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Abstract: Rhinovirus infection is common and usually causes mild, self-limiting upper 
respiratory tract symptoms. Rhinoviruses can cause exacerbation of chronic respiratory 
diseases, such as asthma or chronic obstructive pulmonary disease, leading to a significant 
burden of morbidity and mortality. There has been a great deal of progress in efforts to 
understand the immunological basis of rhinovirus infection. However, despite a number of 
in vitro and in vivo attempts, there have been no effective treatments developed. This review 
article summarises the up to date virological and immunological understanding of these 
infections. We discuss the challenges researchers face, and key solutions, in their work to 
investigate potential therapies including in vivo rhinovirus challenge studies. Finally, we 
explore past and present experimental therapeutic strategies employed in the treatment of 
rhinovirus infections and highlight promising areas of future work. 
Keywords: antiviral agents, respiratory tract infections, rhinovirus, therapeutics

Introduction
Rhinoviruses (RVs) are among the most abundant of the respiratory viruses known 
to man. They predominantly cause mild self-limiting illness in healthy individuals 
but they are associated with significant morbidity in those with chronic lung 
disease. RVs were first identified in 1956 by WH Price at Johns Hopkins university 
during a search for the aetiology of the common cold,1 but have since been 
implicated as one of the main causes of both asthma2 and chronic obstructive 
pulmonary disease (COPD) exacerbations.3 RVs have also been implicated in 
lower respiratory tract infections (LRTIs), with one study showing RV-A and RV- 
C present in around half of all cases of hospitalised LRTIs.4 During the SARS- 
Coronavirus-2 pandemic which resulted in numerous national lockdowns, the 
transmission of nearly all respiratory viruses was halted with the exception of 
RV.5 There have been numerous attempts at producing an effective anti- 
rhinovirus therapy, but that goal remains unrealised. In this review, we discuss 
the structure of RVs, the immune response to infection, development of the human 
rhinovirus challenge model, and the historical as well as current state of antiviral 
research.

Background
Virology
RVs are members of the Picornaviridae family and are located within the Enterovirus 
genus.6 Like other enteroviruses, RVs are single stranded and positive-sense viruses.7 
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RVs are currently classified into 3 species according to 
variations within their RNA genome.8 The RV-A species 
currently has 77 strains, whilst RV-B has 29 strains.9 In 
2006, a novel rhinovirus clade was identified in New York 
City and, aided by advances in genome sequencing, was 
found to represent a new genotype termed RV-C;10 RV-C 
currently contains 60 strains.11

The RV genome is particularly susceptible to random 
point mutations due to a lack of traditional RNA proof-
reading mechanisms. The result is an enormous amount of 
antigenic variation which allows individuals to have multi-
ple seasonal RV infections despite each infection stimulat-
ing a memory immune response. The large antigenic 
diversity also provides a hurdle to vaccine and antiviral 
therapy creation and helps to explain why effective thera-
pies remain elusive.

The RV genome encodes a single gene which is sub-
sequently cleaved to create 11 individual proteins which 
provide the functions needed for the virus to survive, 
invade, and replicate.12 The genome can therefore be 
divided according to these processes. At the 5-prime end 
is an untranslated region (5’UTR), followed by the P1, P2, 
and P3 regions, before terminating with a 3’UTR and 
a poly-A tail.8 The P1 region encodes the structural viral 
proteins (VP) which form the protective viral capsid and 
are the main target of the host immune response.8 The P2 
region performs roles in virus replication. The P3 region is 
predominantly involved in viral replication but also plays 
a role in modulation of the host immune response.

The P1 region is divided into sub-sections termed 1A- 
1D which in turn encode the structural proteins VP4-VP1, 
respectively. The P2 region (2A-2C) encodes a cysteine 

protease (protease 2A) which acts at the P1-P2 junction to 
cleave the P1 region from the rest of the translated viral 
polyprotein.8 Protein 2B is a viroporin involved in virus 
efflux from an infected host cell and also assists in recruit-
ing host cell protein machinery to aid viral replication. 2C 
binds intracellular host proteins but its exact role is not 
clear. The P3 region (3A-3D) begins with protein 3A, 
which interacts with the PI4KB protein and assists 
replication.13 The role of 3B remains unclear but appears 
to also assist with viral replication.14 Protein 3C is another 
protease which cleaves and degrades the cytosolic pattern 
recognition receptor, retinoic acid-inducible gene I (RIG-I) 
which results in attenuated host type I interferon (IFN) 
production.15 The final protein of the P3 region is 3Dpol, 
an RNA-dependent RNA polymerase (RdRps) which 
synthesises new viral RNA during replication.16

The VP proteins of the P1 region form an icosahedron 
shape which becomes the viral capsid (Figure 1). Each 
triangular face of the icosahedron is formed of a single 
VP1, VP2 and VP3 on the surface, whilst the VP4 protein 
is hidden on the internal surface of each face. Within the 
VP1 protein is a hydrophobic depression, commonly 
termed a “canyon”, which is important in virus-cell 
binding.17 The VP1 canyon is currently postulated to be 
the ligand for host cell intercellular adhesion molecule 1 
(ICAM-1).18 In RV-C, the VP1 canyon is collapsed and 
contains hydrophobic residues (such as Trp1080, Phe 
1096, and Met1116).19 Changes in the canyon here make 
RV-C less susceptible to drugs that target amino acids in 
this region.

