Experimental and theoretical studies of spectroscopic properties of simple symmetrically substituted diphenylbuta-1,3-diyne derivatives

Małgorzata Wierzbicka, Irena Bylińska, Artur Sikorski, Cezary Czaplewski, Wiesław Wiczk

A. TEA, Cul, $\mathrm{Pd}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{Cl}_{2}\right.$, $T=0^{\circ} \mathrm{C}$ (for $4 \mathrm{~b}, 6 \mathrm{~b}$)

C: DMF, KF, T=20 ${ }^{\circ} \mathrm{C}$ (for $4 \mathrm{c}, 5 \mathrm{c}$)
D: DMF, Cul, $\mathrm{T}=55^{\circ} \mathrm{C}, \mathrm{Ar}$ (DPB, dOMeDPB, dCOOMeDPB,dCHODPB,dCNDPB)
E: Piridine/methanol, $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{~T}=20^{\circ} \mathrm{C}$ dDMADPB

$\mathbf{- R}$	$\mathbf{- Z}$
$-\mathrm{H}(\mathbf{1})$	-
$-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(\mathbf{2})$	-
$-\mathrm{OCH}_{3}(\mathbf{3})$	-
$-\mathrm{COOCH}_{3}(4)$	-TMS
$-\mathrm{CHO}(5)$	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{OH})$
$-\mathrm{CN}(6)$	

Scheme 1. Synthesis of diphenylbuta-1,3-diyne derivatives.

General procedure

Protected acetylene derivatives were synthesized according to SonogashiraHagihara procedure ${ }^{1-4}$.

Synthesis of symmetrically of diphenylbuta-1,3-diyne derivatives were based on Glaser ${ }^{5-6}$ (DPB, $\left.\left.\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}, \quad\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}, \quad(\mathrm{OHCHPh})_{2} \mathrm{DA}, \quad(\mathrm{NCPh})_{2} \mathrm{DA}\right)\right)$ (procedure D) or Eglinton ${ }^{7-8}$ (DMAPh) ${ }_{2}$ DA (procedure E) methods.

Methyl-4-iodobenzoate, 4-iodobenzonitrile, 4-((trimethylsilyl)ethynyl)benzaldehyde, phenylacetylene, 4-ethynylanisole, 4-ethynyl-N,N-dimethylaniline, ethynyltrimethylsilane, bis(triphenylphosphine)palladium(II) dichloride (Sigma Aldrich), 2-methyl-3-butyn-2-ol (Fluka) were commercially available and used without further purification.

Synthesis of protected acetylene derivatives

Procedure A

Methyl 4-(3-hydroxy-3-methylbut-1-yn-1-yl)benzoate (4b) and 4-(3-hydroxy-3-methylbut-1-yn-1-yl)benzonitrile (6b) were prepared according to SonogashiraHagihara coupling reaction ${ }^{1-4}$ of appropriate acetylene derivatives with the respective halogenoarenes.

Appropriate halogenoarene (1 eq) was dissolved in tiriethylamine (TEA) and the solution was cooled to $0^{\circ} \mathrm{C}$. Then trace amount of copper iodide and bis(triphenylphosphine)palladium(II) dichloride, $\left(\operatorname{Pd}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2} \mathrm{Cl}_{2}\right)\right.$ as catalysts were added. After a few minutes acetylene derivatives: ethynyltrimethylsilane (for 4b) and 2-methyl-3-butyn-2-ol (1 eq) (for 6b) was added. Progress of reaction was monitored by TLC. The reaction mixture was stirred for $8-12 \mathrm{~h}$ and if it was need for 24 h in temperature room. Then reaction mixture was filtered and extracted into ethyl acetate and washed with water. Combined organic layers were dried over anhydrous magnesium sulfate, filtered and the solvent was evaporated. The pure products were isolated by column chromatography on silica gel (petroleum ether/ethyl acetate; 7:1 (4b), 10:1 (6b).

