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ABSTRACT Fast charging of the electric-vehicles is one of the paramount challenges in solar smart cities.

This paper investigates intelligent optimization methodology to improvise the existing approaches in order

to speed up the charging process whilst reducing the energy consumption without degradation in the light

of the outrageous demand for lithium-ion battery in the electric vehicles (EVs). Two fitness functions

are combined as the targeted objective function: energy losses (EL) and charging interval time (CIT).

An intelligent optimization methodology based on Cuckoo Optimization Algorithm (COA) is implemented

to the objective function for improving the charging performance of the lithium-ion battery. COA is applied

through two main techniques: The Hierarchical technique (HT) and the Conditional random technique

(CRT). The experimental results show that the proposed techniques permit a full charging capacity of the

polymer lithium-ion battery (0 to 100% SOC) within 91 mins. Compared with the constant current-constant

voltage (CCCV) technique, an improvement in the efficiency of 8% and 14.1% was obtained by the

Hierarchical technique (HT) and the Conditional random technique (CRT) respectively, in addition to a

reduction in energy losses of 7.783% and 10.408% respectively and a reduction in charging interval time

of 18.1% and 22.45% respectively. Experimental and theoretical analyses are performed and are in good

agreement on the polymer lithium-ion battery fast charging method.

INDEX TERMS Constant current-constant voltage (CCCV), cuckoo optimization algorithm (COA), electric

vehicles (EV), electric vehicle fast charging, lithium-ion battery, RC second-order transient.

I. INTRODUCTION

The lithium-ion battery is becoming the backbone of most

of the popular energy storage systems worldwide [1]. It is

the infrastructure of the modern technologies such as Elec-

tric Vehicles (EV), plug-in hybrid vehicles (PHEV), Energy

Storage Systems (ESS), and most of the portable electron-

ics [1]. Recently, the lithium-ion battery is commercialized

because of its wide voltage range, low charging rate, low

self-discharging rate, long life cycle, and high energy effi-

ciency [1]–[3]. Due to the dynamic characteristics and com-

plex behavior of the lithium-ion batteries, knowledge of its

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongquan Sun .

various equivalent circuits models is an essential step to

understand its performance [4]–[8].

Modeling of Lithium-ion batteries could be divided into

two main categories: 1) the first category is Electrochemical

model that describes the electrochemical reaction occurring

in the battery [7], and 2) the second category is its elec-

tronic equivalent circuit that is based on the characteristics

of the lithium-ion battery and can be branched into Rint

model, PNGV model, Thevenin model, RC first-order tran-

sient model and RC second-order transient that is also called

Dual Polarization (DP) model [9]–[13].

Studies are ongoing to achieve faster battery charging as

the main drawbacks that face Lithium-ion batteries during

charging are the slow charging rate, the unpredictable effect
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on the battery performance, and the energy loss [12]. The

challenge is to speed up the battery charge without affect-

ing its electrochemistry [14]. Charging strategies can be

categorized into three main techniques: 1) pulse charging

technique [12], 2) constant current-constant voltage (CCCV)

technique, and 3)multi-stage charging current technique [15].

Pulse charging technique is mainly based on an appro-

priate selection of the current waveform parameters, how-

ever, the difficulty in choosing the appropriate parameters for

pulses [12] and the very low switching duty cycle [16] could

be considered as limitations. On the other hand, the constant

current-constant voltage (CCCV) technique represents the

standard charging method because of its easy implementation

and simple requirements. CCCV methodology is based on

charging the battery by a constant rated charging current until

the voltage reaches the cut off value and then the voltage

is held constant while the current decays to the minimum

value. This causes an increase in the charging interval time,

consequently, resulting in an unoptimized charging [12].

