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Abstract
The use of structured measuring systems to prevent wall slip is a common approach to obtain absolute rheological values. 
Typically, only the minimum distance between the measuring surfaces is used for further calculation, implying that no flow 
occurs between the structural elements. But this assumption is misleading, and a gap correction is necessary. To determine 
the radius correction Δr for specific geometries, we conducted investigations on three Newtonian fluids (two silicon oils and 
one suspension considered to be Newtonian in the relevant shear rate range). The results show that Δr is not only shear- and 
material-independent, but geometry-dependent, providing a Newtonian flow behaviour in a similar viscosity range. Therefore, 
a correction value can be determined with only minute deviations in different Newtonian fluids. As the conducted laboratory 
measurements are very time-consuming and expensive, a CFD-approach with only very small deviations was additionally 
developed and compared for validation purposes. Therefore, simulation is an effective and resource-efficient alternative to 
the presented laboratory measurements to determine Δr for the correction of structured coaxial geometries even for non-
Newtonian fluids in the future.
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Introduction

One fundamental issue while measuring rheological proper-
ties of complex materials is wall slip (e.g. for suspensions). 
In general, the presence of wall slip leads to an underestima-
tion of the actual viscosity, which can, for example, not only 
lead to an incorrect design of production plants, but also cre-
ate considerable problems in the field of simulation, where 
the viscosity often serves as an input parameter. Wall slip 
is characterized by a jump in velocity directly at the wall, 
i.e. true wall slip or strongly increasing velocity gradient in 
close proximity to the wall, i.e. apparent wall slip (Pahl et al. 
1991). However, true wall slip is rarely observed in reality 
(Haase et al. 2017), since all surfaces show a certain rough-
ness at the atomic level (Zhu and Granick 2002; Granick 

et al. 2003). Therefore, the term wall slip will be used in the 
following as a synonym for apparent wall slip.

The reason for wall slip is the development of a thin slip-
ping layer � directly at the wall, with a much lower vis-
cosity compared to the bulk material (see Fig. 1a). This is 
especially prominent for suspension flows, since a particle 
depleted area with a strongly reduced viscosity occurs at 
the wall (Banfill 1991; Macosko 1994; Barnes 1995; Jesin-
ghausen et al. 2016). Several phenomena lead to these low 
particle concentrations, with geometric constraint, i.e. the 
particles cannot penetrate the wall, being probably the most 
important. For monodisperse, spherical particles the typi-
cal size range of the slipping layer � is in the range of the 
particle radius (Yilmazer and Kalyon 1989; Kalyon 2005; 
Ballesta et al. 2012; Jesinghausen et al. 2016). Other relevant 
mechanisms include particle migration due to gradients in 
shear rate, repulsive particle–wall-interactions and particle 
layering on surfaces caused by the flow (Besseling et al. 
2010; Korhonen et al. 2015; Cloitre and Bonnecaze 2017).

Since the correction of wall slip always requires different 
sets of coaxial measurement geometries and in general a 
high measuring effort (Mooney 1931; Yoshimura et al. 1988; 
Kiljański 1989), the prevention of wall slip by roughened or 
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rather structured geometries is usually practiced (Pawelczyk 
et al. 2020). In this case, the tip-to-tip distance H between 
the surfaces defines the measuring gap for further calcu-
lation (see Fig. 1b). The use of such geometries does not 
prevent the particle-depleted layer, but it shifts it to a region 
that is not relevant to the essential flow field. However, the 
assumption of a distinct flow-interface at the geometry tips 
is void, as various investigations revealed, and leads to cal-
culation errors (Pawelczyk et al. 2020).

Fincke and Heinz (1961) conducted research on the 
determination of yield stress of coarse suspensions by using 
grooved coaxial measuring geometries for wall slip preven-
tion. In order to determine, if the material located in the 
grooves participates in the shear flow or not, they measured 
Newtonian fluids with these geometries. The results have 
shown that the effective radius differs from the true radius by 
a few tenths of a millimetre. After applying these correction 
values to the calculation of a Newtonian oil, no deviations 
between smooth and grooved measuring system could be 
observed. Since the effective radius and the actual radius do 
not differ that much, the authors state that the flow penetra-
tion depth in the grooves is only small. However, according 
to Fincke and Heinz, this is dependent of the fluid behaviour 
and the applied shear stress. Bauer et al. (Bauer et al. 1995), 
who investigated concentrated diblock copolymer solutions 
in grooved coaxial systems, determined the correction values 
in advance by measuring several Newtonian fluids. The cor-
rection value ΔR was found to be proportional to the radius 
R but independent of viscosity and shear rate. With these 
corrected radii, they were able to obtain the same results for 
smooth and grooved measuring geometries, even for non-
Newtonian fluids. However, they state that while the cor-
rection factors can be used to include the influence of the 
grooved surface, they do not consider the disturbance of the 
flow field. This is particularly important when measuring 
materials that exhibit a shear-dependent build-up of struc-
tures that leads to shear-thickening behaviour. Since a struc-
tured geometry can cause this behaviour at a lower shear rate 
than a smooth geometry, a wrong interpretation of the flow 
behaviour could be possible. Similar results were obtained 

by Ahuja et al. (Ahuja and Singh 2009), who compared sim-
ulated viscosity values of smooth and serrated geometries 
for low concentrated suspensions. When using the tip-to-
tip distance in the simulation, deviations between smooth 
and serrated walls occurred. However, when simulating the 
serrated walls with the actual gap, i.e. tip-to-tip distance H 
plus two times the serration-depth, the deviations vanished, 
indicating a significant flow in the serration.

Besides the mentioned investigations concerning coax-
ial systems, various research on parallel-plate systems 
were conducted. However, as this paper focuses on coaxial 
systems, other measuring geometries will not be discussed 
in detail. Information on the investigations concerning 
these systems and the underlying theoretical backgrounds 
can be found in (Beavers and Joseph 1967; Neale and 
Nader 1974; Nickerson and Kornfield 2005; Carotenuto 
and Minale 2013; Minale 2014, 2016; Carotenuto et al. 
2015; Paduano et al. 2018, 2019; Pawelczyk et al. 2020).