Removing the protective groups (procedure B and C)

Procedure B
A mixture of $6 \mathrm{~b}(1 \mathrm{eq})$ and potassium hydroxide (1eq) in toluene was refluxed for 2 h under argon. Progress of reaction was monitored by TLC. The reaction mixture was cooled, filtered, extracted with ethyl acetate and washed with KHSO_{4} and water. Combined organic layers were dried over anhydrous magnesium sulfate, filtered and the solvent was evaporated ${ }^{9-10}$. The pure product 4 -ethynylbenzonitrile (6c) was isolated by multiple crystallization with mixture petroleum ether and ethyl acetate.

Procedure C

Compound 4b or 4-(3-hydroxy-3-methylbut-1-yn-1-yl)benzaldehyde (5b) (1eq) was dissolved in dimethylformamid (DMF) and potassium fluoride (3eq) was added ${ }^{11}$. The reaction was stirred under argon atmosphere at room temperature for 1,5 h. Progress of reaction was monitored by TLC. The reaction mixture was extracted with ethyl acetate and washed with water. Combined organic layers were dried over anhydrous magnesium sulfate, filtered and the solvent was evaporated. The pure products methyl 4-ethynylbenzoate (4c) and 4-ethynylbenzaldehyde (5c) were isolated by multiple crystallization with mixture petroleum ether and ethyl acetate.

Synthesis of symmetrically bisacetylene (procedure D and E)

Procedure D

Appropriate compound (ethynylbenzene (1c), 1-ethynyl-4-methoxybenzene (3c), 4c, $5 \mathrm{c}, 6 \mathrm{c}$) was dissolved in DMF and stirred under argon atmosphere at about $55^{\circ} \mathrm{C}$. After few minutes trace amount of copper iodide as the catalyst was added ${ }^{3}$. The reaction mixture was stirred for couple of days. Progress of reaction was monitored by TLC. After the reaction was completed crude product was filtered, extracted into toluene and washed with water. Combined organic layers were dried over anhydrous magnesium sulfate and filtered. The pure products were isolated: by crystallization with hot petroleum ether (DPB) or mixture ethyl acetate and petroleum ether $\left.\left(\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA},\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA},(\mathrm{NCPh})_{2} \mathrm{DA}\right)\right)$, by column chromatography on silica gel (petroleum ether/ethyl acetate; 10:1) ((OHCPh) $\left.{ }_{2} \mathrm{DA}\right)$.

Procedure E

4-ethynyl-N,N-dimethylaniline (2c) (1eq) was added to a solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2eq) in pyridine and methanol ($\mathrm{v} / \mathrm{v} 1 / 1$) at room temperature under nitrogen ${ }^{4}$. Progress of reaction was monitored by TLC. After couple of days crude product was
filtered, extracted into toluene and washed with water. Combined organic layers were dried over anhydrous magnesium sulfate and filtered. The pure product (DMAPh) ${ }_{2} \mathrm{DA}$ was isolated by means RP-HPLC.
[1] K. Sonogashira, J. Organomet. Chem., 653, 2002, 46
[2] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 16, 1975, 4467
[3] S. Thorand, N. Krause, J. Org. Chem., 63, 1998, 8551
[4] G .Menchi, A. Scrivanti, U. Matteoli, J. Mol. Catal. A:Chem., 152, 1999, 77
[5] Glaser, C. Ber. Dtsch. Chem. Ges., 2, 1869, 422
[6] Y. Nishihara, K. Ikegashira, K. Hirbayashi, J. Ando, A. Mori, T. Hiyama, J. Org. Chem., 65, 2000, 1780
[7] G. Eglinton, A.R. Galbraith, Chem. Ind. (London), 1956, 737;
[8] G. Eglinton, A.R. Galbraith, J. Chem. Soc., 1959, 889
[9] G. Rodriguez, J.L. Tejedor, T. La Parra, C. Díaz, Tetrahedron, 62, 2006, 3355
[10] Q. Xiao, R.T. Ranasinghe, A.M.P. Tang, T. Brown, Tetrahedron, 63, 2007, 3483
[11] Meijere, S. Kozhuskov, T. Haumann, R. Boese, C. Puls, M. J. Cooney, L. T. Scott, Chem. Eur. J., 1, 1995, 124

Identification data for all compounds studied.