In multi-stage charging current technique, the battery

is charged by a multi-stage of different currents and the

lifetime extends without a degradation impact [12]. Many

algorithms and techniques have been implemented for

multi-stage constant current charging of the lithium-ion bat-

tery in Table 1 such as Particle Swarm Optimization (PSO)

based Fuzzy Logic, Consecutive Orthogonal Arrays, Cor-

recting Slope Iteratively, Taguchi Approach, Ant Colony

algorithm (ACA), Optimal charge pattern (OCP), Balance of

Internal Consumption and Charging Speed, Particle Swarm

Optimization (PSO), Negative pulse, Boost-charging, and

Dynamic programming algorithm.

Previous researchers used various methodologies to

study the charging process, such as the type of model

used, the charging time or/and the energy consumption,

the charging efficiency performance, the charging capac-

ity, and the no. of tests used, which are summarized in

Table 1.

Meta-heuristic algorithms presented in the previous table

such as Particle Swarm Optimization (PSO) [16], [17] and

Ant Colony algorithm (ACA) [21] operate based on a com-

bination between rules and mimic animal behavior in the

natural environment. PSO simulates a bird predation behavior

belongs to the swarm intelligence algorithm. The particles

move in the search-space and communicate with the rest of

the swarm during the exploration. ACA is inspired by the

supervision of a real set of artificial cooperative ants that used

pheromone deposited on graph edges in solving the problems

and exchanging information [21]. Each algorithm has been

used in Table 1 has its approach, objective function and own

parameters included from the equivalent circuit model of the

lithium-ion battery.

In this study, the analysis of several techniques based on

the Cuckoo optimization algorithm (COA) to optimize the

total energy consumption and battery charging interval time

to reach the full capacity limit is obtained. COA has been

TABLE 1. Multi-stage constant charging current comparison between the
proposed algorithm (cuckoo optimization algorithm (COA)) and other
algorithms presented in the literature survey.
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TABLE 1. (Continued.) Multi-stage constant charging current comparison
between the proposed algorithm (cuckoo optimization algorithm (COA))
and other algorithms presented in the literature survey.

implemented using the second-order transient equivalent cir-

cuit model after measuring all the parameters.

II. LITHIUM-ION BATTERY EQUIVALENT CIRCUIT

MODELLING

RC second-order transient equivalent circuit model (DP

model) in Fig. 1 represents the transient behavior of the

polymer lithium-ion battery. The DP model has proved to

be the closest circuit model that can be used to explain the

performance and behavior of lithium-ion batteries [4].

FIGURE 1. The proposed RC second-order transient equivalent model of a
lithium-polymer battery.

The RC second-order transient model consists of three

main sectors [25]–[28]: open circuit voltage OCV , which

depends on the battery state of charge, internal resistances

including the ohmic internal resistance (Ri), the electro-

chemical polarization internal resistance (Rα) and the con-

centration polarization internal resistance (Rβ ) and lastly,

the internal capacitances such as the electrochemical polar-

ization capacitance (Cα) and the concentration polarization

capacitance (Cβ ).

The electrical behavior and relationship between the circuit

components [26] and can be expressed as follow

ICαλ
= Iλ

{
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1 − e
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where, Iλ is the total current of the present stage λ, ICαλ
is

the stage current passes through the electrochemical polariza-

tion capacitance (Cα), ICβλ
is the current passes through the

concentration polarization capacitance (Cβ ) and 1t is the

change in interval time.

The detailed calculations of the OCV and the internal

parameters of the proposed polymer lithium-ion battery are

explained in the following sections.

A. OPEN CIRCUIT VOLTAGE (OCV)- STATE OF

CHARGE (SOC) METHOD

There are various methods to estimate SOC. The first method

is the Open Circuit Voltage (OCV) which is used to measure

the voltage at the required SOC percentage, however, precise

relaxation time should be taken into consideration [29]–[31].