The presented studies clearly show that the application 
of structured geometries in coaxial systems leads to an 
increase in the effective radius and to the need for radius 
corrections to determine correct rheological values. How-
ever, for materials prone to wall slip, such as suspensions, 
those geometries are widely used and partially irreplace-
able, but often without the necessary correction. In order 
to develop a simple method for determining the radius cor-
rection of any geometry, we conducted investigations on 
two homogeneous Newtonian fluids and a medium dense 
suspension comparing laboratory measurements and CFD 
for various kinds of coaxial measuring geometries, pri-
marily differing in groove widths and depths. In a first 
step, correction values for the radii, which can be seen as 
theoretical penetration depths, were derived via experi-
mental comparison of structured geometries to smooth 
geometries for the Newtonian fluids. Second, as this would 
surely simplify future investigations, a CFD simulation 
was built to determine the correction values, which shows 
a strong agreement to the experiments. At last, the results 
were transferred to a medium dense suspension and the 
applicability is demonstrated.

Fig. 1   a Schematic illustration 
of the velocity profile in the 
two-plate-model with the veloc-
ity of the upper plate u

x
 , the 

slip velocity u
s
 , the gap width 

H , the structure depth d and the 
slip-layer or particle depleted 
area � ; b prevention of wall 
slip through profiled measuring 
surfaces with new defined gap 
height H
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Material and methods

Theoretical background

Concentric cylinder measuring systems consist of two cylin-
ders with the same symmetry axis. The material is sheared 
in a gap between the inner cylinder (bob, radius ri and length 
L ) and the outer cylinder (cup, radius ro and length L ). Since 
the surface area of the cylindrical plane increases from r = ri 
to r = ro , the shear stress occurring in the measuring gap 
decreases with increasing radius r (see Eq. (1)). If dealing with 
a Newtonian fluid, the shear rate can be expressed through 
Eq. (2), where �i and �o are the angular velocity at the inner or 
outer cylinder, respectively, and � = (ri∕ro)

2 (Pahl et al. 1991; 
Mezger 2012).

For a Searle type cylinder system, which was used in 
this paper, only the inner cylinder is rotating. Thus, �o = 0 
and the viscosity for a Newtonian fluid can be expressed as 
shown in Eq. (3) (Pahl et al. 1991; Mezger 2012).

Usually, the flow behaviour of the sample is not known or 
rather non-Newtonian and, therefore, the calculation accord-
ing to Eqs. (1) to (3) is not applicable anymore. To this end, 
an approximation method using the so-called representative 
shear rate 𝛾̇rep and representative shear stress �rep is com-
monly applied, as it is fast and simple even though better, 
but more complicated correction methods exist (Krieger 
and Elrod 1953; Giesekus and Langer 1977). Schümmer 
(Schümmer 1970) showed that for any fluid a representative 
radius rrep exists, where the shear rate and the shear stress are 
equal to those of a Newtonian fluid. Based on that, Giesekus 
and Langer (Giesekus and Langer 1977) developed equa-
tions for the shear rate 𝛾̇rep and shear stress �rep , which are 
independent of the flow behaviour (see Eqs. (4) and (5)). 
It is to mention that the factor � originates from a series 
expansion, with usually only the first series element to be 
used for further calculation, as for narrow gaps ( 1 − 𝛽 ≪ 1 ) 
the deviation is negligibly small.

(1)�(r) = M∕(2 ∙ � ∙ r2 ∙ L)

(2)𝛾̇(r) =
2 ∙ r2

i
∙ (𝜔i − 𝜔o)

r2 ∙ (1 − 𝛽)

(3)� =
M ∙ (1 − �)

4 ∙ � ∙ �i ∙ r
2

i
∙ L

(4)𝛾̇rep =
1 + 𝛽

2
⋅ 𝛾̇i = 𝜀 ⋅ 𝛾̇i

(5)�rep =
1 + �

2
⋅ �

i
= � ⋅ �i

Since this approximation is implemented in the evalua-
tion method for the concentric cylinder measuring systems of 
the rheometer used in this paper, the expressions � and 𝛾̇ will 
generally refer to the above-mentioned representative values. 
However, the viscosity remains independent of whether the 
representative values were used for the shear stress and the 
shear rate because the factor � is truncated in the viscosity 
calculation.

Wall slip correction

The fundamental issue with wall slip is that the wall slip 
velocity us leads to an apparent shear rate 𝛾̇a , which is always 
higher than the true shear rate 𝛾̇ applied to the material. 
Thus, the obtained viscosity is lower than the true viscos-
ity. To overcome this, Yoshimura and Prud’homme devel-
oped a correction method for coaxial systems, which allows 
for the determination of true shear rate and true viscosity 
(Yoshimura et al. 1988).

As the correction method is based on the use of two gaps 
and coaxial systems generally have a fixed gap width, the use 
of two systems with different radii is necessary. According to 
Yoshimura and Prud’homme (Yoshimura et al. 1988), the ratio 
� between outer and inner radii has to be the same for both 
systems (see Eq. (6)).

Adjusting equal shear stresses for both systems, the angular 
velocity can then be expressed by:

Since the fluid angular velocity term �f  is equal for both 
systems, and the slip velocities are a function of stress only, 
which results in equal bracketed terms, Eqs. (7) and (8) can be 
simplified and combined to calculate �f ,according to Eq. (9).