1,4-diphenylbuta-1,3-diyne (DPB) (yield 94\%)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta_{\mathrm{H}}(\mathrm{ppm}): 7.34-7.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}, \mathrm{C}^{6} \mathrm{H}, \mathrm{C}^{7} \mathrm{H}, \mathrm{C}^{5^{\prime}} \mathrm{H}, \mathrm{C}^{6^{\prime}} \mathrm{H}, \mathrm{C}^{7} \mathrm{H}\right) ; 7.56\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{8} \mathrm{H}\right.$, $\mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{8} \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}$);
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta С(p p m): 74.15 \mathrm{C}^{1}, \mathrm{C}^{1} ; 81.8 \mathrm{C}^{2}, \mathrm{C}^{2} ; 122.05 \mathrm{C}^{3}, \mathrm{C}^{3^{3}} ; 128.70 \mathrm{C}^{5}, \mathrm{C}^{7}, \mathrm{C}^{5^{\prime}}, \mathrm{C}^{7} ; 132.76 \mathrm{C}^{4}$, $\mathrm{C}^{8}, \mathrm{C}^{4^{\prime}}, \mathrm{C}^{8} ;$

MS (m/z): $202(\mathrm{M}), 203(\mathrm{M}+\mathrm{H})^{+}$
Ramman $\mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right):$ 2215.6 C $=\mathrm{C}$
crystal structure in accordance with literature data ${ }^{12-15}$:

[12] J.K.D.Surette, M.-A.MacDonald, M.J.Zaworotko, R.D.Singer, J.Chem.Cryst. ,24, 1994, 715
[13] R.Thomas, S.S.Mallajyosula, S.Lakshmi, S.K.Pati, G.U.Kulkarni, J.Mol.Struct., 922, 2009, 46
[14] Min Shi, Hen-Xin Qian, Appl.Organomet.Chem, 20, 2006, 771
[15] F.R.Fronczek, M.S.Erickson, J.Chem.Cryst., 25, 1995, 737

4,4'-(buta-1,3-diyne-1,4-diyl)bis(N,N-dimethylaniline) ((DMAPh)2DA) (yield 36\%)

 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:$\delta_{H}(p p m): 2.99\left(\mathrm{~s}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{4}\right) ; 6.62\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{8} \mathrm{H}, \mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{8} \mathrm{H}, \mathrm{J}=8,8 \mathrm{~Hz}\right) ; 7.39(\mathrm{~d}$, $4 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}, \mathrm{C}^{7} \mathrm{H}, \mathrm{C}^{5^{\prime}} \mathrm{H}, \mathrm{C}^{7^{\prime}} \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 40.15\left(\mathrm{CH}_{3}\right)_{4}, 72.67 \mathrm{C}^{1}, \mathrm{C}^{1} ; 82.42 \mathrm{C}^{2}, \mathrm{C}^{2} ; 108.76 \mathrm{C}^{3}, \mathrm{C}^{3,}$, $111.77 \mathrm{C}^{5}, \mathrm{C}^{7}, \mathrm{C}^{5^{\prime}}, \mathrm{C}^{7} ; 133.70 \mathrm{C}^{4}, \mathrm{C}^{8}, \mathrm{C}^{4}, \mathrm{C}^{8^{\prime}}, 150.36 \mathrm{C}^{6}, \mathrm{C}^{6^{\prime}}$ MS (m/z): $289(\mathrm{M}+\mathrm{H})^{+}$

Ramman $\mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right): 2305 \mathrm{C} \equiv \mathrm{C}$
crystal structure in accordance with literature data ${ }^{16}$:

[16] J.G.Rodriguez, S.Ramos, R.Martin-Villamil, I.Fonseca, A.Albert, J.Chem.Soc., Perkin Trans. 1 ,1996, 541