Furthermore, RVs can be classified into major and 
minor groups based on which host cell receptor they 

Figure 1 The icosahedron shape of the HRV viral capsid showing the orientation of the VP proteins.
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bind to. Major group RVs bind to ICAM-1 and include 
most serotypes of HRV-A and HRV-B, whilst the minor 
group RVs bind to low-density lipoprotein receptor (LDL- 
R).20 RV-C strains bind to cadherin-related family member 
3 (CDHR3).21,22

Understanding the fundamentals of RV virology is key 
when considering potential therapeutic strategies, but also 
goes some distance to accounting for the modest success 
we have had in their implementation.

Immune Response to RVs
RVs primarily infect humans via nasal epithelial cells and 
are spread through expulsion and inhalation of micro- 
droplets containing the virus. Depending on the RV type, 
and therefore its target receptor, RVs bind ICAM-1, LDL- 
R, or CDHR3 expressed on nasal epithelium and 
macrophages.23 RVs are engaged by various pattern recog-
nition receptors (PRR), including Toll-like receptor 2 
(TLR2) on the cell surface and intracellular TLR3, 
TLR7, and TLR8.7 Other intracellular PRRs that play 
a role include RIG-I and melanoma differentiation- 
associated protein 5 (MDA-5) which are both cytosolic. 
Whilst different receptor groups use separate cellular- 
signalling pathways, they all result in the transcription 
and production of type I IFNs (IFN-α, IFN-β) and type 
III IFNs (IFN-λ1, IFN-λ2, IFN-λ3).24 IFNs appear to be 
crucial to the early anti-RV immune response and have 
several roles. IFNs induce Th1 antiviral adaptive 
responses, but also induce apoptosis of RV-infected cells, 
inhibit viral transcription and virus entry into cells.25 The 
inflammatory response is characterised by expression of 
cytokines (IL-1β, IL-6, IL-11, TNF), chemokines (CXCL- 
8, MCP-1, IP-10, RANTES) and various reactive oxygen 
species and vasoactive peptides.8,26,27 This inflammatory 
milieu contributes to the typical symptoms seen in the 
common cold of nasal congestion, discharge and sore 
throat in healthy individuals.

COPD patients are known to have impaired antiviral 
responses, as demonstrated through the rhinovirus infec-
tion model.28,29 Individuals are infected with the same 
quantity and serotype of RV at a controlled time point, 
allowing differences in the immune response to infection 
to be compared between COPD patients and healthy con-
trols. Such models show that COPD patients have higher 
post inoculation viral loads and have exaggerated immune 
responses, with increased levels of cytokines (IL-1β, IL-6, 
TNF, CXCL8), neutrophil elastase, matrix metallopro-
tease-9 (MMP-9) and oxidative stress.29,30 Cells sampled 

by bronchoalveolar lavage from COPD patients post RV 
challenge showed deficient IFN production.29 The 
increased virus loads observed, as well as the consequent 
increased inflammatory responses, likely result from defi-
cient IFN responses to infection in COPD.29,31,32 Wark 
et al demonstrated that pBECs from COPD patients had 
impaired IFN responses when pre-treated with exogenous 
IFN-β.33 A subset of COPD patients with frequent exacer-
bations has been identified as a potential target group for 
IFN therapies.34

Asthma patients also have impaired antiviral immune 
responses. A landmark 2005 study was the first to show 
impaired control of RV replication within primary human 
bronchial epithelial cells (HBECs) from people with 
asthma.35 Further studies have confirmed both deficient 
IFN-β and IFN-λ responses in people with asthma.36,37 

In vivo studies have found increased concentrations of 
IFNs during RV induced asthma exacerbations,38,39 likely 
a result of increased virus loads consequent upon deficient 
early IFN responses. Work by Kennedy et al found no 
difference in viral loads in small numbers of subjects (16 
with asthma, 8 without) who participated in an experimen-
tal challenge with RV,40 while a study of larger numbers 
(28 with asthma and 11 without) found nasal virus load 
was increased ~250-fold on day 3. RV infection in asthma 
also stimulates the airway epithelium to produce the cyto-
kines IL-25, IL-33 and thymic stromal lymphopoietin 
(TSLP) that activate type 2 innate lymphoid cells 
(ILC2s) and T helper 2 (Th2) cells.41,42 RV infection in 
asthma therefore induces a type 2 response typical of 
asthma exacerbations.

Experimental RV Infection Model
History of the Model
The virus challenge model in humans, also known as 
experimental infection, has been used to better understand 
the immune response to RV infection and also the efficacy 
of various therapeutics. The study of most infections relies 
upon experimental infection in animal models and natural 
infection in humans.