With regard to the representative shear stress �rep shown in 
Eq. (5), it can also be expressed by:

The true viscosity can then be calculated by:

(6)
ro,1

ri,1
=

ro,2

ri,2
= �

(7)

𝜔1 = 𝜔s,1 + 𝜔f =
1

r1
∙

(

us
(

𝜏o
)

𝜅
+ us

(

𝜏i
)

)

+ ∫
𝜏i

𝜏o

𝛾̇(𝜏)

2 ∙ 𝜏
d𝜏

(8)

𝜔2 = 𝜔s,2 + 𝜔f =
1

r2
∙

(

us
(

𝜏o
)

𝜅
+ us

(

𝜏i
)

)

+ ∫
𝜏i

𝜏o

𝛾̇(𝜏)

2 ∙ 𝜏
d𝜏

(9)�f =
r2 ∙ �2 − r1 ∙ �1

r2 − r1

(10)�rep =
M

4 ∙ � ∙ L ∙ r2
i

∙

(

�2
+ 1

�2

)
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Geometries

The reference system used in this investigation was a smooth 
concentric cylinder (CC) system (Anton Paar CC27) with an 
inner radius ri = 13.333mm , an outer radius ro = 14.462mm 
and a measuring length L = 40.026mm . For wall slip correc-
tion, two other coaxial systems called CC14 and CC25 were 
manufactured (see Table 1). Both systems fulfil the require-
ments of the ISO 3219 for standardized systems. In order to 
determine the influence of structural parameters on the effec-
tive gap size, further structured coaxial systems were devel-
oped based on the CC25-system (see Fig. 2a). Three differ-
ent groove depths ( d1 = 0.3mm , d2 = 0.65mm , d3 = 1mm ) 
and two different groove widths ( w1 = 1.1mm (narrow), 
w2 = 2.1mm (wide)) were analysed, while the groove shape 
is always rectangular. The measuring length of the inner 
cylinder of all systems is L = 36.84mm . Concerning the 
groove depths, it is to mention that due to the rectangular 

(11)� =

�rep

�f

∙

(

�2
− 1

�2 + 1

) shape combined with the curved surface of the cylinders, the 
depth of a groove is always the largest depth possible when 
referring to the outer or inner radius, respectively. This leads 
to the inner cylinder having the maximum groove depth in 
the middle of a groove, while the outer cylinder having the 
maximum groove depth at the edge of a groove (see Fig. 2b). 
The systems were 3D-printed out of stainless steel with a 
small oversize and then reworked on a lathe to ensure the 
dimensional accuracy. The individual dimensions can be 
found in Table 1, where the corresponding geometries and 
dimensions are given in the form “rdddw” (r = rectangular, 
ddd = groove depth in 10μm , w = groove width in rounded 
mm).

Laboratory measurements

All measurements were conducted using a Physica MCR 501 
rheometer from Anton Paar. Since it is possible to temper 
coaxial systems quite efficiently, the mean temperature of all 
measurements was within T = 20.0 ± 0.01◦C . The rheom-
eter has a maximum torque accuracy of 0.5%, which equals 
0.2μNm . For the fluids measured in this paper with AK 
1000 being the one with the lowest viscosity, a shear rate of 
0.1s1 results in a torque error of about 5% , which reduces to 
only 0.4% at 1s1 . For rheometre controlling and data acquisi-
tion, the Anton Paar software “RheoPlus” (RHEOPLUS/32 
V3.31) was used.

The materials analysed in this investigation were Wacker 
AK 1000 and AK 5000 silicon oils, which have a kin-
ematic viscosity of � = 1000mm

2
∕s and � = 5000mm

2
∕s, 

respectively (manufacturer specification) and show a nice 
Newtonian behaviour in the examined shear rate range (see 
Fig. 3). The AK 5000 was also used to prepare a suspen-
sion together with 21.23vol% Spheromers® CA40 particles 
( x

50,3 = 48.5μm measured with Sympatec QICPIC).

Table 1   Geometric dimensions of the manufactured coaxial systems

Measuring system r
i
∕mm r

o
∕mm L∕mm d∕mm w∕mm

CC14 7.080 7.680 21.240 - -
CC25 12.280 13.320 36.840 - -
CC27 (Anton Paar) 13.333 14.462 40.026 - -
r0301 12.265 13.305 36.840 0.30 1.1

r0651 12.270 13.310 36.840 0.65 1.1

r1001 12.260 13.295 36.840 1.00 1.1

r0302 12.260 13.295 36.840 0.30 2.1

r0652 12.260 13.295 36.840 0.65 2.1

r1002 12.260 13.305 36.840 1.00 2.1

Fig. 2   a CAD-construction of 
a grooved measuring system; 
b schematic illustration of the 
groove and gap dimensions
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As silicon oils are a very homogeneous material, no 
premeasurement treatment was necessary. The suspen-
sions, however, were prepared individually before every 
measurement procedure, which consists of three single 
measurements, by mixing the right amount of particles 
with the silicon oil. This was done to ensure the reproduc-
ibility by preventing variations in concentration due to 
inhomogeneities, which could have developed over time, 
even though that would have been very unlikely. After 
mixing the suspensions, they were degassed in an ultra-
sonic bath at 19◦C for 1 h and then mixed again. As the 
suspensions heated up to 30◦C due to internal friction, 
they were cooled to a target temperature of 20◦C with 
constant stirring in a water bath before pouring them into 
the measuring cup.

In order to prevent the formation of air bubbles, the mate-
rials were carefully poured along the wall of the geometries. 
Subsequently, the measuring bob was lowered very slowly 
( 100μm∕s ) into the cup and the temperature was set to 20◦C . 
After excess material was removed or additional material 
was filled into the measuring gap, the measuring program 
was started (see Table 2).

For an easier comparison, the measured (apparent) vis-
cosity values of the structured geometries �a are normalized 
at each shear rate according to the reference viscosity �CC27 
and are labelled �n , as depicted in Eq. (12).

Simulation

CFD simulations were conducted using the open source 
software OpenFOAM (version v2012). The STL-files for 
the geometry were compiled using the freeware Blender 
and meshed via the blockMesh- and snappyHexMesh-tool 
of OpenFOAM. Since the flow field in the measuring gap 
can be described two-dimensional within a reasonable 
error margin, the virtual measuring gap was designed with 
a length of 0.3mm for easier meshing and further simulated 
in 2D using the solver simpleFoam. For further analysis of 
the flow field, a customized solver was developed, whose 
functionality is explained in “Simulation results — inves-
tigation of the penetration depth and the flow field via 
simulation”.