1,4-bis(4-methoxyphenyl)buta-1,3-diyne (($\left.\left.\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}\right)$ (yield 72\%)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

$\mathrm{J}=8.79 \mathrm{~Hz}) ; 7.45\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{8} \mathrm{H}, \mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{8} \mathrm{H}, \mathrm{J}=8.30 \mathrm{~Hz}\right)$;
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 55.35\left(\mathrm{OCH}_{3}\right)_{2}, 72.96 \mathrm{C}^{1}, \mathrm{C}^{1} ; 81.18 \mathrm{C}^{2}, \mathrm{C}^{2} ; 113.92$
$C^{5}, C^{7}, C^{5}, C^{7} ; 114.15 C^{3}, C^{3} ; 134.05 C^{4}, C^{8}, C^{4}, C^{8}, 160.20 C^{6}, C^{6^{\prime}}$
MS (m/z): $262(\mathrm{M}), 263(\mathrm{M}+\mathrm{H})^{+}$
Ramman $\mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right): 2136.8 \mathrm{C} \equiv \mathrm{C}$
anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$ (\%): C, 82.45; $\mathrm{H}, 5.38$; found: $\mathrm{C}, 82.92 ; \mathrm{H}, 5.51$
crystal structure in accordance with literature data ${ }^{17}$:

[17] Neng-Fang She, Hui-Zhen Guo, Li-Ping Cao, Meng Gao, Acta Crystallogr. Sect. E: Struct. Rep. Online , 62, 2006, 4958
dimethyl 4,4'-(buta-1,3-diyne-1,4-diyl)dibenzoate (($\left.\left.\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}\right)$ (yield 42\%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta_{\mathrm{H}}(\mathrm{ppm}): 3.93\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{OCH}_{3}\right)_{2}\right) ; 7.59\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}, \mathrm{C}^{7} \mathrm{H}, \mathrm{C}^{3} \mathrm{H}, \mathrm{C}^{7} \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}\right) ; 8.11$ (d, $4 \mathrm{H}, 4 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{6} \mathrm{H}, \mathrm{C}^{4} \mathrm{H}, \mathrm{C}^{6^{\prime}} \mathrm{J}=10 \mathrm{~Hz}$)
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$
$\delta_{\mathrm{C}}(\mathrm{ppm}): 52.5\left(\mathrm{OCH}_{3}\right)_{2} ; 77.01 \mathrm{C}^{1}, \mathrm{C}^{1}, 82.00 \mathrm{C}^{2}, \mathrm{C}^{2^{\prime}} ; 126.74 \mathrm{C}^{3}, \mathrm{C}^{3} ; 130.0 \mathrm{C}^{4}, \mathrm{C}^{8}, \mathrm{C}^{4}$, $C^{8^{\prime}}, 131.71 C^{5}, C^{7}, C^{5^{\prime}}, C^{7^{\prime}} ; 133.9 C^{6}, C^{6^{\prime}} ; 167.0 C^{9}, C^{9}$;

MS (m/z): $319(\mathrm{M}+\mathrm{H})^{+}$
Ramman $v_{\max }\left(\mathrm{cm}^{-1}\right): 2219 \mathrm{C} \equiv \mathrm{C}$

4,4'-(buta-1,3-diyne-1,4-diyl)dibenzaldehyde ((OHCPh)2DA) (yield 29 \%)

 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:$\delta_{H}(p p m): 7.72\left(d, 4 H, C^{4} H, C^{8} H, C^{4} H, C^{8} H, J=10 H z\right) ; 7.90\left(d, 4 H, C^{5} H, C^{7} H, C^{5} H\right.$, $\left.C^{7^{\prime}} \mathrm{H} \mathrm{J}=10 \mathrm{~Hz}\right) ; 10.05\left(\mathrm{~s}, 2 \mathrm{H},\left(\mathrm{C}^{9} \mathrm{H}, \mathrm{C}^{9} \mathrm{H}\right)\right.$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta_{C}(p p m): 75.40 C^{1}, C^{1^{\prime}} ; 83.01 C^{2}, C^{2} ; 128.12 C^{3}, C^{3} ; 130.00 C^{4}, C^{8}, C^{4}, C^{8^{\prime}} ; 133.28$ $C^{5}, C^{7}, C^{5}, C^{7} ; 136.07 C^{6}, C^{6^{\prime}} ; 191.98 C^{9}, C^{9}$