Studying natural infections is problematic in the case 
of RV for a number of reasons: infected individuals are 
frequently asymptomatic early in the course of infection - 
the most plausible time that intervention will be effective; 
infections are usually mild and self-limiting, requiring 
sensitive and early reporting on the part of patients in 
order to be identified; and there are other respiratory 

Journal of Experimental Pharmacology 2021:13                                                                                   https://doi.org/10.2147/JEP.S255211                                                                                                                                                                                                                       

DovePress                                                                                                                         
647

Dovepress                                                                                                                                                         Coultas et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


viruses clinically indistinguishable from RV infection, so 
natural infection studies would require large numbers of 
participants over a long time course in order to sufficiently 
power analysis. The mild and self-limiting nature of RV 
infection means that illness is almost always tolerable, safe 
and temporary in healthy adults. This has allowed pioneer-
ing researchers to develop methods of causing RV infec-
tions in humans in a predictable manner allowing the study 
of illness and assessment of therapies.

Initial attempts can be traced back to the Medical 
Research Council’s Common Cold Research Unit in 
Salisbury, where individuals were isolated in small groups 
for ‘holidays’ in order to study viral transmission and 
work focused on the attempt to isolate and propagate 
virus in culture.43,44 Here, virus inoculation in healthy 
volunteers was attempted with nasal drippings from symp-
tomatic individuals, with a success rate of 60%.45 These 
efforts paved the way for subsequent efforts in centres in 
Chicago, Bethesda, Baltimore and Charlottesville, the lat-
ter focusing specifically on RV and intranasal IFNs.43 

Advances in laboratory culture and genetic identification 
of virus species progressed gradually until the advent of 
highly sensitive molecular identification techniques 
including PCR, notably allowing the detection and classi-
fication of the RV-C species.8

A large number of different strains have been used in 
experimental infection models to date, primarily from 
group A RVs: RV-1,46 RV-2,47 RV-9,48 RV-16,49–53 RV- 
24,54 RV-23,55 RV-29,56 RV-32,47 RV-39,57 RV-44,47,58 

and Hank’s strain.59 RV-14, a group B rhinovirus has 
also been used in a single experimental infection60 

(Table 1). No experimental inoculation has occurred with 
group C RVs to our knowledge.

Whilst many of these RV strains have been well estab-
lished, cultured and tested to a very high standard and 
have a track record of safety in clinical trials, most have 
been developed outside of a formal regulatory framework. 
This is because the developments occurred at a pace which 
outstripped that of regulators. In the UK, the Academy of 
Medical Sciences have published a report which suggests 
that explicit guidance on the development of controlled 
human infection models is warranted.62

Findings of Experimental RV Models
The human RV challenge model has allowed both valida-
tion of in vitro findings and a comprehensive (and clini-
cally relevant) understanding of symptoms, signs and 
sequelae of RV infection. The same dawn of molecular 

mechanisms which identified the breadth of RV species 
also revealed their importance in chronic lung conditions. 
In asthma exacerbations two thirds of viral infections, by 
far the most common cause of exacerbation, are RV 
species.63 Experimental RV infection in asthma has facili-
tated the elucidation of inflammatory processes and iden-
tified therapeutic targets for therapies in both acute and 
chronic management of the disease.

Our understanding of COPD exacerbation has similarly 
progressed with the use of RV models. Viral infections are 
far more common an aetiology than bacterial infections7 

and experimental RV infection allows controlled exacer-
bation which similarly allows for a comprehensive under-
standing of immune response, identification of therapeutic 
strategies and evaluation of treatments in a more effective 
way than natural infection studies.29

RV challenge has become the critical first step for 
Phase II trials for not just anti-RV therapies but also drug 
whose aim is to reduction in burden of asthma and COPD 
exacerbation. Despite the human challenge model present-
ing a significant improvement in the drug discovery pro-
cess, and a number of potential treatments being tested 
with this method, none have been successfully licensed for 
use in the treatment of RV infection to date.64

Antiviral Therapies
Table 2 summarises the actions and evidence of antiviral 
therapies discussed in this section.

Ribavirin
Ribavirin has a broad spectrum of activity and has been 
used to treat respiratory syncytial virus (RSV), Lassa 
fever, influenza and hepatitis C (in combination with pegy-
lated IFN-α).73 It is a synthetic nucleoside (a guanine 
analogue which acts by inhibiting inosine monophosphate 
dehydrogenase) and has a range of antiviral properties 
both direct (impairing viral mRNA synthesis and increas-
ing viral mutation rates) and indirect (including upregula-
tion of the host immune response).77 It has been long 
established that ribavirin is effective in vitro against 
a number of RV strains, especially when used 
prophylactically.71,72

However, the only in vivo evidence has been in a case 
series treating persisting lower respiratory tract symptoms 
caused by recurrent RV infection in four patients with 
hypogammaglobulinaemia. Oral ribavirin was adminis-
tered with pegylated IFN-α2α, and was associated with 
a marked decrease and clearance of RV RNA. However, 
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there was concomitant use of antibiotics, no clinical out-
come data was provided, three of four experienced side 
effects and all patients had recurrent RV infection within 
months.73 It is also impossible to know whether the 
observed effect was due to ribavirin, IFN-α, or 
a combined synergistic effect. The prospect of this formu-
lation and dose of ribavirin seems limited even within 
confirmed, symptomatic and high-risk individuals.

