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NOMENCLATURE

The prediction of the temperature distribution in a gas turbine rotor

containing closed, gas-filled cavities, for example in between two

discs, has to account for the heat transfer conditions encountered

inside these cavities. In an entirely closed annulus forced convection

is not present, but a strong natural convection flow exists, induced by

a non-uniform density distribution in the centrifugal force field.

Experimental investigations have been made to analyze the convec-

tive heat transfer in closed, gas-filled annuli rotating around their

horizontal axis. The experimental set-up is designed to establish a

pure centripedal heat flux inside these annular cavities (hot outer, and

cold inner cylindrical wall, thermally insulated side walls). The

experimental investigations have been carried out for several geome-

tries varying the Rayleigh number in a range usually encountered in

cavities of turbine rotors (1007 < Ra < 10 12). The convective heat flux

induced for Ra = 10 12 was found to be a hundred times larger

compared to the only conductive heat flux. By inserting radial walls

the annulus is divided into 45 0 sections and the heat transfer

increases considerably.

A computer programme to simulate flow and heat transfer in closed

rotating cavities has been developed and tested successfully for

annuli with isotherm side walls with different temperatures giving an

axial heat flux. For the centripedal heat flux configuration, three-

dimensional steady state calculations of the sectored annulus were

found to be consistent with the experimental results. Nevertheless,

analysis of unsteady calculations show that the flow can become

unstable. This is analogous to the Benard problem in the gravitational

field.

a	= thermal diffusivity

b	= distance between lateral side walls

cp	= specific heat at constant pressure

H	= distance between outer and inner cylindrical wall

L	= distance between hot and cold wall

(L = H for heat flux directed radially,

L = b for heat flux directed axially)

p	= pressure

4	= heat flux from the outer to the inner cylindrical wall

q k	= heat transfer by conduction alone

r	= radius

R	= gas constant

T	= temperature

AT	= temperature difference between hot and cold cylin-

drical wall

(x,r,cp)	= axial, radial, circumferential coordinate

(u,v,w) = relative velocity components in (x,r,cp) — direction

µ	= dynamic viscosity

p	= density

Co	= angular velocity of the cavity

X	= thermal conductivity

a	= section angle

Gr = rm . w2 . AT • L3 • p2	Grashof number
Tm . µ 2

Pr = A cp = µ	 Prandtl number
X	pa

Ra = Gr • Pr	 Rayleigh number
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vigure is Kotating enclosure in a turnine rotor

/ Th

Tc 	̂w

I: Cylindrical cavity
heat flux directed axially

Th

Th

111 w

II: Annular cavity
heat flux directed axially

Re = P	r"' L	Reynolds number

µ

Nu = q	 Nusselt number
qX

2

Ec = (w r`t'
)
	Eckert number

2•c p •AT

Subscripts:	 Superscripts:

c	= cold	
n = time level
v = iteration level

h	= hot

i	= inner

o =	outer

m =	arithmetical mean

max = maximum

min = minimum

SB =	solid body

w =	water

0 =	reference

red =	reduced

INTRODUCTION

The development of gas turbines towards higher gas temperatures at

the turbine inlet with a simultaneous increase of compressor pressure

ratio is a promising trend to increase their thermal efficiency. In

connection with this trend attention is being paid to the mechanically

and thermally stressed parts of the gas turbine. To estimate these

stresses a proper evaluation of temperature distributions in units and

components operating in the hottest zones is required. In such a zone

temperature nonuniformities may lead to considerable supplementary

stresses, the permissible value of which is also determined by the

temperature level.

At present only an approximate estimation of the temperature distri-

bution in a gas turbine rotor containing gas-filled enclosures (Fig. 1)

is possible. In those cavities a strong, free convective flow is in-

duced. This convection is caused by the buoyancy force correspon-

ding to centrifugal acceleration and temperature differences of the

cavity walls. Such a flow increases the heat transfer throughout the

cavities considerably.

In the past many theoretical and experimental investigations have

been carried out to study the heat transfer in rotating enclosures with

a throughflow of cooling fluid, e.g. Ong et al. (1991), Farthing et al.

(1992), Owen et al. (1985). For sealed cavities with a purely free

convection flow the known theoretical and experimental investiga-

tions pertain mainly to constant temperature walls, and are limited to

qualitative descriptions of the convective processes. These investiga-

tions differ with respect to the direction of the heat flux in the cavity

(Fig. 2).