MS (m/z) : $259(\mathrm{M}+\mathrm{H})^{+}$
Ramman $v_{\max }\left(\mathrm{Cm}^{-1}\right): 2214 \mathrm{C} \equiv \mathrm{C}$

4,4'-(buta-1,3-diyne-1,4-diyl)dibenzonitrile ((NCPh) ${ }_{2}$ DA) (yield 36 \%)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta_{H}(p p m): 7.59-7.67\left(q, 8 H, C^{4} H, C^{8} H, C^{4} H, C^{8} H, C^{5} H, C^{7} H, C^{5} H, C^{7} H, J=10 H z, J=\right.$ 10 Hz);
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta_{C}(p p m): 78.02 C^{1}, C^{1} ; 81.63 C^{2}, C^{2} ; 113.20 C^{6}, C^{6^{\prime}} ; 118.24 C^{9}, C^{9} ; 126.35 C^{3}, C^{3} ;$ $132.28 C^{5}, C^{7}, C^{5}, C^{7} ; 133.24 C^{4}, C^{8}, C^{4}, C^{8}$;

MS (m/z) : 252 (M)
Ramman $\mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right): 2233 \mathrm{C} \equiv \mathrm{C}$

Fig. 1 ESI Absorption spectra of DPB derivatives measured in 2methyltetrahydrofuran.

Fig. 2 ESI Absorption spectra of DPB derivatives measured in acetonitrile.

Table 1 ESI Absorption wavelength ($\lambda_{\text {abs }}$) and molar absorption coefficient (ε) of diphenylbuta-1,3-diyne derivatives in selected solvents.

Compound	Solvent	$\lambda_{\text {abs }}(\mathrm{nm})$	$\varepsilon\left(\mathrm{dm}^{3} \mathrm{mo}^{-1} \mathrm{~cm}^{-1}\right)$
DPB	MeCN	287	16695
		305	25147
		326	23184
	cyclohexane	288	17636
		307	27794
		328	25491
	$\mathrm{C}_{6} \mathrm{H}_{14}$	290	19939
		308	28307
		329	25919
	$\mathrm{C}_{16} \mathrm{H}_{34}$	289	14307
		307	20024
		328	18408
	MeTHF	289	10376
		307	14473
		328	13370
	MCH	288	12004
		307	17802
		328	16267
(DMAPh)2 ${ }_{2} \mathrm{DA}$	MeCN	329	16497
		354	20029
		379	17804
	cyclohexane	327	19759
		347	21340
		373	19649
	$\mathrm{C}_{6} \mathrm{H}_{14}$	323	19649
		345	21173
		370	19874
	$\mathrm{C}_{16} \mathrm{H}_{34}$	326	20196
		348	21340
		374	19759
	MTHF	341	22208
		354	25089
		377	24819
	MCH	324	19810
		346	23186
		372	20794
$\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}$	MeCN	298	15327
		318	18864
		340	15425
	cyclohexane	300	16074
		318	21305
		340	18220
	$\mathrm{C}_{6} \mathrm{H}_{14}$	296	10493
		316	13629
		338	11185
	$\mathrm{C}_{16} \mathrm{H}_{34}$	298	10540
		318	13185
		340	10745
	MeTHF	300	17669
		318	15673
		340	12183
	MCH	297	13983
		317	17170
		339	13779

		284	26175
			302

		302	16539
	MeTHF	323	23031
		346	20624
	MCH	302	4151
		322	5380
	346	4597	

Table 2 ESI The solvatochromic shift of absorption spectra of 4,4` substituted diphenylbuta-1,3-diyne derivatives.