Secondly, the Coulombs Counting method that relies on

the current integration is depending on a controlled sensor,

however, a regular calibration should be done to avoid any

error [32]–[37]. The last one is the machine learning method,

which is based on the reliability of the collected data and

includes the following: the artificial intelligent [38]–[40], the

support vector machines algorithm (SVM) [41], [42] and the

Kalman filter family methods that rely on the state-space

model, however, the machine learning method has a poor

performance in transients [43]–[49].

SOC with a low percentage of error is required to optimize

the energy loss, the interval time required to charge the bat-

tery, safety usage, and battery management. The integration

of the Coulomb Counting method represented in (3) with

the OCV method has proved to cause no critical side effects

during normal battery operation [25], [31], [35].

SOCλ = SOCλ−1 ±

(

η ×

∫ τ

t0
Iλ−1.dτ

CRate

)

× 100% (3)

where ± the positive sign for charging and negative sign for

discharging, SOCλ is the state of present charging stage λ,

Iλ−1 is the current of the battery at stage (λ − 1), η is the

coulomb coefficient and it is constant =1 for discharging

and =0.98 for charging and CRate is the rated capacity of the

battery (Ah).

The procedures of SOC estimation using the integration

between the coulomb counting method and the OCV method

are presented in the flow chart of Fig. 2(a). The proposed

procedures are implemented to draw the relationship between

OCV compared to SOC at room temperature 25◦C using NI

myRIO-1900 as shown in Fig. 2(b).

B. INTERNAL PARAMETERS OF THE PROPOSED BATTERY

MODEL

The values of the proposed battery equivalent circuit model

have been calculated based on the battery terminal potential

difference during the discharging current pulses. The dis-

charging current pulses have been implemented in a short

interval time of 20 s with a 600 s relaxation period before

and after the applied current pulse [25], [27]. Fig. 3. shows

specific voltages and times during the discharging pulses

which are used to calculate the internal parameters of the

lithium-polymer battery.
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FIGURE 2. Illustrates (a) the procedures of the OCV-SOC test method and
(b) the relation between OCV-SOC of the lithium-polymer battery cell at
room temperature 25◦C.

By applying a discharging current pulse 0.2A on the used

polymer lithium-ion battery, the ohmic internal resistance Ri,

the electrochemical polarization internal resistance Rα and

the concentration polarization internal resistance Rβ have

been calculated after 1 s, 10 s, and 18 s respectively [25]. The

equations given in [26] have been used to calculate the inter-

nal resistances and capacitances and have been illustrated in

the appendix. The relationship between the internal param-

eters of the proposed battery model and SOC are presented

in Fig. 4.

III. DERIVATION AND LIMITATIONS OF THE FAST

CHARGING FITNESS FUNCTION

A. DERIVATION OF THE FAST CHARGING FITNESS

FUNCTION

To reach the battery’s full capacity with a minimum charging

interval time and energy consumption, an objective function

FIGURE 3. Discharging current pulse sample graph measured by NI
myRIO during the interval time 20 s at room temperature 25◦C.

(fitness function) should be minimized. The energy loss for

the proposed RC second-order transient equivalent circuit can

be expressed as follow

E .L.(J ) =

N
∑
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I2λRiTλ

}

+
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(4)

where N is the total number of constant current charging

stages and Tλ is the total time of current charging at the

stage λ.

By considering the interval change in time of the system

is 1t = 1s and the change of SOC is 1SOC = 1%,

the charging interval time for each stage will be expressed

as Tλ (sec) = (36/Iλ) from (3).

The objective function intended in this study stated in (5)

was obtained by using (1), (2), (3), and (4).
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where ω1 is the weighting factor of the total energy loss and it

could be adjusted from 0 to 1 andω2 is the weighting factor of

the total required charging interval time where ω2 = 1− ω1.

B. LIMITATIONS OF FAST CHARGING ALGORITHMS

1) CUT OFF VOLTAGE OF EACH STAGE (Vc−oλ)

Every battery has a charging cut-off voltage which should

not be exceeded to guarantee the battery from damage, over-

charging and to ensure a better lifespan [23]. The proposed

polymer lithium-ion battery should not exceed the maximum

permitted voltage for each stage which can be expressed by

Vc−oλ
≤ 4.25.