Capsid Binding Inhibitors
Pleconaril
Pleconaril is an orally absorbed low molecular weight 
compound which binds to the hydrophobic pocket of the 
β-barrell of the VP1 section of RVs, impairing viral capsid 
functions like attachment to cell receptors and viral RNA 
uncoating.78 Importantly, pleconaril has only weak activity 
against RV-C due to differences in the VP1 canyon and the 
amino acid sequences there.79 Two double blind 

randomised controlled trials have been conducted which 
evaluated participants experiencing symptoms from picor-
navirus infection as identified through real time PCR 
assays. Combined, 681 patients were randomised to ple-
conaril and 682 to placebo. Analysed individually, only 
one study met its primary end goal of reduction in time to 
alleviation of illness (defined by absent or mild cold 
symptoms in five domains for over 48 hours), although 
combined analysis suggested a statistically significant 
reduction overall (a median of 6.3 versus 7.3 days, 
P <0.001). This effect did not reach statistical significance 
in all comers – ie, participants with no virus or non- 
picornavirus isolated – and more side effects were experi-
enced overall in the pleconaril arm.70

When submitted to the Food and Drug Administration 
(FDA) for approval in 2002 for the treatment of the com-
mon cold, it was declined as a number of other issues were 
identified with the results from the above studies and from 

Table 1 RV Strains Used in Human Experimental Infection Models

RV 
Group

Strain Use Examples

A RV-2 A double-blind placebo controlled trial of chalcone as prophylaxis against RV-2 infection demonstrated no evidence of 

benefit.61

RV-9 Three trials are reported assessing an experimental antiviral compound, R61837, acting on the virus capsid protein, 

against RV-9 inoculation in volunteers. The compound demonstrated reduction in symptoms when used prophylactically 

but not when commenced shortly after infection.48

RV-16 This strain has been used widely in therapeutics trials but also notably was used in the development of an experimental 
model of viral COPD exacerbation.28

RV-24 Used in early rhinovirus challenge trials, including a 1973 study assessing an antiviral compound, 3,4-dihydro- 
1-isoquinolineacetamide hydrochloride, as prophylaxis against RV-24 inoculation. This placebo controlled study 

demonstrated no benefit.54

RV-23 Echinacea or placebo was given to healthy volunteers 14 days prior to, and for 5 days after, inoculation with RV-23. No 

significant difference in symptom scores or infections rates was detected.55

RV-29 Intranasal administration, after inoculation of RV-29, of the antihistamine diphenhydramine hydrochloride was compared 

against placebo in a double blind randomised controlled trial demonstrating a slight reduction in proportion of cold 

symptoms.56

RV-39 The decongestant oxymetazoline was evaluated against placebo when administered soon after infection in a RV-39 

experimental model. Mean viral titre was reduced but viral shedding and clinical illness was not affected.57

RV-44 An antiviral compound, “CL 88,227”, or placebo, was given three times daily before and after RV-44 inoculation. It neither 

prevented illness nor reduced symptom scores.58

Hank’s 

strain

A three-armed randomised control trial compared oral pseudoephedrine with or without ibuprofen against placebo 

following either experimental inoculation with Hank’s strain or RV-39. Illness severity and rhinorrhoea was reduced in 
treatment groups compared with placebo.59

B RV-14 Volunteers were challenged with RV-9 and RV-14 after prophylactic administration of intranasal recombinant human IFN- γ 
or placebo, with no improvement in outcomes demonstrated.60
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Table 2 Summary of Mechanism and Evidence for Key Anti-RV Therapies

Therapeutic Proposed Mechanism of Action Existing Evidence

Azithromycin Induction of IFN-β and IFN-λ in host response to RV Indirect evidence only via studies in asthma exacerbations, where 
long term prophylaxis of 420 patients as part of a randomised 

placebo-controlled trial reduced the number of exacerbations and 

improved quality of life.65 In a separate study in acute exacerbations, 
no benefit was demonstrated.66

Budesonide Reduction in pro-inflammatory cytokines, protection of 
host cells from cytotoxicity

No evidence from human clinical trials to date.

Gemcitabine Inhibition of viral proliferation and viral RNA synthesis No evidence from human clinical trials to date.

Host defence 
peptides

Exogenous bolstering of the host innate immune 
response

No evidence from human clinical trials to date.

IFN-β Exogenous correction of impaired IFN response in 
asthma and COPD patients

A randomised placebo-controlled trial of 147 people with asthma 
tested inhaled IFN-β within 24 hours of a naturally occurring cold 

symptoms. It failed to meet its primary endpoint, likely due to less 

severe than expected exacerbations.67

Itraconazole Reduced viral replication and suppression of inflammation No evidence from human clinical trials to date.

Nitric oxide Direct inhibition of rhinovirus replication and inhibition 

of pro-inflammatory cytokine production

No evidence from human clinical trials to date.