	MCH $\lambda / n m$	MeTHF $\lambda / n m$	MeCN $\lambda / n m$
-H	328	328	326
- OMe	339.5	341	339.5
- CN	346.5	346.5	344
- COOMe	348	348	345
- CHO	357	357	354.5
-DMA	372	382	379

Fig. 3 ESI Fluorescence spectra of (NCPh) ${ }_{2} \mathrm{DA}$ in 2-methyltetrahydrofuran (black dashed line), methylcyclohexane (blue solid line) and acetonitrile (red dash-dot line).

Fig. 4 ESI Absorption (black solid line) and fluorescence excitation spectrum (red dashed line) of $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}$ in methylcyclohexane.

Fig. 5 ESI Absorption (black solid line) and fluorescence excitation spectrum (red dashed line) of $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}$ in 2-methyltetrhydrofuran.

Fig. 6 ESI Absorption (black solid line) and fluorescence excitation spectrum (red dashed line) of $(\mathrm{NCPh})_{2} \mathrm{DA}$ in methylcyclohexane.

Fig. 7 ESI Absorption (black solid line) and fluorescence excitation spectrum (red dashed line) of $(\mathrm{NCPh})_{2} \mathrm{DA}$ in 2-methyltetrahydrofuran.

Fig. 8 ESI Absorption (black solid line) and fluorescence excitation spectrum (red dashed line) of (NCPh $)_{2} \mathrm{DA}$ in acetonitrile.

Fig. 9 ESI Fluorescence spectra of $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}$ in methylcyclohexane recorded at different excitation wavelength. Fluorescence quantum yield for excitation wavelength $\lambda_{\text {exc }}=280 \mathrm{~nm}$ is equal to 0.0142 , for $\lambda_{\text {exc }}=3150.0137$ and for $\lambda_{\text {exc }}=335$ 0.0140 .

Fig. 10 ESI Fluorescence excitation spectra of $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}$ in ethylcyclohexane at different observation wavelength.

Fig. 11 ESI Luminescence and phosphorescence excitation spectra of DPB in methylcyclohexane at 77K.

Fig. 12 ESI Luminescence and phosphorescence excitation spectra of DPB in 2methyltetrahydrofuran at 77 K .

Fig. 13 ESI Luminescence and fluorescence excitation spectra of (DMAPh) ${ }_{2}$ DA in methylcyclohexane at 77K.

Fig. 14 ESI Luminescence and phosphorescence excitation spectra of $\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}$ in methylcyclohexane at 77 K .

Fig. 15 ESI Luminescence and phosphorescence excitation spectra of $\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}$ in 2-methyltetrahydrofuran at 77K.

Fig. 16 ESI Luminescence and fluorescence excitation measured at 77 K and room temperature fluorescence spectra of $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}$ in 2-methyltetrahydrofuran.

Fig. 17 ESI Luminescence and fluorescence excitation spectra measured at 77 K and room temperature fluorescence spectra of $(\mathrm{NCPh})_{2} \mathrm{DA}$ in methylcyclohexane.

Fig. 18 ESI Luminescence (red line) and fluorescence (blue line) and phosphorescence (olive line) excitation and room temperature fluorescence spectra (dashed line) of (NCPh) ${ }_{2} \mathrm{DA}$ in 2-methyltetrahydorofuran.

Fig. 19 ESI Torsional potentials of the S_{0} (black solid line) and S_{1} (red dashed line) states calculated for DPB. Red dotted line is represents best fit to the trigonometric
function given by eq. 2. Each energy was calculated at the optimized geometry of the respective electronic (S_{0} or S_{1}) state for a given phenyl-phenyl torsional angle.

Fig. 20 ESI Torsional potentials of the S_{0} (black solid line) and S_{1} (red dashed line) states calculated for (OHCPh) ${ }_{2}$ DA. Each energy was calculated the optimized geometry of the respective electronic $\left(\mathrm{S}_{0}\right.$ or $\left.\mathrm{S}_{1}\right)$ state for a given phenyl-phenyl torsional angle.

