2.4(1) 1

3
1
3

1
3

2
3

2
3

[110] [110] [110] −14.9(3) −4.2(3) −3.0(3) 1
2

1
4

1
4

1
2

1
2

[110] [110] [110] −4.7(4) −0.5(2) −0.4(1) 0 0 0 − 1
2

1
2

[210] [210] [210] −10.9(5) −4.1(3) −3.4(5) 17
25

4
25

4
25

8
25

8
25

[210] [001] [001] −2.6(9) −0.4(3) 0.1(2) 0 1
5

4
5 0 0

Sr(NO3)2 −4.0(3) −0.2(2) 0.0(1) −0.4(1) −1.1(1)
Components of Ŵijkl Ba(NO3)2 −4.0(4) −0.3(4) −0.3(3) −1.9(4) −2.9(4)

Pb(NO3)2 −6.0(3) −2.0(5) −2.7(4) −6.0(6) −14(1)
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Figure 43. The structure of mannitol (P212121) when looking towards the c-axis. The ellipsoids
represent the effective anisotropic electronic polarizabilities. An improper threefold screw axis
is denoted by the numbers 1/2/3 etc, following from back to front. An improper fourfold axis is
denoted by a/b/c/d. The axis is rather close to being a twofold screw and does not contribute much
to optical rotation.

Table 15. The calculation of refractive indices (Kaminskii et al 1991) and optical rotation in space
group P31. Polarizability volumes α in Å3. Wavelength 680 nm.

α-La α-O α-Ge ρ11 (◦ mm−1) ρ33 (◦ mm−1)

0.85 1.7673 0.0682 2.211 −9.647
1.00 1.7128 0.1809 4.279 −8.179
1.15 1.6603 0.2748 5.525 −6.404
1.30 1.6101 0.3544 6.162 −4.556
1.45 1.5605 0.4271 6.466 −2.768
1.60 1.5117 0.4937 6.515 −1.121

The criticism may be made that both examples used the calculated polarizabilities instead
of the thermal ellipsoids as a basis for the visual interpretation. Firstly, it is comforting to note
that the general rule, which sees a large electronic polarizability in a direction where the thermal
parameter is small, is fully confirmed. Secondly, using the polarizabilities gives a slightly easier
access to the interpretation because it helps to distinguish between important and insignificant
atoms inside a structure. Hydrogen, for example, showed a rather large thermal motion in
mannitol, whereas its polarizability was entirely negligible (see Kaminsky and Glazer 1997).

4.2.3. Optical rotation in iso-structural crystals. If the optical rotation is so closely correlated
to the electronic polarizability as outlined above, it should be possible to specify a function from
which optical rotation can be derived for iso-structural crystals. The KDP family should serve
as an example. An investigation of optical rotation versus the polarizability of the cations
(phosphorus and potassium) at constant oxygen polarizability αO = 1.6 Å3 and constant
cell parameters (average over the KDP family) is compared with the experimental results.
The general behaviour is that the modulus of the optical rotation increases strongly with the
polarizability on the phosphorus position but decreases in proportion to the polarizability on
the potassium location. The electronic polarizabilities of the cations in increasing order are
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Figure 44. The structure of LaBGeO5 (P31) when seen towards
approximately the c-axis. The dextrorotative contribution to
optical rotation is dominated by the screw-axis-like sequence La–
Ge–La–Ge etc. The other oxygen seem to counterbalance the
dextrorotative helices.

P < As < K < Rb < NH4 < Cs. According to the observations made above, this would result
in the series (increasing modulus of optical rotation) NH4H2PO4 < RbH2PO4 < KH2PO4 <

CsH2AsO4 < NH4H2AsO4. At 633 nm, one experimentally obtains the optical rotations ρ22

of 6/7/10/14/25◦ mm−1 (table 5) when assuming a simplified λ−2 dispersion of optical rotation.
Another example is NaBrO3 and NaClO3. It has been known for more than a century

that these isostructural compounds, when having the same handedness in their structures, still
possess opposite sign in the optical rotation. Calculations with the dipole–dipole model do
just result in different signs. It is also observed that the calculations depend critically on the
structures used. However, when the polarizability of Br5+ is varied for fixed values for Na+

and O2− there is a distinct reduction of optical rotation for a realistic polarizability of the ions.