Even though this is basically a dynamic simulation, there 
is only interest in the steady-state flow field. Therefore, the 
so-called MRF (multiple reference frame) method was used, 
which works with a stationary mesh, but still considers the 
rotation by adjusting the momentum equation. Additional 
geometries were constructed describing the rotating zone, 
whose outer radius is equal to (ri + ro)∕2 of the geometry 
in question.

The post-processing and extracting of individual cell val-
ues was done via the freeware ParaView. Combined with a 
self-written MATLAB algorithm, a profound evaluation of 
the flow field and the penetration depths was possible.

(12)�n =
�a

�CC27

Fig. 3   Individual measure-
ments #1–#3 and mean value 
for silicon oil AK 5000 
measured with CC27 system 
at T = 20.0 ± 0.01◦C ; a shear 
stress over shear rate; b viscos-
ity over shear rate

Table 2   Measuring program

Tempering time/min 10(silicon 
oil)/15 (sus-
pension)

Duration pre-shearing/s 30

Shear rate pre-shearing/s1 10

Pause/s 15

Log. Shear rate ramp/s1 0.1 − 100

Number of measuring steps/ −  36

Log. Measuring time/s 10 − 5
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Determination of correction values

The idea behind the correction is that a general radius correc-
tion value Δr can be derived for individual measuring systems 
and applied to a huge variety of materials. Based on the cor-
rection method presented for parallel plate systems (Nickerson 
and Kornfield 2005), we developed a method to determine the 
radius correction in coaxial systems. However, some assump-
tions need to be made for applying this correction.

If there was no influence of the structured measur-
ing surfaces, meaning the interface of the flow field is 
indeed the tip-to-tip-distance, the same viscosity must be 
measured using the structured geometries and the CC27 
reference system. As this is clearly not the case, a correc-
tion is necessary. The approach for the correction is that 
the true viscosity �true , which has to be equal to the refer-
ence viscosity �CC27 , can be calculated from the appar-
ent viscosity �a , which is measured with the structured 
systems, by implementing a correction radius Δr . This 
correction value needs to be included both for the inner 
radius Δri and the outer radius Δro . However, to guar-
antee a stable numerical solution method, the assump-
tion Δri = Δro = Δr has to be made. Therefore, based 
on Eq.  (3) by truncating all equal parameters except 
� = (ri∕ra)

2 and ri , which differ because of the Δr , the 
following relation between �true and �a can be derived 
(see Eq.  (13)). As �true and �a as well as ri and ro are 
known, the radius correction Δr can be easily calculated. 
To apply the radius correction, �true and �a need to be cor-
rected for their flow behaviour a priori. Therefore, it can 
be assumed that Eq. (13) is not only valid for Newtonian 
fluids. Corresponding application to shear-thinning flu-
ids can be found in (Pawelczyk et al. 2020).

(13)

�
true

�
a

=

M∙(1−�
true

)

4∙�∙�
i
∙(ri−Δri)

2
∙L

M∙(1−�)

4∙�∙�
i
∙r

2

i
∙L

=

(

1 −
(ri−Δri)

2

(ro+Δro)
2

)

⋅ r
2

i

(

1 −
r
2

i

r
2
o

)

⋅

(

r
i
− Δr

i

)2
=

(

1 −
(ri−Δr)

2

(ro+Δr)
2

)

⋅ r
2

i

(

1 −
r
2

i

r
2
o

)

⋅

(

r
i
− Δr

)2

Results and discussion

The following chapters address separately the results 
obtained during the laboratory measurements and the 
simulation. The main focus of the laboratory results is 
to determine the radius corrections by comparing the 
values measured with the structured geometries with the 
reference values, applying these corrections and trans-
ferring them to another homogeneous Newtonian fluid. 
The simulation results focus firstly on the evaluation of 
the simulation method and then a comparison between 
simulation and laboratory results will be conducted, fol-
lowed by the transfer to suspensions.

Laboratory results

In order to obtain reference values, the silicon oils were 
measured with the standard geometry CC27. Since a wall 
slip correction needs to be conducted for the suspen-
sion (see “Wall slip correction”), it was measured with 
the CC25 and CC14 systems. All measurements were 
repeated three times at T = 20.0 ± 0.01◦C following the 
measurement procedure and calculations presented ear-
lier. For further investigation, the three individual meas-
urements were averaged. Figure 3 shows the exemplary 
results for the silicon oil AK 5000, which shows a nearly 
ideal Newtonian behaviour in the observed shear rate 

Table 3   Parameters of the linear regressions for AK 1000, AK 5000 
and the suspension

Material �∕Pa ⋅ s R
2

AK 1000 1.087 ± 0.003 ≈ 1

AK 5000 5.211 ± 0.001 ≈ 1

Suspension 11.369 ± 0.017 ≈ 1

Fig. 4   Normalized viscosity �
n
 

over the shear rate 𝛾̇ for silicon 
oil AK 5000 calculated for 
narrow groves (a) and wide 
grooves (b)
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range. This is also valid for the other silicon oil and the 
suspension. The linear regressions with the corresponding 
values can be seen in Table 3.

Laboratory results — determination of radius 
corrections using silicon oil AK 5000

In order to determine the radius corrections, the normalized 
viscosities were measured for AK 5000 with all systems (see 
Fig. 4), with the error bars representing the gaussian error. 
The silicone oil AK 5000 was preferred to the AK 1000 for 
this investigation, since, due to the higher viscosity, a higher 
measuring accuracy can be expected. However, as the shear 
rates up to 𝛾̇ = 2s1 show some fluctuations, only shear rates 
larger than 𝛾̇ = 2s1 will be used for deriving the correction.