Tc

III: Annular cavity
heat flux directed radially

Figure 2: Configurations of rotating enclosures

Most of the investigations have been done for an axially directed heat

flux applied on a cylindrical rotating enclosure shown in Fig. 2(I).

Kapinos et al. (1981) have performed experimental investigations on

heat transfer in an enclosure as described above. They pointed out

the influence of Coriolis forces on the fluid motion and compared

their experimental results with numerical investigations given by

Harada and Ozaki (1975). Abell and Hudson (1975) conducted ex-

periments on an oil-filled rotating cylinder. They deduced a correla-

tion between the Nusselt number and the temperature difference

between the hot and cold wall of the cylindrical cavity and the rota-

tional Reynolds number. Chew (1985) also did numerical investiga-

tions on heat transfer in these enclosures, producing computations

consistent with the experimental results achieved by Abell and

Hudson (1975).

Investigations on rotating annular cavities, as in Fig. 2(II), have been

conducted by only a few authors. Most of these studies are not even
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performed under conditions as encountered in turbo machinery.

Muller and Burch (1985) obtained measurements of the transient na-

tural convection in an axially heated rotating annular enclosure simu-

lating geophysical conditions. Similar experimental studies are made

by Hignett, Ibbetson and Killworth (1981).

Considering the heat transfer in a cavity such as that shown in Fig.

2(III), Lin and Preckshot (1979) calculated the temperature, velocity

and streamline distribution. Zysina-Molozhen and Salov (1977)

analyzed experimentally the influence of rotational speed and various

thermal boundary conditions on heat transfer in a rotating annular

- enclosure. The heat flux applied on the test rig was directed centripe-

dally and photographs were taken, showing the flow pattern inside

the enclosure. They note the absence of any regular fluid circulation

contours in the cavity.

However, there is still a lack of knowledge on rotating sealed cavi-

ties, bounded by an outer and an inner cylindrical wall and operating

under conditions valid for gas turbines.

At the Institute of Steam and Gas Turbines at the Technical Univer-

sity Aachen experimental and theoretical investigations have been

carried out studying the influence of heat flux direction and geometry

on the convective heat transfer inside such enclosures. The develop-

ment of a computer code to simulate free convection flow in rotating

annuli is described in a previous paper (Bohn, Dibelius, Deuker and

Emunds, 1992), and results are presented for the axial heat flux situa-

tion as given in Fig. 2(II).

In this paper experimental and numerical results of convective heat

transfer in a rotating closed annulus with radial heat flux (Fig. 2(II1))

are presented for conditions very close to turbo machinery operation.

Analyzing the basic conservation equations of mass, momentum and

energy (see below) it can be demonstrated that

Nu = f(Ra, Re, Pr, H/rm , b/rm) (1)

The Nusselt number (Nu) is defined as the ratio of the heat flux

throughout the cavity to that flux which would occur in solid-body

rotation without any motion relative to a co-rotating frame of refe-

rence; Nu is thus equal to one for no convection and is greater than

one when convection takes place. The rotational Reynolds number

(Re) has its origin in the Coriolis force terms in the momentum equa-

tions. The rotational Rayleigh number (Ra) is the product of the

Grashof number and the Prantl number and is related to the buoyancy

term in the radial momentum equation. The Prandtl number is a

combination of fluid properties and does not change significantly due

to temperature variations.

EXPERIMENTS

Apparatus

The experimental investigations of heat transfer in sealed rotating

cavities were performed on three different geometric configurations

A, B and C. The test fluid contained in the enclosures is air. The

	r 	
b

 1

x

0

A	 B

C

w	 i

	Cavity	ri	to	H	b	a

[mm]	[mm]	[mm]	[mm]	[ - ]

A	125	355	230	120	-

B	125	240	115	120	-

C	125	240	115	120	45°

Figure 3: Dimensions of the annular cavities

dimensions of the enclosures are given in Fig. 3.

Test configurations A and B are closed annuli rotating around their

horizontal axis. The radius of the inner cylindrical wall as well as the

width of the annular cavity are the same for both configuration A and

B. Only the radius of the outer cylindrical wall differs for these

geometries. The geometrical dimensions of the test cavity C are iden-

tical to B, but 8 radial walls divide the annulus into 45° segments.

The separation walls do affect the development of the flow in cir-

cumferential direction inside the enclosure. This is to study the

influence of Coriolis forces on heat transfer.