4.2.4. The DES model. On the basis of the dipole–dipole model introduced by Devarajan
and Glazer (1986), the idea of virtually shifting the atoms in proportion to their polarizability
volumes (Kaminsky and Glazer (1997), DES model) led to a successful calculation of
electrogyration in several crystals. This idea is not restricted to the calculation of
electrogyration. Calculated electro-optic effects and second-harmonic coefficients were
surprisingly close to the experimental values.

As an example, the experimental results in the course of the phase transition of TGS
were recalculated (Kaminsky and Glazer 1997) using the structures published for different
temperatures by Itoh and Mitsui (1973). The calculations needed the experimental dielectric
constants. In a first step, polarizability volumes were modelled to find those values with which
the refractive indices were calculated as close to the experimental values as possible. On the
basis of these parameters the linear and quadratic electro-optical properties were confirmed. A
distinct difference between the structural displacements caused by an external electric field and
those caused by the forces arising from the ferroelectricity became quite obvious: the induced
electrogyration has opposite sign to the spontaneous optical rotation. This result confirms the
experimental observation (Kaminsky 1994). The electro-optical properties seem to be less
sensitive to these differences in the atomic displacements.

A further example for the calculation of optical properties is NaClO3. After modelling the
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polarizability volumes (Å3) for O: 1.4, Na+: 1, Cl5+: 0.06 to approximate the refractive index
and optical rotation, one finds an electrogyration of ρ321 = 1.7×10−7◦ V−1 (experiment 1.25×
10−7◦ V−1) and the electro-optic effect is r321 = −0.33 pm V−1 (experiment −0.38 pm V−1),
where the relative dielectric constant was set to three for the dextroroative structure.

The DES model still needs experimental dielectric constants. An attempt was made to
connect the dielectric features to the thermal ellipsoids describing the motion of the atoms in a
structure, which itself is correlated with the ionic polarizabilityαij (k) of the atoms (Kittel 1976,
Kaminsky and Glazer 1997): αij (k) = β2

kQU ij (T = 300 K), qk= βke; e: electron charge of
atom k. [αij ] = Å3, [Uij ] = Å2, Q = 288 Å. The anisotropy of the dielectric constants is
derived by adjusting βk to the average dielectric constant and then using the Clausius–Mosotti
equation:

εij − 1

εij + 2
=

4π

3

∑

k

Nαij (k)

to find the anisotropy of the dielectric constants, where N = dNA/M , d = density,
M = molecular weight and NA is Avogadro’s number. This approach needs to be tested
on a larger number of crystals and may need some modifications. However, in the case of
mannitol, where the oxygens have by far the largest polarizability, it described the anisotropy
of the dielectric constants with reasonable accuracy.

Principally the DES model predicts the electro-optical effects at constant strains. However,
quasi-static measurements are performed usually at constant pressure, not strain (unclamped
case). Thus, one would expect large differences between calculation and experiment when there
is a large contribution to the observed effects via the elasto-optic constants or other secondary
mechanisms, which are a result of the deformation of the crystal due to electrostriction.
Rochelle salt is such a case whereas TGS is only weakly affected by electrostriction.

5. Conclusions

Here we have shown how to measure gyrotropy by modulating the retardation while accounting
for parasitic effects as well as sample inhomogeneity.

Circular birefringence is described by different theories which account for special cases.
Natural optical rotation and related effects are strongly connected to the dipole–dipole
interaction phenomenon, where electrogyration arises from the symmetry breaking effect of
an applied electric field which shifts the nuclei relative to the electronic shells in proportion to
the polarizability of each atom.

Calculations performed on that basis automatically obey Neumann’s rule. This rule is
conserved in centrosymmetric incommensurate phases where previously reported effects are
of a parasitic nature.
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Appendix A. Tables

Table A.1. Verdet constants in optical isotropic directions which have not been published by
Haussühl and Effgen (1988) but were used for the periodic system of molar Verdet constants in
figure 13 (Kaminsky 1989). ρ, density (g cm−3); α(10−6K−1), linear cubic expansion coefficient;
V (10−4◦A−1), Verdet constant in the isotropic direction of the wavevector; d logϕ/dT (10−4K−1),
linear temperature coefficient; Q (K A−1), paramagnetic temperature coefficient. Wavelength:
633 nm. T◦ = 293 K. V (T ) = V {1 + (d logϕ/dT − α) (T − T◦)} (linear); V (T ) = V + Q/T

(paramagnetic).