All measurements show viscosity values which are 
lower than the reference viscosity and, as expected, with 
a greater deviation for the wide grooves. Furthermore, a 
clear groove depth dependency can be observed for all sys-
tems, as the normalized viscosity decreases with increas-
ing groove depth. However, the Newtonian flow behaviour 
stays unharmed. One can conclude that there is no shear rate 
dependency of the penetration depth, which is supported 
by the results obtained by Bauer et al. (Bauer et al. 1995). 
Therefore, a radius correction was derived for the individual 
groove depths and widths by averaging over all shear rates 
larger than 𝛾̇ = 2s1 (see Fig. 5). The error bars represent the 
gaussian error.

As to be suspected, Δr increases with increasing groove 
depth, meaning that the flow penetrates the grooves 
deeper. This is different from grooves in parallel-plate 
geometries where a maximum penetration depth could 
be observed (Pawelczyk et al. 2020). However, the same 
behaviour might appear for greater groove depths. Never-
theless, some differences can be pointed out between the 
gap widths. The first thing becoming obvious is the range 
of the values for Δr . For the narrow grooves, the correc-
tion radius is in the range of approximately 37 − 43μm , 

whereas this range is 83 − 93μm for the wide grooves. 
Furthermore, for the narrow grooves, Δr seems to show a 
linear dependency of the groove depth ( R2

= 0.9944 ). For 
the wide grooves, this conclusion can only be drawn with 
certain limitations (R2

= 0.945).
The increase of Δr with increasing groove depth is not 

surprising. An explanation for the increasing correction 
factor could be that as the groove depth increases, the fluid 
experiences less resistance when entering the groove. It is 
intended to clarify this trend with further investigations in 
the future but up to now no further prediction is possible. 
However, whether the penetration depth really increases 
with increasing groove depth cannot be investigated eas-
ily via laboratory measurements and must be considered 
in more detail via simulations (see “Simulation results”).

Application of the radius correction to silicon oils

Figure 6 shows the corrected values for all measurement 
systems according to Eq. (13) for AK 5000.

As can be seen, the corrected values match the reference 
viscosity (measured with CC27) with nearly no deviation 
(see also Table 4).

This is not surprising, as the values for Δr were calculated 
also using Eq. (13). However, the general purpose of radius 
corrections is to have a material-independent, but geometry-
dependent characteristic value, with which the measured flu-
ids can be corrected. Therefore, it is desirable that the value 
determined above can also be used for other fluids, which 
we have already shown for a parallel plate setup (Pawelczyk 
et al. 2020). In order to prove that correlation for coaxial 
systems, the obtained correction values for the AK 5000 
were also used to correct the AK 1000 measurements (see 
Fig. 7). The correction values were also applied to suspen-
sion measurements (see “Application of the radius correction 
to silicon oils”).

Although the corrected values for AK 1000 do not match 
the reference viscosity as good as they do for the AK 5000, 

Fig. 5   Radius correction Δr 
over groove depth d for narrow 
(w = 1.1 mm) groves (a) and 
wide (w = 2.1 mm) grooves (b)
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the results still look very satisfying, which again is sup-
ported by the results obtained by Bauer et al. (Bauer et al. 
1995). When taking a closer look at the mean deviations 
depicted in Table 5, it can be assumed that the correction 
values Δr are indeed transferable to other materials, pro-
vided that they are also Newtonian. As the difference in 
viscosity between AK 1000 and AK 5000 is not that great, 
this assumption will be verified in further investigations by 
using Newtonian fluids with much higher viscosities in the 
future. Whether this also applies to suspensions with nearly 
Newtonian flow behaviour is investigated in “Application of 
the radius correction to suspensions”.

Simulation results

For validation purposes, the CC27 reference system was first 
simulated in 2D at three representative shear rates, 𝛾̇ = 5.72s1 
(low shear), 𝛾̇ = 37.6s1 (middle shear) and 𝛾̇ = 82.7s1 (high 
shear) with a virtual length of L = 0.3mm . To compensate 
even minor measurement variations, an averaged viscosity 
over three shear rates in the range of the above-mentioned 
values was used as input parameter. Given the shear rate and 
the fluid viscosity, it is possible to calculate the torque on the 
cup and the bob. As convergence criterion, a constant torque 
for at least 10,000 iteration steps was defined. Following 
the equations given in “Theoretical background”, it is then 

Fig. 6   Corrected and uncor-
rected normalised viscosities 
�
n
 over the shear rate 𝛾̇ for 

silicon oil AK 5000 calculated 
for narrow groves (a) and wide 
grooves (b)

Table 4   Averaged deviations 
over all shear rates of corrected 
viscosity to reference viscosity 
for silicon oil AK 5000

Measuring 
system

Mean deviation/%

r0301 0.00 ± 0.03

r0651 0.00 ± 0.05

r1001 0.00 ± 0.03

r0302 0.00 ± 0.03

r0652 0.00 ± 0.02

r1002 0.00 ± 0.04

Fig. 7   Corrected and uncor-
rected normalised viscosities �

n
 

over the shear rate 𝛾̇ for silicon 
oil AK 1000 calculated with 
the radius corrections deter-
mined for silicon oil AK 5000 
for narrow groves (a) and wide 
grooves (b)

Table 5   Averaged deviations 
over all shear rates of 
corrected viscosity to reference 
viscosity for silicon oil AK 
1000 corrected with radius 
corrections determined for 
silicon oil AK 5000

Measuring 
system

Mean deviation/%

r0301 0.05 ± 0.07

r0651 0.34 ± 0.08

r1001 0.27 ± 0.04

r0302 0.33 ± 0.08

r0652 0.36 ± 0.06

r1002 0.37 ± 0.06
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possible to calculate the shear stress from the torque and 
the corresponding viscosity which should match the input 
viscosity if everything is set up correctly. The results are 
shown in Table 6.

When looking at the deviations, it becomes clear that this 
approach, including the MRF method, the 2D simulation and 
the calculation of viscosity, seems appropriate and can be 
used in the following investigation.

Simulation results — comparison 
between laboratory and simulation results

The simulations performed for the reference system were 
also performed for all structured systems with the same 
initial conditions and convergence criteria. The results are 
presented in Table 7.