The experimental investigations on all three configurations were

performed at the test rig shown in Fig. 4. This cross-section of the

experimental apparatus shows the annular cavity of configuration A.

The annulus is formed by two rotor discs with a cylindrical ring on

the upper radius between them. The rotor shaft forms the inner cylin-

drical wall of the annulus. Heat input into the cavity is accomplished

by an electrical heater placed at the outer radius of the annulus. To

enable a homogenous temperature distribution at the heater surface,

the heater is made of a copper ring with a heating wire embedded

into a helical groove. Power supply for the electrical heater is

realized by a slipping brush assembly. Heat is removed out of the
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cavity by the water-cooled rotor shaft. The water enters the rotor

shaft by a rotary transmission leadthrough, flows to the cooling

bottom, and, concentric to the inflow, back out to a drain housing.

Both lateral surfaces of the annulus are thermally insulated. The heat

insulating panels are made of a bounded honeycomb sandwich

construction. The honeycomb consists of an aramid-fibre paper

treated with a heat-resistant phenolic resin. Both bounded face sheets

consist of a phenolic resin prepreg. Using this sandwich construction

a thermal conductivity of the heat insulating panels is achieved,

which is virtually as little as that of air. The cavity can be pressurized

while running the rotor by using a labyrinth housing. The rotor shaft

is driven by a DC motor using a belt drive. Measurements of the

rotational speed are accomplished by mounting a perforated disc on

the shaft and using a coil to produce a voltage spike when one of the

perforations passes it. Double bearings are installed at the ends of the

rotor shaft enabling steady rotation.

Heat fluxes from the outer cylindrical wall to the working fluid and

from the working fluid to the inner cylindrical wall are determined

by measuring the temperature differences across a thermal resistance

(Fig. 5). rigure : treat flux measuring device
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The thermal resistance consists of an epoxy layer held between the

rotor shaft and a steel tube concentric to it. Conductivity and thick-

ness of it are chosen so that a sufficient temperature drop on it can be

obtained due to the expected heat fluxes. Temperatures are measured

using thin-film resistance thermometers of platinum (5 x 5 x 0.3 mm)

installed prior to pouring the epoxy layer. Nine thermometers are

located across the length of the thermal resistance on its outer and

inner surface. The temperature distribution on the rotor surface, in-

side as well as outside the enclosure, is recorded by an additional 18

thin-film thermometers. A telemetry unit, fixed on one end of the

rotor shaft, registers the analogue signals of the resistance thermo-

meters and converts them into digital. The digital data are transmitted

out of the telemetry unit to an interface of a personal computer

(RS 232 C) by a slipping-brush assembly. The digital circuit can

measure the absolute temperature of a resistance thermometer to an

accuracy of 0.01 °C.

The dimensions of cavity configuration B on this experimental

apparatus are realized only by mounting a smaller heated cylindrical

ring between the two rotor discs. This also gives the basic dimen-

sions of configuration C. In contrast to cavity B, cavity configuration

C is not an annulus, but it is divided into 45° segments by 8 heat

insulating panels (thickness of 10 mm).

Procedure

During the experiments the rotor speed, the cavity pressure, electric

current to the heater, and the mass flow rate of cooling water were

kept at constant levels. The maximum rotor speed is set up to 3500

rev/min. The maximum cavity pressure is set up to 4 bar. The

maximum temperature at the outer heated cylindrical wall is varied

up to 100 °C. The minimum temperature at the cooling bottom is

fixed by the cooling water which is taken from a water tap (about

15 °C in summer and 8 °C in winter).

Experimental test loops are continued until thermal conditions reach

a steady state. Data from all measuring points are recorded

repeatedly at intervals of two minutes. To meet the criterion of

steady state conditions the relative rate of temperature changes

should not exceed 1% for temperatures of about 10 °C and 0.1% for

temperatures of about 100 °C during an observation period of ten

minutes. The heat flux throughout the cavities is calculated from the

measured temperature drop across the epoxy layer of known thermal

conductivity.

Experimental results

The governing equations (eqns. 4 to 8, see below) make clear that the

Nusselt number depends mainly on three dimensionless parameters,

i. e. the Prandtl number, the rotational Rayleigh number Ra, and the

rotational Reynolds number Re. The geometry is given by the aspect

H/rm and the ratio b/rm . (For configuration C the section angle occurs

additionally.) In the present study the Prandtl number was not varied.