Substance ρ α V d logϕ/dT Q

Cd1.5PMo12O40 · 30H2O 2.637 82 1.17(3) −10(1)
Co(H2PO2)2 · 6H2O 4.0(1) −0.0457(3)
Co1.5PMo12O40 · 30H2O 2.547 81 1.38(1) −0.013(1)
Cu1.5PMo12O40 · 30H2O 2.562 80 1.29(2) −22(2)
EuPMo12O40 · 30H2O 2.642 0.93(1)
(Na3PO4)2 · NaF · 19H2O 2.217 3.28(6) 1.07(6)
NdPMo12O40 · 30H2O 2.639 0.347(4) −0.017(1)
NH3OHCr(SO4)2 · 12H2O 3.56(2) −0.0160(6)
(NH4)4Fe(CN)6 · 2NH4Cl · 3H2O 1.490 5.1(1) 0.3(6)
Ni(BrO3)2 · 6H2O 7.0(1) −3.2(2)
Ni1.5PMo12O40 · 30H2O 2.549 86 1.62(2) −8(4)
MnCl2 · betain 3.73(1) −0.0358(4)
Sr(BF4)2 1.62(3) −1.7(4)
SrF2 4.33 2.10(6) 0.96(4)
TlBr 7.557 30(1) 4(1)
Zn1.5PMo12O40 · 30H2O 2.560 73 1.24(2)

Table A.2. Absolute structure of laevorotatory SiO2 (low quartz) P312 (Le Page and Donnay
1976). a = 4.913 Å, c = 5.405 Å.

Si 0.530 13 0.530 13 2
3

O 0.414 1 0.268 1 0.8812

Table A.3. Absolute structure of laevorotatory α-AlPO4, P322 (Ngo Thong and Schwarzenbach
1979). a = 4.9423 Å, c = 10.9446 Å.

Al 0.466 43 0 2
3

P 0.466 85 0 1
6

O(1) 0.416 3 0.2922 0.6023
O(2) 0.415 6 0.2576 0.1164

Table A.4. Absolute structure of laevorotatory α-HgS, P322 (Auvrey and Genet 1973, Auvrey
1976). a = 4.145 Å, c = 9.496 Å.

Hg 0.7198 0 2
3

S 0.4889 0 1
6
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Table A.5. Absolute structure of laevorotatory Bi12SiO20, a = 10.104 33 Å and Bi12GeO20,
10.145 40 Å; SG I23 (Abrahams, Bernstein and Svensson 1979, Svensson et al 1979).

Bi 0.175 5 0.317 4 0.015 9
Si 0 0 0
O(1) 0.134 8 0.252 3 0.485 8
O(2) 0.195 0 0.195 0 0.195 0
O(3) 0.905 9 0.905 9 0.905 9
Bi 0.175 87 0.318 32 0.016 00
Ge 0 0 0
O(1) 0.134 9 0.251 4 0.480 6
O(2) 0.195 3 0.195 3 0.195 3
O(3) 0.899 8 0.899 8 0.899 8

Table A.6. Absolute structure of dextrorotative NaClO3, P213 (Abrahams and Bernstein 1977).
a = 6.578 Å.

Na 0.0687 0.0687 0.0687
Cl 0.4182 0.4182 0.4182
O 0.3035 0.5924 0.5047

Table A.7. Absolute structure of laevorotatory NaBrO3, P213 (Abrahams, Glass and Nassau
1977). a = 6.7072 Å.

Na 0.0775 0.0775 0.0775
Br 0.4067 0.4067 0.4067
O 0.2882 0.5964 0.5085

Table A.8. Absolute structure of laevorotatory α-LiIO3,P 63 (Svensson et al 1983). a = 5.4818 Å,
c = 5.1725 Å.

Li 0 0 −0.0822
I 1

3
2
3 0

O 0.2479 0.3426 0.1618

Table A.9. Absolute structure of NaNH4SO4 ·2H2O, P212121, ρ33 < 0 (without hydrogens) (Arzt
1995). a = 6.253 Å, b = 8.228 Å, c = 12.856 Å.