2) THE MAXIMUM PERMITTED CHARGING CURRENT OF

EACH STAGE (Iξλ)

The charging current should not exceed a security thresh-

old value. The security threshold value can be presented

as a relationship between the charging constant current

(0.05A - 1A) and the charging interval time [24]. To avoid

the overcharging and the damage of the battery, the maximum

permitted charging current that ensures the voltage of the

charging battery does not exceed the cut-off voltage can be

described as:

Iξλ
=







1 Tλ ≤ 2, 480 sec
−Tλ

6000
+ 1.413 Tλ > 2, 480 sec

(6)

where Iξλ
is themaximum permitted charging current for each

stage and Tλ is the charging interval time of stage λ.

C. THE PROPOSED CUCKOO OPTIMIZATION

ALGORITHM (COA)

Cuckoo Optimization Algorithm (COA) has been imple-

mented on the proposed RC second-order transient equivalent

circuit to determine the optimum charging interval time and

the optimum energy loss during charging. COA is superior

to various optimization algorithms (genetic algorithm, parti-

cle swarm, ant colony, . . . etc) for the multimodal objective

functions due to the robust to dynamic changes and broad

applicability [50]–[52].

Cuckoo Optimization Algorithm (COA) is inspired by the

behavior life of a species of birds called Cuckoo. This tech-

nique is mainly the form of grown cuckoos and eggs. Grown

cuckoos put their eggs in the nests of various birds as they

have two probabilities: 1) the first is that the host bird kills

the eggs, and 2) the second is that the eggs are not killed and

recognized by the host bird and grow up and become a grown

cuckoo [52], [53]. The cuckoo optimization algorithm tends

FIGURE 4. The relationship between the internal parameters of the
proposed battery model (a) The ohmic internal resistance Ri , (b) The
electrochemical polarization internal resistance Rα , (c) The concentration
polarization internal resistance Rβ , (d) The electrochemical polarization
capacitance Cα and (e) The concentration polarization capacitance Cβ

corresponding to SOC during an interval discharging pulse 20 s at room
temperature 25◦C.

to find the best habitat for all cuckoos where there is a high

opportunity for eggs to grow up. The best suitable habitat will

be the target for cuckoos in other societies [52], [54].
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FIGURE 5. Presents (a) The flowchart of the cuckoo optimization
algorithm (COA) and (b) The procedures performed to implement the
proposed multi-stage charging current methodologies.

The procedures of using the proposed Cuckoo Opti-

mization Algorithm (COA) are explained by the flowchart

in Fig. 5(a) illustrating each step including the initial

population (Cuckoo’s Habitat), Laying Eggs Style, Immigra-

tion of Cuckoo, Eliminating Cuckoos, and the convergence

criteria. Furthermore, the steps performed to implement the

proposedmulti-stage charging currentmethodologies are pre-

sented in Fig. 5(b).

IV. RESULTS AND DISCUSSION

Apolymer lithium-ion battery has been selected as a test case.

A detailed specification of this battery is given in Table 2.

TABLE 2. Specifications of the selected polymer lithium-ion battery.

Multi-stage fast charging methodologies have been imple-

mented on the polymer lithium-ion battery to reach full

capacity (SOCλ = 100%) as illustrated in Fig. 6, which can

be categorized into two main scenarios: the first scenario is

the standard CCCV methodology and the second scenario is

Multi-Stage Charging Current methodology (MSCC) based

on Cuckoo Optimization Algorithm (COA). COA is simu-

lated using MATLAB (R2017a, The MathWorks Ltd, Natick,

MA, USA).

FIGURE 6. The proposed scenarios of charging the lithium-polymer
battery.