Therefore, no information is obtained from the experiments

regarding the dependence on Pr. Consequently, for a given fluid and

a specified geometric configuration, i. e. for fixed H/r m and b/rm

ratio, it might be expected that

Nu = f(Ra, Re) (2)

Since

Ra = (OT/Tm) • (H/rm) • Reg • Pr2 (3)

it is apparent that for a fixed value of ST/Tm the Re number cannot

be treated as an independent variable. Due to the permissible

temperature levels of the epoxy layer in the experimental set-up, the

ratio AT/I'm can only be varied in a small range. Furthermore, it was

found that the values of AT/Tm which could be realized in experi-

ment, decrease continuously as the Ra number increases. Therefore,

for all three cavity configurations A, B, and C we only consider the

Nusselt number's dependence on the rotational Rayleigh number and

give a correlation equation for the corresponding Re number.

Values were obtained from the experiments for the temperature

distribution at the cavity walls at different heat fluxes, rotational

speeds and cavity pressures. The surface temperatures of the heater

and the thermal resistance were virtually isothermal. Only in a very

narrow region at the lateral ends of the thermal resistance did the

temperature differ from the mean surface temperatures, but by no

more than 1.5 K and only for very large rotational speeds. However,

the local heat flux along the length of the thermal resistance is

virtually constant. Average surface temperatures were calculated and

used throughout the analysis of the heat transfer results. Although

this introduces some error into the results, it is not expected to have a

significant influence on the Nusselt number.

The heat loss through the insulating lateral walls was estimated from

the temperature drop across the walls of known thermal conductivity.

The heat loss decreases with higher rotational speeds due to the fric-

tion on the outer rotor surface. For low rotational speeds of about

250 r.p.m. the heat loss is about 20 % of the total heat input. At high

rotational speeds of about 3500 r.p.m. this amounts to no more than

10%. In spite of varying rotor speed and cavity pressure at constant

Ra and Re numbers the Nu numbers were always reproducable in a

max. range of ±1%.

The influence of the radiative heat transfer on the heat flux

throughout the cavity was calculated. For Nusselt numbers higher

than 30, this amounts to no more than 2 % of the total heat flux and,

therefore, has not been taken into account.

In Figures 6, 7, and 8 the Nusselt number is shown as a function of

Ra for cavity configuration A, B, and C, respectively. The experi-

mental points meet satisfactorily the straight line which is calculated

from the data by means of a least-square fit. The figures show that

the heat transfer depends strongly on the Rayleigh number.
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E

200

100
80 

H =0.96 b =0.5
rm	rm

60

40

°	NuA = 0.246 • Ra
°.228z

20 

Re A = 0.733 . 
Rao.573

10
lo ll

Ra number

Figure 6: Heat transfer in cavity A, obtained at different rotational
speeds, and cavity pressures

200

H =0.63	b =0.66
rm	rm

Nu0 = 0.317. 
Ra0.211

Re B =1.441 • Ra0.557

Ra number

Figure 7: Heat transfer in cavity B, obtained at different rotational
speeds, and cavity pressures

H = 0.63	b=066
rm	 m

Nuc = 0.365. Ra
°.213

Rec =1.615 • 
Ra0.556

Ra number

Figure 8: Heat transfer in cavity C, obtained at different rotational
speeds, and cavity pressures

the influences of the parameters mentioned above on the Nu number.

However, it is noteworthy that the Nu number does not change very

much due to this geometric variation. Note that for the same Ra

numbers the Re number in case B is nearly twice as that in case A.

A numerical study has been performed to show the influence of

aspect ratio b/rm on the heat transfer. Increasing b by a factor of 2

decreases the Nu number by about 4.7 %, and, when increased by a

factor of 3, Nu was found to be 7.6 % smaller. Although these calcu-

lations have been done for configuration C at Ra = 10 9 , similar

results may be expected for cases A and B. Therefore, it is believed,

that the b/rm ratio (which changes only by 34% from case A to case

B) has only a weak influence on the Nu number.

In Fig. 10 configurations B and C are compared. The only difference

between the two geometries is the insertion of radial seperation walls

in case C, but this does not affect the other dimensionless parameters

given in eqn. (1).