S 0.3729 0.0841 0.1283
Na 0.9112 0.2652 0.4848
O(1) 0.1884 0.0674 0.1990
O(2) 0.5732 0.0652 0.1882
O(3) 0.3674 0.2453 0.0805
O(4) 0.1399 0.0402 0.5468
O(5) 0.6896 0.2118 0.6352
O(6) 0.6590 0.0791 0.4040
N 0.3696 0.1729 0.8553
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Table A.10. Absolute structure of mannitol, C6H14O6, P212121 ρ33 < 0 (without hydrogens)
(Kaminsky and Glazer 1997). a = 8.694 Å, b = 16.902 Å, c = 5.549 Å.

C(1) −0.0009 −0.4940 0.4263
C(2) 0.0240 −0.4561 0.1819
C(3) 0.0702 −0.3686 0.2061
C(4) 0.0867 −0.3278 −0.0377
C(5) 0.1185 −0.2385 −0.0138
C(6) 0.1310 −0.1982 −0.2583
O(1) −0.1115 −0.4520 0.5677
O(2) −0.1163 −0.4631 0.0509
O(3) 0.2151 −0.3632 0.3268
O(4) 0.2048 −0.3653 −0.1776
O(5) −0.0053 −0.2016 0.1120
O(6) −0.0031 −0.2106 −0.4014

Table A.11. Absolute structure of laevorotatory NiSO4 · 6H2O, P41212 (without hydrogens)
(Stadnicka et al 1987). a = 9.783 Å, c = 18.288 Å.

Ni 0.210 60 0.210 60 0
S 0.709 43 0.709 43 0
O(1) 0.172 7 −0.047 0 0.0528
O(2) 0.470 5 0.244 9 0.0561
O(3) 0.065 8 0.359 9 0.0850
O(4) 0.620 9 0.620 3 0.0658
O(5) 0.923 7 0.673 1 0.0003

Table A.12. Absolute structure of laevorotatory K2S2O6 P321 (Gomes, Ortega, Etxebarria, Zuniga
and Breczewski 1996). a = 9.782 Å, c = 6.298 Å.

K(1) 0.619 48 0 0
K(2) 0.293 63 0 1

2
S(1) 0 0 0.829 10
S(2) 1

3
2
3 0.737 90

S(3) 1
3

2
3 0.398 59

O(1) 0.155 7 0.1241 0.768 2
O(2) 0.204 6 0.5117 0.798 5
O(3) 0.175 0 0.6235 0.344 1

Table A.13. Absolute structure of laevorotatory KLiSO4, P63, a = 5.147 Å, c = 8.8633 Å
(Ortega et al 1993).

K 0 0 0
S 1

3
2
3 0.2051

O(1) 2
3

1
3 0.4609

O(2) 0.4020 0.3437 0.2401
Li 1

3
2
3 0.1797
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Table A.14. Absolute structure of Rb4LiH3(SO4)4, P41, a = 7.615 Å, c = 29.458 Å (Zuniga
et al 1990) (not complete).

Pb(1) 0.0645 0.8853 0.718 0
Pb(2) 0.3652 0.3840 0.704 91
Pb(3) 0.5291 0.9751 0.083 43
Pb(4) 0.2271 0.4808 0.073 56
S(1) 0.4620 0.1245 0.204 59
etc

Table A.15. Absolute structure of RbTiOAsO4 as a representative of the KTP family. Pna21,
a = 13.2640 Å, b = 6.6820 Å, c = 10.7700 Å.

Ti(1) 0.3738 0.5046 0.0015
Ti(2) 0.2488 0.2693 0.7514
As(1) 0.4996 0.3282 0.7444
As(2) 0.1800 0.5049 0.4903
Rb(1) 0.3830 0.7825 0.6729
Rb(2) 0.1090 0.6938 0.9261
O(1) 0.4875 0.4889 0.8614
O(2) 0.9892 0.9620 0.1107
O(3) 0.3940 0.1878 0.7228
O(4) 0.9000 0.6775 0.2469
O(5) 0.2169 0.0544 0.6103
O(6) 0.7188 0.5489 0.3620
O(7) 0.1093 0.3032 0.4527
O(8) 0.6073 0.7961 0.5222
O(9) 0.2576 0.5445 0.3675
O(10) 0.7576 0.0408 0.6098
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