Pirodavir Binding to viral capsid protein, inducing conformational 

change and preventing adsorption and RNA uncoating

100 patients were enrolled across three randomised placebo- 

controlled studies assessing pirodavir as prophylaxis against 

experimental viral challenge of rhinovirus strains, and demonstrated 
a reduction in symptoms. 32 patients enrolled in a randomised 

placebo-controlled study treated after inoculation did not 

demonstrate the same benefit.68 A later randomised controlled trial 
of 98 patients in the context of naturally occurring colds did not 

demonstrate a clinical benefit.69

Pleconaril Binding to and impairing critical viral capsid functions of 

attachment and RNA uncoating

Combined analysis of two randomised placebo-controlled trials in 

a total of 1363 patients symptomatic with naturally occurring 

picornavirus infections demonstrated a reduction in time to 
alleviation of illness, although more side effects were experienced in 

the active treatment arm.70

Quercetin Reduces RV replication and host cytokine response. No evidence from human clinical trials to date.

Ribavirin Direct: impairing viral RNA synthesis and increasing viral 
mutation rates. Indirect: upregulation of host immune 

response.

Efficacy demonstrated prophylactically in vitro.71,72 In vivo work is 
limited to a case series of 4 patients with hypogammaglobulinaemia 

where it was used in combination with IFN-α.73

Rupintrivir Inhibits the 3C protease by bonding to the active site on 

the viral protease

No evidence from human clinical trials to date.

Tremacamra Blocking viral entry and reduction in pro-inflammatory 

cytokines

198 adults were randomised across four trials to receive the 

molecule in either pre- or post- experimental rhinovirus inoculation 

studies. A reduction in symptom scores, clinical colds and 
rhinorrhoea was demonstrated.74

(Continued)
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prior phase II trials, including concerns about interference 
with the action of oral contraceptives and the lack of 
a significant reduction in symptoms in non-white partici-
pants. Above all, the FDA thought that the requirement to 
take pleconaril within 24 hours of symptoms was unrea-
listic; an assessment that suggests a high threshold for 
licensing for any future RV treatment submissions.80

A further randomised, double blind, placebo controlled 
Phase II trial exploring intranasal pleconaril in asthma 
patients was completed in 2013.81 The study did not meet 
its primary endpoint of reducing asthma exacerbations.

Pirodavir
By 1991, several compounds had shown in vitro activity 
against either rhinovirus group A or group B. Pirodavir is 
a substituted phenoxy-pyridazinamine and was the first com-
pound to show efficacy against both rhinovirus groups.82 

Pirodavir binds to conserved amino acids in the hydrophobic 
canyon of the VP1 protein. Despite this not all strains of RV 
are susceptible to pirodavir. In particular, RV-8, RV-42, RV- 
45 and RV-87 are resistant strains and this is believed to be 
due to different amino acid sequences in the canyon. After 
binding to the VP1 canyon, pirodavir mediates its effects by 
inducing a conformational change in the viral capsid protein 
which prevents adsorption and uncoating of the virus.

Pirodavir has undergone two clinical trials. This was 
first used as an experimental rhinovirus infection model 
where participants were directly infected with RV-39 or 
RV-Hanks and then allocated to a placebo or pirodavir 
group.68 Pirodavir was administered either prophylacti-
cally or 24 hours post infection. Significant reductions in 
viral shedding were seen in the pirodavir group regardless 
of the timing of administration. Reduction in common cold 
symptoms and clinical benefit however was only observed 

in the prophylactic group. This was replicated in 
a subsequent randomised double-blind placebo controlled 
trial of intranasal pirodavir which showed no clinical ben-
efit of pirodavir against naturally occurring common colds, 
even though a reduction in viral shedding was observed.69

Vapendavir
Vapendavir is another capsid binder developed by Biota 
pharmaceuticals. A Phase IIb trial assessed response to 
natural upper respiratory tract infection (URTI) in 455 
participants with moderate to severe asthma but did not 
meet its primary end point which was a reduction in 
symptoms (ACQ-6 questionnaire).83

Novel Capsid-Binding Inhibitors
One of the major drawbacks of capsid binding inhibitors like 
pleconaril and vapendavir is that they are ineffective against 
RVs with bulky hydrophobic VP1 canyons. These resistant 
RVs include RV-B5 and also the RV-C species, which 
account for a sizeable number of infections. New compounds 
have emerged that have broad canyon binding activity. OBR- 
5-340 is a pyrazolopyrimidine that through in vitro work has 
shown to bind nearer to the entrance of the canyon compared 
to other capsid binders84 and demonstrate inhibition of resis-
tant RV species.85 Another compound showing promising 
cross-species canyon binding is ca603 which has a similar 
structure to Pirodavir. In vitro work has shown that ca603 
binds to pleconaril resistant RV species and inhibits viral 
replication through binding at the VP1 canyon site.86

Novel RV Inhibitors
Rupintrivir
Rupintrivir is another experimental anti-rhinovirus therapy 
that acts on the 3C protease. RV-3C protease inhibitors are 

Table 2 (Continued). 