The insertion of separation walls attenuates the relative circumferen-

tial velocity inside the cavity, resulting in a decrease of the radial

component of the Coriolis force (see eqn. 6). In the previous paper

(Bohn et al., 1992) it was pointed out that Coriolis forces have a

dampening effect on the flow. Thus, attenuating the Coriolis forces

by inserting separation walls the natural convection flow inside the

cavity is strengthened so that the heat transfer increases. This is

confirmed by the results shown in Fig. 10.

1
90
80
70
60
5o	annular cavity A

40

30}-
I annular cavity B

z 20

10 i.
, i	 11111111	 Ii_"J	 i	 11111111	 I	11111 1 11	 I

107	108	109	1010	loll	1012

Ra number

Figure 9: Comparison of cavity configurations A with B

190
80
70
	

sectored annular cavity C
60

50

• 40

30	
annular cavity B

z 20

1

100

80

60

E
40

z
20

till

200

100
80i-,
60

40

z
20

In

In Fig. 9 results for configurations A and B are compared. With the

reduction of the outer radius the distance L between hot and cold
]0	1111111	 i	 i	iii	 i	 I	IIIIII	 uii

wall is reduced, which is a very sensitive parameter for natural	to7	108	10,	1010	l0"
convection flows. Note that Ra -- L 3 and Re -- L . But the ratio H/rm	

Ra number
and the ratio b/rm are also changed by the reduction of the outer

radius. Thus, without further information it is not possible to separate	Figure 10: Comparison of cavity configurations B with C
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NUMERICAL INVESTIGATION

Though the geometry of the cavities under consideration is quite

simple, the flow is characterized by a complex interaction of convec-

tion, viscous forces, pressure forces, buoyancy effects and Coriolis

forces. In the previous paper (Bohn et al., 1992) flow structure and

heat transfer have been analyzed for the axial heat flux situation, and

special attention has been given to the buoyancy and Coriolis forces,

which were found to be the most important terms to determine the

heat transfer.

In the present case of a pure centripedal heat flux an additional diffi-

culty occurs: the temperature gradient is in opposite direction to the

centrifugal force, and the flow is basically unstable.

A similar, well known situation is found in the gravitational field: a

fluid layer between two horizontal plates, where the temperature at

the bottom surface is greater than the temperature at the top wall. In

that case the temperature gradient is in opposite direction to the

gravitational force, and an unstable flow called Renard convection

occurs. It is known from literature that in this case the flow pattern

also depends on the thermal boundary conditions of the side walls

and the initial conditions (see, for example, Liang et al., 1969).

From our experiments, no information about the flow structure and

only little information about the thermal conditions at the side walls

can be obtained. Therefore, for the time being we restrict our nume-

rical analysis to the idealized case of adiabatic side walls and

isothermal cylindrical walls. Though this is not a detailed investiga-

tion of the flow pattern inside our test cavity, it may highlight some

basic features of this type of flow and can be considered as a basic

case that is independent of special thermal conditions at the side

walls.

Basic Modelling Assumptions

The radial heat flux was modelled assuming the temperatures at the

cylindrical walls were different but uniformly distributed, while all

other walls (the two side walls and the separation walls in radial

direction) were assumed to be adiabatic.

The computer programme solves the conservation equations for

mass, momentum and energy. All computations were carried out for

air, the density is calculated by the ideal gas law, and all other

properties are treated as functions of temperature. Some common

assumptions for natural convection flows are made: in the viscous

terms of the momentum equations the compressiblility is neglected

because the velocities at this type of flow are very small. In the

energy equation the influence of the dissipation and pressure changes

are assumed to be negligible too, due to very small Eckert numbers

(Ec < 0.1). The flow is assumed to be laminar in the range of

Gr numbers considered. The previously presented results verify this

assumption for the axial heat flux situation, see D. Bohn et al. (1992)

for a more detailed discussion.

The Governing Equations

The steady state governing equations are derived and declared

comprehensively by D. Bohn et al. (1992). Now, the code has been

extended to simulate unsteady flow. The dimensionless form of the

equations reads:

ap + l apur + apvr + apw -0
at r	aX	ar	atp )

apu 1 (a _.	a... 	a__—
at +

i — pruu+— prvu+ a pwu -
ar N

Pr a	au	a	a^	a µ a^ _ _ apred

r az (µr ax )+ d? . a?) a( (r acp))	ai

av 1 a _— a_. 	a__—
+– pruv+—prvv+—pwv–

at i ax	ar	a( 

aav a	av a µ av	apr^
–Pr•	+— — µr— + 	 –

ax (
il

'- ax) ar'. ar) a p r a(p)  	ar
	2 	 _

–rµ v+2aW^–p W +2Wr	
T r

Re•Pr–Re 	Ra•Pr•T
m	 m

apw 1 (a __ a__ a__
at +r aX

pruw+ ai prow+ a pww^
tP

a
^ 

aw a µ aw a	aw	1 apred— -Pr µr— —	— µr— 
aX ^ ax^

+
 atp r atp) 

