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Experimental Application

of Time-Domain Transmissibility
Identification to Fault Detection
and Localization in Acoustic
Systems

This paper considers a technique for fault detection and localization based on time-
domain transmissibility identification. This technique takes the advantage of unknown
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the sensor-to-sensor residual, which is the discrepancy between the predicted sensor out-
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put (based on the transmissibility operator) and the actual measurements. The sensor-to-
sensor residuals are used to detect, diagnose, and localize faults in sensors and system
dynamics. We consider an experimental setup consisting of an acoustic system with three
speakers and six microphones. Each speaker is an actuator, and each microphone is a
sensor that measures the acoustic response at its location. Measurements from the six
microphones are used to construct transmissibility operators, which in turn are used to
detect and localize changes in the dynamics of the acoustic system or the microphones by

computing the resulting one-step residuals. [DOI: 10.1115/1.4038436]

1 Introduction

The study of structural vibration focuses on the displacement,
velocity, and acceleration response of a structure to force and tor-
que inputs. This response can be studied in terms of either transfer
functions or differential equation models. In the former case, the
frequency response of the structure can be estimated by comput-
ing the ratio of the transforms of the forcing and response signals.
These procedures are based on the assumption that the input and
output signals are stationary, and thus, initial conditions and tran-
sient effects are either assumed to be absent or are ignored. In the
case of differential equation models, time-domain methods can be
used to estimate the model parameters assuming that the input is
sufficiently persistent. In this case, initial conditions and transient
effects can enhance rather than degrade the accuracy of the esti-
mated model. The effect of nonzero initial conditions on time-
domain and frequency-domain identification is shown in Ref. [1].

An alternative approach to force-to-motion models is the class
of models known as transmissibilities. A transmissibility is a rela-
tionship between identical variables, such as force-to-force,
position-to-position, velocity-to-velocity, and acceleration-to-
acceleration [2,3]. The input and output of a transmissibility,
referred to as the pseudo input and pseudo output, respectively,
are thus outputs of the underlying system. Although force-to-
motion transfer functions can be identified using either time-
domain or frequency-domain methods, transmissibility estimates
are traditionally obtained using only frequency-domain methods,
and this remains an active area of research [4-9].

Interestingly, time-domain methods have not been traditionally
used to identify transmissibilities. The reason for this is partly due
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to the fact that the meaning of a transmissibility in the time
domain is suspect. In particular, the input (forcing) to the underly-
ing system plays no visible role in the transmissibility, and the
states of the transmissibility have no physical interpretation.
Nevertheless, for applications in which response data have a sig-
nificant nonstationary component, it is advantageous to use time-
domain methods to estimate transmissibility functions. A step in
this direction was taken in Refs. [1,10-13], where time-domain
transmissibility models were obtained. These models, called
pseudo transfer functions, are formulated in terms of the differen-
tial operator p = d/dr rather than the Laplace s. This framework
requires some care due to the fact that p is not a complex number.
In addition, unlike input—output transfer functions in the Laplace
domain, the differentiation operator accounts for the free response
in the time domain [12], but requires special attention due to
issues of causality, stability, and order. In particular, a time-
domain transmissibility model may be noncausal (in either contin-
uous time or discrete time), where its numerator and denominator
dynamics are the zero dynamics of the underlying transfer func-
tions from the forcing to the respective motion sensors.

Various fault-detection techniques have been introduced in the
literature [14—17]. In some cases, health monitoring can be per-
formed by exciting the system in a controlled manner, using a
plant model and observer to predict the response, and comparing
the measured response to the prediction [18-20]. This approach,
known as active fault detection, is based on residual generation. In
contrast, passive fault detection detects faults by analyzing the
sensor signals alone and searching for anomalies [21-23].

In the present paper, we focus on a technique for fault detection
based on time-domain identification of transmissibilities, which is
neither active nor passive as defined earlier. Instead, this tech-
nique takes advantage of freely available and unknown external
(ambient) excitation to identify a sensor-to-sensor model (i.e., a
transmissibility operator), which is independent of the excitation
signal. In the presence of subsequent unknown external excitation,
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the identified transmissibility is used to compute sensor-to-sensor
residuals, which are used to detect and diagnose faults in sensors
and system dynamics. The sensor-to-sensor residual is the discrep-
ancy between the predicted sensor output (based on the transmis-
sibility) and the actual measurements.

The ability to take advantage of unknown external excitation
along with the fact that the transmissibility is independent of the
excitation gives the method flexibility in practice by removing the
need for a known or controlled excitation. For example, freely
available ambient noise can play a useful role in transmissibility
identification. Most importantly, the identified transmissibility is
independent of the excitation; this means that the transmissibility
identified using one data set can be used for fault detection with a
different data set; for both data sets, the external excitation can be
completely unknown. This feature is the key benefit of this
approach relative to fault-detection methods that require known
external excitation. Transmissibilities are applied to fault detec-
tion and localization in Refs. [24-31]. Note that comparing
transmissibility-based fault detection to other fault-detection
methods such as Refs. [18-20], [32], and [33], which require
knowledge of a mathematical model of the underlying system or
the excitation signal, is meaningless.