Therapeutic Proposed Mechanism of Action Existing Evidence

Vapendavir Binding to viral capsid protein, inducing conformational 

change and preventing adsorption and RNA uncoating

455 asthmatic adults with naturally occurring (presumed) rhinovirus 

infection in a randomised double-blind placebo-controlled trial 

received vapendavir for 6 days after symptoms started. Although the 
trial reported a significant reduction in cold symptoms at 2 to 4 days 

post infection, the primary endpoint was not met.75

Vitamin D Supporting innate immune system via increased 

cathelicidin and IFN stimulated genes

A large recent meta-analysis of 43 trials and 48,488 participants 

demonstrated that vitamin D supplementation reduces the incidence 

of acute respiratory infections.76
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based on a tripeptidyl structure and mediate their antiviral 
effects by forming a covalent bond with the active site 
cysteine amino acid on the viral protease.87 Dragovich 
et al showed that such antiviral effects could be further 
enhanced by adding a ketomethylene molecule to the 
tripeptidyl compound.87 This work led to the creation of 
rupintrivir (originally named AG7088).

Several in vitro studies have demonstrated the efficacy 
of rupintrivir against 48 serotypes of RV in HeLa cells,88,89 

and in bronchial epithelial cells90 and such effects are 
mediated up to 26 hours after infection. In vivo studies 
of intranasally administered rupintrivir have shown a good 
safety profile91 and moderate reduction in symptoms of 
a common cold and viral titres compared to a placebo.92 

Due to limited clinical benefit, further trials of rupintrivir 
have not been undertaken. In more recent years, modifica-
tion of rupintrivir with proline and azetidine molecules 
have shown in vitro anti-RV effects but are yet to be 
examined in vivo.93

Nitric oxide targeted approaches represent another 
strategy. Nitric oxide (NO) is produced by the respiratory 
epithelium as a physiological response to RV infection. 
NO is primarily synthesised by nitric oxide synthase 
(NOS) and its active metabolite S-nitroglutathione is con-
versely metabolised by S-nitrosoglutathione reductase 
(GSNOR). NO has been shown to inhibit both rhinovirus 
replication and pro-inflammatory cytokine production.94 

Yang et al have demonstrated that a specific GSNOR 
inhibitor, termed C3m, reduced RV replication and also 
pro-inflammatory cytokines CXCL10, RANTES, and M.95 

Interestingly, this appears to be due to its effects on 
ICAM-1 transcription as opposed to its GSNOR activity. 
NO-based therapies are currently in clinical trials for other 
respiratory viruses, notably SARS-CoV-2, and remain an 
unexplored avenue for treatment of RV.

Itraconazole has also exhibited anti-RV effects with 
reduced viral replication in infected mice lungs. There 
have currently been no clinical trials of itraconazole 
against RV.96

Host Defence Peptides
Host defence peptides (HDP) are proteins with antimicro-
bial properties and represent another arm of the innate 
immune system. They are secreted by leukocytes and 
epithelial cells, and principally fall into two groups: cathe-
licidins and defensins. The antiviral mechanism of human 
cathelicidin is unknown but human and various mamma-
lian cathelicidins have shown efficacy against RV, 

including LL-37, protegrin-1, and SMAP-29.97 

Exogenous administration has not been assessed in clinical 
trials yet but represents a possible therapeutic approach.

Vitamin D is commonly regarded for its effects on 
maintaining bone health and calcium homeostasis, but it 
also plays a role in supporting the innate immune system. 
Vitamin D is obtained through both diet and by the ultra-
violet (UV) radiation conversion of 7-dehydrocholesterol 
to vitamin D3. Vitamin D becomes activated via the liver 
and the kidneys to form the active metabolite calcitriol, 
which mediates its effects through binding nuclear vitamin 
D receptors (VDR) within cells. There is also evidence 
that lung epithelium and various leukocytes can also con-
vert vitamin D to its active form.98,99 Calcitriol binding 
leads to the upregulation of various HDPs, including LL- 
37 (cathelicidin) in HBECs,100,101 β-Defensin-2 (HBD2), 
and human cationic antimicrobial peptide (hCAP).102 

Furthermore, single nucleotide variants in the VDR gene 
are associated with increased risk of URTI, again high-
lighting the importance of calcitriol in antiviral 
responses.103 In vitro work showed that HBECs infected 
with RV in the presence of vitamin D led to decreased viral 
replication and a rise in cathelicidin and IFN stimulated 
genes.100

The exact dosing or treatment duration of vitamin D is 
less clear. A 2015 literature review concluded that vitamin 
D metabolites do not consistently reduce RV replication 
though they do lead to changes within type 1 IFNs and 
pro-inflammatory cytokines.102 A 2017 systematic review 
and meta-analysis covering 10,933 patients found an over-
all protective effect of vitamin D against URTI.104 A more 
recent meta-analysis in 2020 (currently in pre-print form), 
showed that daily administration of 400–1000 IU vitamin 
D conferred protection against URTI.76 Further data sug-
gests that protective effects are maximal in individuals 
with pre-existing vitamin D deficiency (baseline 25- 
hydroxyvitamin D concentration <25 nmol/L).105 To our 
knowledge there have been no trials of vitamin D using the 
human viral challenge model.