Even though the deviations in viscosity are slightly larger 
compared to the reference system, they are below 1.5% for 
all simulations. Therefore, it is possible to calculate the 
correction factors for similar grooved geometries only via 
simulation. As the calculation of Δr is viscosity based with 
a minute deviation, the results are not shown here, since no 
further insight would be achieved.

Simulation results — investigation 
of the penetration depth and the flow field 
via simulation

One of the basic assumptions to derive the radius correction 
is the even flow penetration of the grooves at the inner and 
outer cylinders, meaning Δri = Δro = Δr . However, because 
of the small penetration depth and optical accessibility, it 
is very complicated to access this experimentally, but a lot 
easier via simulation.

In this respect, it should be emphasized again that the 
radius correction is only a correction value and cannot be 
directly compared with the actual penetration depth of the 
fluid. While it can be considered an approximation to some 
extent, it serves more as a relative comparison between the 
different structures and, what is the main task, as a correc-
tion value.

In order to evaluate the relations between Δri and Δro , 
some post-processing of the simulation results or the indi-
vidual cell values, respectively, is necessary. The main 

reason for this is that the actual penetration depth � of the 
flow field could only be observed at the outer cylinder, as the 
flow velocity at the inner cylinder is too high to detect the 
fluid penetration into the structure, which is much slower. 
Therefore, a post processing was designed and integrated 
in a modified solver, which recalculates the velocity field 
in the measuring gap as follows. All elements in the region 
0 < r < ri are seen as a solid state vortex having the radius 
dependent overlaying velocity u(r) = r ⋅ �i with the angular 
velocity of the inner cylinder �i . The overlaying velocity 
field u(r) in the region ri < r < ro is approximated linear 
with the boundaries u

(

ri
)

= �i ⋅ ri and u
(

ro
)

= 0 . These 
overlaying velocity values are subtracted from the calculated 
velocity values of the cells at the corresponding radii. As all 
elements laying in the region r > ro can also be seen theo-
retically as a solid state vortex, but with an angular velocity 
of �o = 0 , no recalculations for these elements need to be 
conducted. This manipulation emphasizes the areas of inter-
est and enables a direct comparison, that is not dominated by 
the high velocities of the inner cylinder. Figure 8 illustrates 
the areas just mentioned, and Fig. 9 shows the comparison 
between an unmodified and a modified flow field to be ana-
lysed further. A vortex-like flow field appears, which indi-
cates how deep the fluid penetrates the structures, since the 

Table 6   Reference �
ref

 and simulated �
sim

 viscosity of silicon oil AK 
5000 at three different shear rates with the associated deviation

𝛾̇/s1 �
ref

 / Pa ⋅ s �
sim

/Pa ⋅ s Deviation/%

5.72 5.212 5.210 −0.040

37.6 5.209 5.208 −0.024

82.7 5.200 5.198 −0.024

Table 7   Laboratory �
lab

 and simulated �
sim

 viscosity of silicon oil AK 
5000 measured and simulated with the structured geometries at three 
different shear rates with the associated deviation

Low shear — ̇𝛾 = 5.72s1

  System �
lab

/Pa ⋅ s �
sim

/Pa ⋅ s Deviation/%
  r0301 4.863 4.833 0.624

  r0651 4.838 4.814 0.498

  r1001 4.812 4.811 0.038

  r0302 4.488 4.449 0.879

  r0652 4.436 4.378 1.319

  r1002 4.416 4.355 1.392

Middle shear — ̇𝛾 = 37.6s1

  System �
lab

/Pa ⋅ s �
sim

/Pa ⋅ s Deviation/%
  r0301 4.859 4.830 0.585

  r0651 4.831 4.811 0.415

  r1001 4.808 4.808 0.000

  r0302 4.486 4.446 0.895

  r0652 4.434 4.375 1.322

  r1002 4.414 4.352 1.395

High shear — ̇𝛾 = 82.7s1

  System �
lab

/Pa ⋅ s �
sim

/Pa ⋅ s Deviation/%
  r0301 4.850 4.821 0.594

  r0651 4.820 4.802 0.378

  r1001 4.800 4.799 0.029

  r0302 4.479 4.438 0.924

  r0652 4.427 4.367 1.350

  r1002 4.408 4.344 1.449
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velocities differ maximally from the assumed ideal velocities 
with no penetration at all. Even though there was no cor-
rection in the outer gap, the results differ from the original 
measurement since the maximum velocity is lower and no 
longer masks the flow in this area.

An algorithm in MATLAB was written, which calculates 
the penetration depth � over the groove width on the basis 
of a velocity plot in radial direction (see Fig. 10a). Starting 
from the inner or outer radius, respectively and going into 
the groove, a circumferential speed of vc = 0m∕s in the new 
calculated velocity field was defined as a reference point for 
calculating the penetration depth, as this point describes the 
reversal of the flow direction (see Fig. 10a and b). The pen-
etration depth has a maximum in the middle of the groove 
(angular direction), as it should be expected, and is nearly 
the same for all inner/outer groove-overlapping situations 
(see Fig. 11). It is to mention that only a quarter of the meas-
uring system was considered to reduce simulation time mak-
ing use of the symmetric shape. The values for two directly 
opposing grooves are given as an example in Fig. 12.

Fig. 8   Schematic visualisation of the regions for recalculating the 
flow field in the measuring gap

Fig. 9   High shear velocity field 
with the corresponding vectors 
in the measuring gap of two 
opposing grooves of the system 
r0651 before recalculation (a) 
and after recalculation (b) with 
the new post processing. It must 
be noted that the scale is dif-
ferent in both depictions, even 
though the colours and the vec-
tor lengths appear to be similar. 
This has been done for better 
clarity, since the overall velocity 
is much lower in figure (b)

Fig. 10   a Schematic visualiza-
tion for calculating the penetra-
tion depth, presented for the 
r0651 grooves for one position 
(groove middle) with the outer 
radius (dotted line), the line for 
the velocity plot (solid line) 
from r

o
 into the groove and the 

calculated penetration depth 
(dashed line, schematic illustra-
tion); b circumferential speed 
v
c
 over radius ( 0 = r

o
 to end of 

groove) with marked penetra-
tion depth at v

c
= 0
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Table 8 shows the individual averaged penetrations depths 
for the inner and outer grooves of all systems. To obtain 
these values, the penetration depths for each individual 
groove, as presented in Fig. 12, were first averaged over the 
groove width. This was done for all different overlapping 
cases (Fig. 11) at the inner and outer cylinders. Then, all 
these “mean penetration depths” for each individual groove 
were averaged, to generate only one characteristic parameter 
for the inner and the outer grooves, respectively. In order to 
be able to compare the results of the algorithm for the differ-
ent shear rates more precisely, the first two decimal places 
are given at this point.