A. CONSTANT CURRENT-CONSTANT VOLTAGE (CCCV)

APPROACH

CCCVmethodology is the standard technique for any battery

charging. It is performed on the polymer lithium-ion battery

by applying a constant current 1 A until the voltage reaches

the cut-off value (4.25 V) and then the voltage is held constant

while the current decays to the minimum value of 0.05 A.

This methodology took 7,100 s (1.9722 h) till the battery

reached its full capacity (0 to 100% SOC) of 4.1785V after a

relaxation time 10,800 s (3 h) as shown in Fig. 7(a).

B. MULTI-STAGE CHARGING CURRENT BASED CUCKOO

OPTIMIZATION ALGORITHM (COA)

Multi-stage charging current methodologies have been

applied on the polymer lithium-ion battery, and it is divided

into two main scenarios based on the conditional boundaries

of the currents as follow:
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FIGURE 7. Relationship between different charging methodologies for
polymer lithium-ion battery at room temperature 25◦C (a) The standard
CCCV methodology, (b) Multi-stage charging current methodology based
on HT and (c) Multi-stage charging current methodology based on CRT.

1) HIERARCHICAL TECHNIQUE (HT)

The first scenario called Hierarchical Technique (HT) which

has been obtained by applying a hierarchical stepping

down variable constant currents during the charging process

FIGURE 8. The maximum error declaration between experimental and
simulated voltage results for both HT and CRT at room temperature 25◦C
respectively.

Iλ ≤ Iλ−1 corresponding to the experimental measured volt-

age of the battery as presented in Fig. 7(b).

Based on the Hierarchical Technique (HT), the battery

reached full capacity (0 to 100% SOC) in 5,815 s (1.6153 h)

and based on the dynamic behavior and relaxation theory of

batteries, the capacity of the battery reached 97% (4.107 V)

after a relaxation time of 10,800 s (3 h).

By applying HT based on COA, the total energy con-

sumed during the charging process was reduced by 7.783%,

the total charging interval time was reduced by 18.1% and

the efficiency was improved by 8% based on (7), (8) and (9)

respectively compared to CCCV methodology test [17].

ESaved =
E .L.CCCV − E .L.Propsed

E .L.CCCV
× 100 (7)

Treduced =
TCCCV − TPropsed

TCCCV
× 100 (8)
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TABLE 3. A detailed comparison between the CCCV methodology and the
proposed scenarios based on COA at room temperature 25◦C.

ηimproved =

(

Cdisproposed

Cchpropsed
−
CdisCCCV

CchCCCV

)

∗ 100 (9)

where ESaved is the energy saved, Treduced is the reduced

charging interval time, Cdisproposed is the discharging capacity

of the proposed technique, Cchpropsed is the charging capacity

of the proposed technique and ηimproved is the improved effi-

ciency of the proposed charging technique.

2) CONDITIONAL RANDOM TECHNIQUE (CRT)

The second scenario was based on the conditional random-

ness of the cuckoo optimization algorithm which chooses

the values of the stage current lying within the boundaries

declared in section 4 and presented in Fig. 7(c). The bat-

tery reached its full capacity (0 to 100% SOC) in 5,506 s

(1.5294 h), but based on the dynamic behavior and relaxation

theory of batteries, the capacity of the battery reached 97%

after a relaxation time of 10,800 s (3 h). The energy consump-

tion saved by the Conditional Random Technique (CRT) is

10.408%, the timewas reduced to 22.45%, and the efficiency

was improved by 14.1%.

The proposed previous two techniques improved the effi-

ciency of the fast charging of the polymer lithium-ion battery

with minimum energy loss and less interval time with respect

to the previous data presented in the literature. The maximum

error between the experimental and simulated voltage results

of the two scenarios (HT and CRT) is presented in Fig. 8. The

maximum error of the proposed RC second-order equivalent

circuit model reached 2.3%. The maximum error between

the experimental and simulated charging voltages has been

calculated by:

3 (%) =
MExperiment − MSimulation

MExperiment

∗ 100 (10)

where 3 is the percentage of error andMExperiment−MSimulation

is the difference between the maximum experimental and

simulated voltage points respectively.