Modulation of the Host Response
IFN responses, as previously discussed, are impaired in 
both asthma and COPD patients. Consequently, exogenous 
IFN has been explored as a broad-spectrum therapeutic 
approach against respiratory infection, of which the major-
ity are due to rhinovirus. Numerous trials of intranasal IFN 
were conducted from the 1960s without success. The first 
randomised controlled trial using orally inhaled IFN-β in 
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patients with asthma was completed in 2014.67 The trial 
resulted in a significant improvement in lung function but 
the study did not meet its primary endpoint of clinical 
improvement, likely because most patients studied were 
mild, and asthma control in the placebo treated patients did 
not deteriorate significantly on virus infection.67 A further 
Phase II trial was terminated early due to an unanticipated 
low rate of asthma exacerbations but participants did 
record an improvement in morning peak expiratory flow 
(PEF) on taking IFN-β.106 More recent work has suggested 
that IFN-β may be better administered prophylactically, 
and work remains ongoing.107 In November 2020, inhaled 
INF-β was shown to be of clinical benefit in SARS-CoV-2 
positive patients in a hospital-based Phase II clinical trial, 
suggesting further work against RV is warranted.108

Azithromycin is a macrolide antibiotic that has been 
shown to have immunomodulatory effects. In vitro work 
has shown HBECs pre-treated with azithromycin and then 
infected with RV-1B and RV-16 had significantly higher 
levels of RV induced IFNs and IFN stimulated genes.109 

Further work has shown azithromycin induces IFN-β and 
IFN-λ though the exact mechanism remains unclear.110,111 

A randomised control trial (AMAZES) found that long- 
term azithromycin prophylaxis reduced the number of 
asthma exacerbations that patients with symptomatic 
asthma experienced and also improved participants 
asthma-related quality of life.65 Despite this, the 
AZALEA randomised control trial of short-term azithro-
mycin intervention versus placebo in acute exacerbations 
had no significant difference.66 Further work is needed to 
elucidate the mechanism of azithromycin induced IFN 
stimulation, for which the experimental infection model 
would be well suited.

Several positive stranded RNA viruses have been 
shown to manipulate the membranes of the host cell 
Golgi apparatus and the endoplasmic reticulum to create 
a viral replication complex.112 RV appears to bind such 
membranes using the RV-3A gene region and various host 
proteins including phosphatidylinositol 4-kinase III beta 
(PI4KB)113 and oxysterol binding protein (OSBP).114 

PI4KB and OSBP are both substrates of protein kinase 
D (PKD) suggesting that targeting PKD may be another 
strategy. In vitro work has shown that inhibition of PKD 
reduced RV replication in a concentration dependent 
manner.115 PI4KB and OSBP targets are currently in 
development116 but have yet to undergo clinical trials.

Human N-myristoyltransferase (NMT) has emerged as 
another target. Host NMT myristoylates the VP0 region of 

the virus polyprotein, which is a key step in the formation 
of the viral capsid and subsequently creating a viable 
virion. IMP-1088 was developed as an inhibitor of 
human NMT1 and NMT2, and has shown promising 
results in vitro.117 It has yet to reach clinical trials.

Neutralising Antibodies
An alternative approach is to use antibodies that either 
bind the virion and cause aggregation; disrupt the virion 
structure; prevent virus entry/attachment; or preventing 
release of newly formed virions. Two neutralising and 
immunogenic sites have been identified on VP1 close to 
the canyon (NIm-1a and NIm-1b), and another two sites 
on VP2 and VP3 (NIm-2 and NIm-3 respectively) of the 
RV-2 and RV-14 serotypes.118,119 Unfortunately, these 
NIms are serotype specific which dramatically limits the 
possibility of a therapy effective against multiple sero-
types. A solution may be to create a “cocktail” of multiple 
antibodies that provide protection across serotypes.

Antibodies may also be directed against host proteins, 
such as those critical for virus attachment and binding. 
Hayden et al demonstrated in 1988 that intranasally admi-
nistered mouse monoclonal antibody specific for ICAM-1 
reduced viral load and symptoms in human participants.120

Soluble Proteins
Tremacamra, a recombinant soluble ICAM-1 showed 
modest improvement in symptom score when given both 
pre and post RV infection.74 One drawback is the intense 
scheduling of doses, as 6 doses are given per day at 3 hour 
intervals intranasally. In more recent times, a mouse anti- 
human ICAM-1 antibody (14C11) has been developed 
which targets an epitope of ICAM-1 specific for viral 
entry.121 When given topically or systemically in mice, 
14C11 reduced viral load, pro-inflammatory cytokines 
and blocked entry of RV-16 and RV-14.121 An approach 
to treat all forms of RV would be to create a cocktail of 
soluble ICAM-1, LDLR and CDHR3 though this remains 
to be studied and the dosing issue remains.