+ 
ar ^~ ar))  ray

–Prr (W-2 a'Y )–^ Vw -2pV m •Re•Pr

aT 1 aXc aT 1 a1	r	7 i aT

	

1	 g

	

+--(TFUT--	–ar-(5i T-- +	( )
at	r dx	cP ax ) r ar	cp ar )

+ t, rpap )

Herein the Re number occurs within the Coriolis terms, while the

Ra number is related to the buoyancy term. The dimensionless

variables marked with an overbar result from the following defini-

tions:

2

u=u• L;	p=p• pLZA ; p=p po ;

T=T•AT+Tm;	=^•X0;	µ=µ . lao;
2

cp =cP •c pp; x=z•L;	r=i=•L;	t=t•L
ao

(4)

(5)

(6)

(7)
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The fluid properties X0, a0, po, µp, cpe are evaluated for Tm as the

reference temperature (T m = 0.5 (Th+Tc), see Fig. 2(III)). They have

also been used to calculate the values of Re, Ra, and Pr. To obtain

the reduced pressure defined by

pred=P - PSB

the radial momentum equation for a rotating solid body at constant

temperature is used:

—a B+ PSB'w2.r=0

PSB=
R•Tm

The Numerical Procedure

The system of coupled differential equations is solved numerically

with a finite volume scheme. A non-uniform staggered grid is

defined, with T and p being calculated at the main grid points and

u,v,w being calculated at locations which are midway between the

main grid points. In the employed "hybrid" differencing method up-

wind differencing is used for the convective terms when the cell-

Peclet-number is greater than 2, otherwise central differencing is

used for these terms.

The unsteady pressure correction is based on an iteration procedure

defined by Patankar and Spalding (1972). From the momentum equa-

tions (not considering the source terms) for the time step n (eqn. 9) and

for the actual time iteration (Index v , eqn. 10)

p vn —p yn-1 = —Vpn —(v n • V)p. v n +µ • v 2 v n	(9)
0t

*	n-
P V -P•vv1 =-Op

v -( * •V)p•v * +µ•02 'v'	 (10)
Ot

an equation for the unsteady pressure correction p can be derived (by

neglecting the convective and diffusive terms),

o2p'= et (0•p'v* )	 with pv =p , +pv t	
(11)

where the continuity equation is used. Equation (11) has to be solved

for the the velocity field v * resulting from equation (10). The itera-

tion process has to be continued until p' is sufficiently small. At this

time the velocity field v is the correct velocity field for the new time

level v n and the pressure pv is the correct pressure pn

Theoretical Results For The Closed Rotating Sectored Cavity

(Steady State Calculations)

In the first instance we restricted ourselves to the sectored geometry

(Configuration C) because the number of grid points required in

circumferential direction is considerably smaller in that case. The

calculations were carried out on a numerical grid containing about

36000 grid points. Because the experiments gave steady state results

we started the numerical simulation with a steady algorithm keeping

in mind that the flow might be unsteady. A more detailed discussion

of the unsteady behaviour of the flow is given below.

Figure 11 shows a comparison of the Nu numbers taken from experi-

ment and from numerical (steady) simulation for a wide range of Ra

numbers. Over the entire range the numerically-calculated Nu

numbers are slightly greater than those achieved by experiment. One

reason for this deviation is the boundary condition of the side walls

which were treated as adiabatic for the numerical simulation. By

adding the heat losses of the side walls to the heat transferred

throughout the thermal resistance at the inner radius of the cavity the

Nu numbers obtained from experiment increase by about 10 to 20%.

Thus, the difference between experiment and numerical calculation

becomes much smaller and the steady numerical algorithm was

found to be a sufficient predictor of the heat transfer.

o - numerical (adiabatic side walls)

x - experimental

0	X

x

o 0

xX

0

0	X

x

107	108	 109	 1010	5.1010

Ra number

Figure 11: Comparison of the Nu number obtained from experiment
and from numerical simulation for various Ra numbers

As a typical example, Figure 12 shows the flow field in radial and

circumferential direction for three axial positions and the temperature

distribution for the medium axial position. The calculation was

carried out for air at Tm=330,3 K which gives a Prandtl number of

0,70. In all three axial positions the fluid circulates in boundary

layers, and nearly no motion occurs in the core region. The flow

pattern does not change significantly in axial direction.