As can be seen in Table 8, the penetration depths do not 
depend on the shear rate, as only minute deviations occur, 
which might have their origin in computational accuracy. 
Therefore, all further discussion will focus on the results of 
the low shear rate region, but is valid for all regions.

Analysing the penetration depth for the outer and inner 
grooves, it is obvious that no general conclusion can be 
drawn, whether � is greater at the inner cylinder or vice 
versa. For the narrow grooves the maximum difference 
( 2.08% ) is smaller than for the wide grooves ( 6.57% ). Gen-
erally, no trend can be seen for both systems. For example, � 
is greater at the inner grooves for one system (r0302), but for 

Fig. 11   Different overlapping 
situations for the modified flow 
field, exemplary presented for 
the r0651 geometry
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another system (r1002), this behaves the other way round. 
Therefore, the assumption Δri ≈ Δro seems to be a valid 
assumption for the small and the wide grooves, meaning the 
approach presented in Eq. (13) is not only justified, but is 
also related to the real flow behaviour.

However, looking at the averaged penetration depths 
(Table 8) reveals no clear trend or correlation. This might 
be a hint that the state of groove overlapping is important. 
Therefore, additional investigations analysing the maxi-
mum penetration depth, i.e. in the middle of the groove (see 
Fig. 12), at certain points were carried out, in fact at two 
opposite grooves (GG), at inner groove opposite outer wall 
(IGO) and at outer groove opposite inner wall (OGI) (see 
Table 9). Additionally, since the groove depths differ slightly 
in the groove middle (see Fig. 2), the ratio of penetration 
depth to groove depth is listed to obtain more significant 
information.

The results clearly show that for many systems, the fluid 
penetrates the whole groove depth. It can also be seen that 
there is a direct relation between the maximum penetration 
depth and groove depth, as with increasing groove depth the 
maximum penetration depth increases, too. This also applies 
to the groove width, since the same relationship exists. How-
ever, this matches the assumptions made in “Simulation 
results — comparison between laboratory and simulation 

results” of higher penetration depths with increasing groove 
depths and widths due to the lower resistance of the cylin-
der walls. Taking a closer look, it stands out that no great 
deviations exist between inner and outer grooves, except 
for dGG,o∕do for the system r1002, while the reason for this 
exception remains unknown. When comparing the penetra-
tion depths for inner and outer grooves for those systems, 
where the fluid does not penetrate the entire groove (r0651 
and r1001), it can also be seen that here, too, the penetration 
depths for inner and outer grooves are in a similar range with 
only small deviations, which again supports the assumption 
of Δri = Δro.

Application of the radius correction to a suspension

Our investigation clearly shows that the determination of 
the radius correction values can be greatly simplified by 
simulations. However, the use of structured systems is 
only necessary for wall slip materials such as suspensions. 
Therefore, it is of high interest, if the radius corrections 
determined for the silicon oil AK 5000 are also applica-
ble to suspensions within an acceptable deviation. To this 
end, a 21.23vol% suspension of silicon oil AK 5000 and 
Spheromers® CA40 was prepared and corrected for slip 
using the described methods (see “Wall slip correction”) 

Fig. 12   Penetration depth � over 
normalised groove width w

norm
 

for the inner and outer grooves 
calculated for the measuring 
system r0651 (a) and r0652 (b) 
at high shear for two directly 
opposing grooves

Table 8   Averaged penetration 
depths � for all measuring 
systems at the inner and outer 
grooves

Narrow Penetration depth � inner grooves / �m Penetration depth � outer grooves/μm
  𝛾̇/s1 r0301 r0651 r1001 r0301 r0651 r1001
  5.72 239.92 237.50 266.53 240.36 242.43 266.45

  37.6 239.92 237.50 266.48 240.36 242.44 266.48

  82.7 239.92 237.50 266.53 240.37 242.44 266.45

Wide Penetration depth � inner grooves/μm Penetration depth � outer grooves/μm
  𝛾̇/s1 r0302 r0652 r1002 r0302 r0652 r1002
  5.72 267.12 422.55 404.73 250.66 430.01 430.13

  37.6 267.12 422.56 404.74 250.66 430.02 430.13

  82.7 267.13 422.57 404.74 250.66 430.03 430.14
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while measured with smooth surface systems. The true 
viscosity �true is illustrated in Fig. 13, with the error bars 
representing the gaussian error in case of �true and the 
standard deviation in case of �a.

As expected, the uncorrected viscosity values are slightly 
lower than the corrected viscosity, indicating wall slip. How-
ever, it is quite significant, that the uncorrected values show 
an apparent slightly shear thinning behaviour, whereas the 
corrected values indicate a Newtonian flow behaviour with a 
mean viscosity of � = 11.369 ± 0.017Pa ⋅ s . The shear thin-
ning effect could be attributed to a higher slip-velocity at 
high shear rates, showing that wall slip may also lead to a 
false conclusion regarding the flow behaviour. However, a 
general shear-thinning behaviour of the suspension could be 
excluded, since not only the presented values, but also previ-
ous measurements conducted with a parallel-plate system 
and according wall slip correction showed a Newtonian flow 
behaviour (Pawelczyk et al. 2020).