Detailed results obtained from the previous techniques

include charging stage current, charging interval time for each

stage, total charging time for all the process, and the total

energy loss presented in Table 3. As shown, the proposed

techniques based on COA and the simulation-based on the

RC second-order transient circuit have a good impact on

the interval time and the consumed energy of the charging

process.

TABLE 4. The results of changing the weights of energy loss and charging interval time.
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3) ANALYSIS OF THE WEIGHTING FACTORS

In furtherance of the foregoing, each weight of the energy

loss and charging interval time changed in (5) to vary from

0 to 1 where ω1 + ω2 = 1. Any change in energy loss weight

ω1 or the charging interval time weight ω2 will result in a

different combination of five constant currents with different

charging interval times based on COA as shown in Table 4.

Based on the relationship between the current of each

stage, the interval time of each stage and the conditional con-

straints/boundaries, any change in the weight of energy loss

or in the charging interval time will not affect the charging

capacity based on COA.

COA rearranges the data and searches for the optimum

solution to minimize energy loss and charging interval time

based on the objective function regardless of the weighting

factor as explained in Table 4.

V. CONCLUSION

An intelligent optimization technique based on the Cuckoo

Optimization Algorithm (COA) was applied in this study.

COA was implemented on an objective function used for

the fast charging of the polymer lithium-ion battery with

minimum energy consumption and minimum charging inter-

val time. The proposed algorithm was applied to a dynamic

model based on the RC second-order transient equivalent cir-

cuit. A comparison between two implemented techniques and

CCCV methodology was performed yielding the following

results: 1) Hierarchical Technique (HT) reached its full capac-

ity (0 to 100% SOC), caused a reduction in both the charging

interval time and energy loss by 18.1% and 7.783% respec-

tively and improved the efficiency by 8 %, 2) Conditional

Random Technique (CRT) reached its full capacity (0 to

100% SOC), caused a reduction in both the charging interval

time and energy loss by 22.45% and 10.408% respectively

and improved the efficiency by 14.1%. The maximum error

between the proposed simulation model and the experimental

work is 2.3%. The proposed techniques prove that whenever

the weight of energy loss or charging interval time is changed,

new currents and interval times will be regenerated to opti-

mize the fitness function.

APPENDIX

The internal parameters of the proposed second-order tran-

sient equivalent circuit have been illustrated and calculated

from [25], [27] as follow:

(a) The ohmic internal resistance Ri calculated just after

1 s of applying a discharging current pulse 0.2A. The values

of ohmic internal resistance have been calculated by the

immediate voltage and discharging current according to (1A)

for each change in the state of charge (1SOC) = 5%

Ri =
VBA − VB

IDischarging
(1A)

(b) The electrochemical polarization internal resistance Rα

has been calculated after 10 s of applying a discharging cur-

rent pulse 0.2A. It depends mainly on the voltage difference

within a short period of 9 s. The electrochemical polarization

internal resistance has been measured for each change in the

state of charge (1SOC) = 5% by

Rα =
VB − VC

IDischarging
(2A)

(c) The concentration polarization internal resistance Rβ

has been determined after 18 s of applying a discharging

current pulse 0.2A for each change in the state of charge

(1SOC) = 5% by

Rβ =
VC − VD

IDischarging
(3A)

(d) The electrochemical polarization capacitance Cα has

been calculated by (4A) for each change of state of charge

(1SOC) = 5%

Cα =
9I

(VC − VB) ln
(

VC
VB

) (4A)

(e) The concentration polarization capacitance Cβ has

been calculated by (5A) for each change of state of charge

(1SOC) = 5%

Cβ =
8I

(VD − VC ) ln
(

VD
VC

) (5A)
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