In Table 1 the maxima and minima of the velocity components at the

medium axial position are compared. The axial velocity component

is significantly smaller than the radial and circumferential compo-

nent. At other axial positions the results are similar. This makes clear

that the mean flow takes place in the r - (p plane.

direction max. size [m/s] min. size [m/s]

axial 0,11 -0,071

radial 0,893 -0,821

circum-
ferential

0,78 0,70

Table 1: Comparison of the maxima and minima of the velocity

components at medium axial position in the cavity

(Ra=4.86 . 107 , Re=3.00 . 104 )
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a) Flow field inther-c-plane atx/b= 0 . 001

radial side wall at a = 0 0

b) Flow field in ther-cp- plane atx/b = 0 . 5

^` t1

cold inner/ - '
cylindrical
wall	

-
wall

O

radial side wall
hot outerat a = amax 
cylindrical
wall

c) Flow field in the r - tp - Diane at x / b = 0.999
	

d) Temperature distribution (x / b = 0.5)

Tmax

Tmin

Figure 12: Flow pattern at x/b = (0.001, 0.5, 0.999), temperature distribution at x/b = 0.5 in a rotating cavity

(Ra=4.86. 107, Re=3.00 . 104 )
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The direction of rotation of the flow can be explained with the

Coriolis- and buoyancy terms in the radial momentum equation

(eqn.6). An estimation of the order of magnitude shows that the

buoyancy term and the Coriolis term are much greater than the

convective and diffusive terms (v << Co rm and µ/p <<w rm , respec-

tively). At the hot wall T is greater than zero giving a negative buoy-

ancy term. Therefore, the Coriolis term must be positive to balance

the buoyancy term, which effects a positive circumferential velocity

component at the hot wall. At the cold wall the buoyancy term is

positive and, therefore, the Coriolis term and the velocity component

in circumferential direction has to be negative.

Moving from the cold wall to the hot wall along the radial separation

wall at a = 0, the fluid has a nearly constant temperature T = 0.5

(Tmax + Tmia) (Fig. l2d). A large positive temperature gradient

occurs when the fluid reaches the hot wall. Similarly, near the cold

wall at a = amax a large negative temperature gradient occurs. In the

core itself a nearly constant temperature is found, where heat is

neither conducted in radial direction nor in circumferential direction.

Thus, the heat transfer is strictly determined by convection in the

boundary layers.

In Figure 13 the distribution of the local Nu number at the hot outer

and the cold inner cylindrical wall of the rotating annulus is plotted

for a medium axial position. At the outer cylindrical wall most of the

heat is transferred in the region where the cold fluid reaches this wall

(great temperature gradients occur, see Fig. 12d). Moving along the hot

wall the fluid is warmed up. Therefore, the heat transfer (represented

by the local Nu number) decreases. Due to the edge vortex in the

comer of the hot wall and the radial wall at a = amax (see Fig.

12a,b,c) fluid with a lower temperature is transported back to the hot

wall. This effect leads to an increase of the local Nu number in this

region. Similarly, at the cold inner cylindrical wall an analogous

effect is found at a = 0.

48

40

E 32

Z 24

	
inner cylindrical wall

outer cylindrical wall
15

o'
0	5	10	15	20	25	30	35	40	45

section angle [degree]

Figure 13: Heat transfer at the hot and the cold cylindrical
wall at a medium axial position

(Ra=4.86. 107 , Re=3.00. 104 )

Results of unsteady calculations for a rotating closed cavity

To identify some more basic features of this type of flow, unsteady

calculations have been carried out for a special test geometry

(H/b = 1, rm/b = 3, section angle a = 45 degree ). This geometry is

quite favourable for the comparison of the axial and the radial heat

flux situation because the characteristic length for the buoyancy

effects, i.e. the distance L between the hot and the cold wall, is the

same in both cases. Thus, the Re number and the Ra number are the

same for the two kinds of heat fluxes. Calculations were carried out

for an axial and a radial heat flux (for T m= 575 K, Ra = 8.10 5 ,

Re = 6.104 ). Both calculations were started at t = 0 with a relative

velocity field equal to zero and heat conduction as an initial condi-

tion for temperature field.