Other Therapies
Budesonide
Budesonide is a corticosteroid, most frequently used in the 
treatment of asthma and COPD via the inhaled route. 
When administered intranasally in mice, budesonide was 
shown to reduce RV viral load and also levels of pro- 
inflammatory IL-1β.122
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Gemcitabine
Gemcitabine is a synthetic nucleoside deoxycytidine ana-
logue in use as a chemotherapy agent, which has been 
demonstrated as efficacious in-vitro against RV-14, RV-21 
and RV-71 in H1HeLa cells. Whilst its oncological use is 
associated with many unpleasant side effects which would 
surely preclude its use in the same fashion against RV, 
Kang et al have demonstrated limited cell toxicity and 
synergistic effects in combination with the guanine analo-
gue ribavirin.123 Gemcitabine’s action has been replicated 
in murine models via intranasal administration, and there 
is evidence that it acts via inhibition of CTP synthetase.124

Quercetin
Quercetin is a flavonoid found in plants and commonly 
eaten foods like broccoli and berries. A number of immu-
nomodulatory effects have been attributed to the com-
pound, including in vitro antiviral effects. Use in mouse 
models suggested that the compound reduced RV replica-
tion and cytokine responses.125 Further work in smoke 
exposed mouse COPD models suggests that inflammation 
associated with exacerbation after RV infection was 
reduced with dietary supplementation of quercetin.126

No clinical trials are yet forthcoming, although the 
groundwork for such a trial appears to be laid with 
a small safety trial assessing quercetin supplementation 
in patients with COPD reporting favorably in 2020.127

Omalizumab (Anti-IgE)
Recent work has shown that subjects with allergic asthma 
(as measured by high levels of total IgE) show an increase 
in their blood eosinophil count and declines in lung func-
tion following RV-16 viral challenge.52 The same study, by 
Heymann et al, found that asthma subjects pre-treated with 
omalizumab (an anti-IgE monoclonal antibody) for 8 
weeks before and 3 weeks following virus inoculation 
showed earlier resolution of lung function, FeNO score, 
and symptom score.52

Other Approaches
Future efforts in drug discovery against RV infections may 
be directed by sophisticated computational means as 
described in Da Costa et al’s 2017 paper describing the 
potential of compound (S)-7f against RV-14 using mole-
cular and in silico models.128

Other novel targets have been identified through analysis of 
the lipidome of human bronchial epithelial cells, and 

commercially available enzyme inhibitors have been presented 
as potential inhibitors of RV infection and replication.129

Finally, advances at the nanoscale have allowed 
a better understanding of the interaction between chemical 
makeup, structure and mechanics of viruses, and inevita-
bly opened a new door of possibilities for virus inhibition 
by “mechanical stiffening”.130 Design, manufacture and 
evaluation of these compounds is awaited.

Future Work
Whilst an affordable and effective therapy against RVs 
continues to evade the scientific community, novel experi-
mental therapies that have been uncovered in recent years 
offer new hope. It is likely that a variety of approaches 
will be required given the heterogeneity of human rhino-
viruses. Antiviral therapies targeting the rhinovirus virion 
itself are among the oldest approaches but are yet to yield 
any significant breakthroughs. In vitro work on such thera-
pies continues apace. The work on host defence peptides 
and in particular vitamin D looks promising and would be 
an obvious candidate for clinical trials using the rhinovirus 
challenge model, particularly given the abundance of data 
on its safety. Many other therapies remain in the experi-
mental phase and should be watched closely.

With the emergence of the COVID-19 global pandemic, 
international attention has been thrust onto antiviral therapies 
and the need to produce a diverse array of strategies for this 
and future pandemics. We hope that with this newfound 
impetus and the hard work of many groups over the last 6 
decades, that new progress will be uncovered. With multiple 
drug candidates awaiting clinical trials, we may be on the 
cusp of a new generation of antiviral therapies.

Abbreviation
14C11, anti-human ICAM-1 antibody; 3’UTR, 3-prime 
untranslated region; 5’UTR, 5-prime untranslated region; 
ACQ-6, asthma control questionnaire; AMAZES, effect of 
azithromycin on asthma exacerbations and quality of life in 
adults with persistent uncontrolled asthma (randomised con-
trolled trial); AZALEA, Azithromycin for acute exacerba-
tions of asthma (randomised clinical trial); COPD, chronic 
obstructive pulmonary disease; COVID-19, coronavirus dis-
ease (caused by SARS-CoV-2); CTP, cytidine triphosphate; 
FDA, Food and Drug Administration; GSNOR, 
S-nitroglutathione reductase; HBEC, human bronchial 
epithelial cells; HRV, (human) rhinovirus; IFN, interferon; 
ILC2s, type 2 innate lymphoid cells; LDL-R, low-density 
lipoprotein receptor; MDA-5, melanoma differentiation- 
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associated protein 5; NMT, human N-myristoyltransferase; 
NO, nitric oxide; NOS, nitric oxide synthase; PCR, polymer-
ase chain reaction; PI4KB, phosphatidylinositol 4-kinase III 
beta; RIG-I, retinoic acid-inducible gene I; RNA, ribonucleic 
acid; TLR, toll-like receptor; TSLP, thymic stromal lympho-
poietin; URTI, upper respiratory tract infection; VDR, vita-
min D receptors.
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