After the true viscosity was determined as a reference, 
the suspensions were measured with the structured systems, 
and the radius correction values determined for pure silicon 
oil AK 5000 were applied. Figure 14 shows the uncorrected 
and the corrected normalised viscosities together with the 
reference viscosity. Again, due to measuring errors in the 
very low shear rate range, only the values above 𝛾̇ = 2s1 
are considered. The slight tendency to apparent shear-thick-
ening, especially for the system r1001 can be attributed to 
measurement errors due to minimal dimensional inaccura-
cies of the measuring systems. However, as this behaviour 
is not strongly pronounced, it will be neglected in the fur-
ther course of investigating the transferability of the radius 
corrections.

The good agreement of the corrected values with the 
reference curve again strengthens the fact that the Δr is 

transferable and measurements with structured geometries 
are possible for suspensions. This is due to the fact that the 
corrected normalised viscosites differ from the reference 
values by a maximum deviation of only 3.5% (measuring 
system r1001) (see Table 10).

When looking at these deviations, it should always 
be kept in mind that the wall slip corrections were per-
formed using two self-manufactured systems. Therefore, 
slight deviations may be explained by inaccuracies of 
the measuring systems and the flow behaviour. Never-
theless, these deviations are within a normal measure-
ment uncertainty, so that, including the results for the 
silicon oil AK 1000, the conclusion can be drawn that 
the radius corrections can be generally applied to New-
tonian fluids. However, further investigations with New-
tonian fluids would be useful to verify this assumption. 

Table 9   Maximum penetration 
depths � in the groove middle 
for different cases with 
according ratio of penetration 
depth � to groove depth d

Inner grooves Opposite grooves Inner groove opposite outer wall
  System d

i
∕μm �

GG,i∕μm �
GG,i∕di �

IGO
∕μm �

IGO
∕d

i

  r0301 300 299 0.997 300 1.000

  r0651 650 293 0.451 261 0.402

  r1001 1000 333 0.333 302 0.302

  r0302 300 299 0.997 300 1.000

  r0652 650 650 1.000 405 0.623

  r1002 1000 588 0.588 386 0.386

Outer grooves Opposite grooves Outer groove opposite inner wall
  System d

o
∕μm �

GG,o∕μm �
GG,o∕do �

OGI
∕μm �

OGI
∕d

o

  r0301 289 288 0.997 288 0.997

  r0651 639 299 0.468 255 0.399

  r1001 989 328 0.332 288 0.291

  r0302 259 258 0.996 258 0.996

  r0652 609 608 0.998 368 0.604

  r1002 959 663 0.691 353 0.368

Fig. 13   Uncorrected and wall-slip-corrected viscosity over the shear 
rate for a suspension made of silicon oil AK 5000 and 21.23vol% 
Spheromers® CA40 measured with smooth bob und cup systems
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In this context, it is to mention that the same research 
was conducted with shear thinning fluids, but no general 
solution could be found, as the correction values seem to 
be dependent not only on the shear rate but also on the 
extent of the shear thinning flow behaviour. Therefore, 
these investigations are important and will be pursued 
in the future.

Conclusions

The general approach for measuring suspensions, which are 
prone to wall slip, is to use structured geometries without recal-
culating the effective radius for the determination of rheological 
properties. However, our investigation clearly shows that struc-
tured geometries lead to false values with much lower viscosi-
ties, which need to be corrected in any case.

We are able to show that the effective radius can be corrected 
with a geometry-dependent, but material- and shear rate-inde-
pendent correction value Δr , provided Newtonian fluids meas-
ured and the assumption of an equally penetrating fluid at the 
inner and outer cylinders is made, meaning Δri = Δro = Δr . 
This assumption could be backed up via simulative results. The 
generality of the correction factor was shown by determining 
the mean radius corrections using a reference fluid, in this case 
the silicon oil AK 5000, and using these values to correct other 
Newtonian fluids, namely silicon oil AK 1000 and a suspension 

consisting of silicon oil AK 5000 and 21.23vol% Spheromers® 
CA40 particles. While the application of the correction values 
to AK 1000 lead to very small deviations of only 0.05 − 0.37% , 
the deviations for the suspension were slightly higher with 
0.327 − 2.511% . For some systems, especially for the system 
r1001, the values improved by only a small percentage com-
pared to the uncorrected values, so that a correction does not 
seem necessary. However, this is still a quite promising result, 
especially considering that the investigation of the suspension 
was based on self-manufactured measurement systems and other 
measurements could be enhanced significantly. It is very likely 
that this purely geometrical correction works for all Newtonian 
fluids. However, it has to be proven for much higher viscosities 
in the future.

Since both, the fabrication of structured systems and the 
measurement of the material in the laboratory, are very time-
consuming and costly, a simulative approach to determine the 
radius corrections was investigated. The CFD results lead to two 
conclusions. On the one hand, the simulation is able to repro-
duce the laboratory results with high precision. On the other 
hand, it could be shown that the assumption of Δri = Δro = Δr 
to correct the apparent viscosity measured with structured sys-
tems is justified, since the averaged penetration depths between 
inner and outer cylinders only differed little, if at all. Therefore, 
the use of a simulative approach for determining the radius cor-
rection should be preferred in any case.
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Fig. 14   Corrected and uncor-
rected normalised viscosites 
�
n
 over the shear rate 𝛾̇ for a 

suspension (AK 5000 with 
21.23vol% Spheromers® CA40 
particles) calculated with the 
radius corrections determined 
for silicon oil AK 5000 for 
narrow groves (a) and wide 
grooves (b)

Table 10   Averaged deviations 
over all shear rates of corrected 
viscosity to reference viscosity 
for a suspension (AK 5000 + 
21.23vol% Spheromers® CA40 
particles) corrected with radius 
corrections determined for 
silicon oil AK 5000

Measuring 
system

Mean deviation/%

r0301 0.899 ± 0.247

r0651 0.327 ± 0.404

r1001 2.511 ± 0.891

r0302 0.509 ± 0.292

r0652 0.754 ± 0.707

r1002 1.280 ± 0.606
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