To ensure time accuracy, the time step At was set very small. A CFL

number defined by

CFL =u•At
Ax

u = maximum relative velocity in the flow field

Ax = minimum distance of two grid points

may be used to characterize the unsteady conditions. This number

was smaller than one for the unsteady calculations. The calculation

of the radial heat flux configuration shown in Fig. 14 took more than

10000 time steps.

In Figure 14a the Nu number at the hot wall vs. the time is plotted for

the unsteady calculation of the axial heat flux configuration and the

steady and unsteady simulation of the radial heat flux configuration.

In the axial case it can be seen that the unsteady calculation

converges to a steady state rather quickly. In Figure 14b the distribu-

tion of the maximum time residuum from the conservation equations

for each time step is plotted. In the axial case a strong increase of the

residuum occurs at the beginning of the simulation followed by a

continuous decrease.

The time-dependent distribution of the Nu number (Fig. 14a) for the

radial heat flux configuration is irregular during the whole simulation

time of 18 seconds. A more detailed flow simulation was not

performed because of drastically-increased CPU time-requirement.

The calculation was performed on an IBM 3090 Computer using the

vector facilities and required more than 10 CPU hours. Additionally,

Figure 14a shows the value of the Nu number calculated with the

steady state algorithm. For the unsteady calculation it is not possible

at this time to deduce a tendency, i. e. whether the flow will converge

to a steady state or become periodical or even remain irregular.

An unsteady behaviour of natural convection flow is well known

from the Benard convection. This type of flow can be approached by

the rotating annulus with radial heat flux direction by setting a very

large rm/H ratio. The angular velocity w must fit the condition that

the centrifugal acceleration cot rm equals the gravity acceleration.

The Coriolis forces are neglegible for this extreme situation.
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unsteady radial
12 calculation

10

E
Q 8 steady radial calcu-
z e lation

4

2 unsteady axial
calculation

0 0 6	12	18	24	30	36

simulation time [sec.]

Figure 14a: Development of Nu number for the axial and the
radial heat flux configuration

2.5

E
^ 2

E SS	unsteady radial calculation

Ce	1
E

0.5

unsteady axial calculation

0 
0
	

3	6	a	12	1s
	

18

simulation time [sec.]

Figure 14b: Distribution of the maximal time residuum for the
axial and the radial heat flux configuration

It is reported by many authors that the flow pattern of Renard con-

vection changes significantly several times with increasing Ra

number. For Ra < 1700 no fluid motion at all is observed. At Ra

numbers of about 104 a steady two-dimensional flow is esta-

blished. With further increases of the Ra number the flow becomes

periodically unsteady, then irregularly unsteady (thermals rising

from the bottom and the top surface) and at least fully turbulent.

(See D. J. Tritton (1988) for details and further references.)

Measurements have been performed varying the Rayleigh number

in a range usually encountered in the gas-filled cavities of gas

turbine rotors (1007 < Ra < 10 12). Varying the ratio from

H/rm= 0.96 to H/rm= 0.63 yields no significant influence on the

Nu number. With the annulus divided into sections, by inserting

radial separation walls, the influence of the Coriolis forces is

reduced resulting in an increase of heat transfer.

Theoretical investigations for the basic case of isothermal cylin-

drical walls and adiabatic side walls have been made for the

sectored annular cavity. The calculations were carried out using a

steady state numerical algorithm. The results obtained for the

convective heat transfer are consistent with the experiments.

In addition, unsteady calculations have been carried out for an

axial and centripedal heat flux applied on the rotating annulus. For

the axial heat flux steady state conditions were reached rather

quickly. For the centripedal heat flux, within 10 hours CPU time,

no prediction can be made whether the flow will become periodic,

steady, or remain irregular.

The numerical results show, that the flow inside the cavity may be

affected by instability phenomena. From the experiments no infor-

mation can be obtained about the flow structure. However, the heat

losses through the side walls, which were inevitable during the

experiments, could serve to stabilize the flow and to establish

steady state conditions. On the other hand, Zysina-Molozhen et al.,

who took photographs from the flow inside a rotating cavity with

centripedal heat flux, note the absence of any regular fluid circula-

tion contours.

Further experimental and theoretical investigations should work out

the conditions for instability and show the influence of the thermal

boundary conditions of the side walls on the flow and the heat

transfer in the cavity.
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