Fig. 21 ESI Torsional potentials of the S_{0} (black solid line) and S_{1} (red dashed line) states calculated for $\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}$. Each energy was calculated at the optimized
geometry of the respective electronic (S_{0} or S_{1}) state for a given phenyl-phenyl torsional angle.

Table 3 ESI The energy of rotation barrier of diphenylbuta-1,3-diyne derivatives in the ground and excited state.

Substituent	$\Delta E\left(\mathrm{~S}_{0}\right)$ $\mathrm{kJ} / \mathrm{mol}$	$\Delta \mathrm{E}\left(\mathrm{S}_{1}\right) \mathrm{kJ} / \mathrm{mol}$
-H	1.2	2.7
-OMe	1.0	6.2
$-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	0.9	6.5
$-\mathrm{COOCH}_{3}$	1.5	6.0
-CN	1.5	5.5
-CHO	1.6	7.1

Table 4 ESI Bond length of buta-1,3-diyne unit** obtained from crystal structure and theoretical calculation for the ground $\left(\mathrm{S}_{0}\right)$ and excited $\left(\mathrm{S}_{1}\right)$ states.

compound	Bond of buta-1,3-diyne unit					
	$\mathrm{C}_{3}-\mathrm{C}_{2}$	$\mathrm{C}_{2}{ }^{-} \mathrm{C}_{1}{ }^{\prime}$	$\mathrm{C}_{1}{ }^{-} \mathrm{C}_{1}$	$\mathrm{C}_{1}-\mathrm{C}_{2}$	$\mathrm{C}_{2}-\mathrm{C}_{3}$	state
DPB	1.432	1.194	1.372	1.195	1.433	cryst.
	1.418	1.214	1.356	1.214	1.418	S_{0}
	1.382	1.254	1.310	1.254	1.382	S_{1}
dDMADPB	1.425	1.208	1.368	1.208	1.425	cryst.
	1.416	1.216	1.356	1.216	1.416	S_{0}
	1.380	1.248	1.318	1.248	1.380	S_{1}
dOMeDPB	1.371	1.184	1.372	1.184	1.420	cryst.
	1.417	1.215	1.356	1.215	1.417	S_{0}
	1.380	1.252	1.313	1.252	1.380	S_{1}
dCOOMeDPB	1.432	1.205	1.371	1.204	1.433	cryst. ${ }^{1}$
	1.417	1.214	1.355	1.214	1.417	S_{0}
	1.381	1.247	1.315	1.247	1.382	S_{1}
dCHODPB	1.416	1.214	1.354	1.214	1.416	S_{0}
	1.383	1.245	1.317	1.245	1.384	S_{1}
dCNDPB	1.416	1.214	1.354	1.241	1.416	S_{0}
	1.381	1.247	1.315	1.247	1.381	S_{1}

1. T.M.Fasina, J.C.Collings, J.M.Burke, A.S.Batsanov, R.M.Ward, D.AlbesaJove, L.Porres, A.Beeby, J.A.K.Howard, A.J.Scott, W.Clegg, S.W.Watt, C.Viney, T.B.Marder, J.Mater.Chem., 2005 ,15, 690

bond numbering of buta-1,3-diyne unit

Fig 22 ESI The equilibrium optimized structure of $\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}$ in the $\sigma \pi^{*}$ state and LUMO orbital.

Fig 23 ESI The difference in electron density between ground and excited state of $\left(\mathrm{CH}_{3} \mathrm{OPh}\right)_{2} \mathrm{DA}$ in the $\sigma \pi^{*}$ state.

Fig. 24 ESI The optimized "scorpion like" structure of $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}$ in the $\pi \pi^{*}$ state and LUMO orbital.

Fig 25 ESI The difference in electron density between ground and excited state of $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CPh}\right)_{2} \mathrm{DA}$ for "scorpion like" structure in $\pi \pi^{*}$ state.