Since transmissibility operators may be noncausal, unstable,
and of unknown order, we consider a class of models that can
approximate transmissibility operators with these properties. This
class of models consists of noncausal finite impulse response
(FIR) models based on a truncated Laurent expansion [34]. These
models are shown to approximate the Laurent expansion inside
the annulus between the asymptotically stable pole of largest
modulus and the unstable pole of smallest modulus. By delaying
the measured pseudo output relative to the measured pseudo input,
the identified finite impulse response model is a noncausal approx-
imation of the transmissibility operator. The causal (backward-
shift) part of the Laurent expansion is asymptotically stable since
all of its poles are zero, while the noncausal (forward-shift) part of
the Laurent expansion captures the unstable and noncausal com-
ponents of the transmissibility operator. Subspace identification is
also used with the measured pseudo input and the delayed meas-
ured pseudo output to identify a noncausal state space model.

Since the transmissibility operator has the form of an
input—output time-series model, methods developed for ARMAX
models are candidates for this application. Some caution is needed,
however, since the pseudo input and pseudo output of the transmis-
sibility are both noisy, leading to an errors-in-variables problem
with noise on both the input and output signals [35-37]. In addition,
neither the pseudo input nor the pseudo output signals (irrespective
of the noise) can be expected to be white, thus complicating the
consistency analysis. Due to the difficulty of the errors-in-variables
problem, we compare the one-step prediction error for the estimates
of the transmissibility operator obtained using least squares (LS),
prediction error methods (PEM), instrumental variables (IV), and
subspace identification, and we compare the accuracy of the esti-
mates based on the one-step prediction error.

Transmissibility operators were used in Ref. [38] for rate-gyro
health monitoring in aircraft. Moreover, transmissibility operators
were used in Ref. [39] for aircraft structural health monitoring. In
addition, transmissibility operators were used in Ref. [40] for fault
detection in an acoustic system consisting of a drum, two speak-
ers, and four microphones. In the present paper, we extend the
results in Ref. [40] by considering an experimental setup consist-
ing of an acoustic system with three speakers and six micro-
phones. Each speaker is an actuator, and each microphone is a
sensor that measures the acoustic response at its location. Meas-
urements from the six microphones are used to construct transmis-
sibility operators, which in turn are used to detect and localize
changes in the dynamics of the acoustic system or the micro-
phones and by computing the resulting one-step residual.

The paper is organized as follows: In Sec. 2, we derive multi-
input, multi-output transmissibility operators. In Sec. 3, we show
that transmissibility operators can be noncausal, unstable, and of
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unknown order and thus noncausal FIR models can be used to
approximate transmissibility operators with these properties. In
Sec. 4, we use noncausal FIR models with least squares, predic-
tion error methods, instrumental variables, and subspace methods
to identify transmissibility operators. In Sec. 5, we use the identi-
fied transmissibility operators for fault detection and localization
in acoustic systems. Finally, we give conclusions in Sec. 6.

2 Multi-Input, Multi-Output Transmissibility
Operators

We consider the linear system

£(1) = Ax(0) + Bu(1 M

(0) = xo @)
3(f) = Caxlt) + Diu(t) € R™ 3)
Yolt) = Cox(t) + Dou(t) € R~ @

where u € R™, p is the number of measurements, m is the number
of pseudo inputs, and p — m is the number of pseudo outputs. The
coefficient matrices have dimensions A € R™" B € R™" C; €
]Rmxn7 C, € ]R(pfm)xn’Di c Rmxm’ and D, € R(p—m)xm.

The goal is to obtain a relation between y; and y, that is inde-
pendent of both the initial condition xy and the input u. Suppose
that m=1 and p = 2. Transforming Eqs. (3) and (4) to the Lap-
lace domain yields

$i(s) = Ci(sl — A) 'xo + [Ci(s] — A) 'B+Di(s)  (5)
Fo(5) = Co(sT —A) 'xo + [Co(sT — A) "B+ D,Jii(s)  (6)

respectively, and thus

$o(s) _ Co(sI fA)_lxo + [CO(SI 7A)_1B +Do}ﬁ(s) o
W) st — A) g + [Ci(sl ~A)'B +Di]ﬁ(s)

Note that, if xq is zero, then #(s) can be canceled in Eq. (7), and
Yo (s) and y,(s) are related by a transmissibility that is independent
of the input. However, if x, is not zero, then #(s) cannot be can-
celed in Eq. (7).

Alternatively, we consider a time-domain approach using the
differentiation operator p. Define

Ti(p) £ Ciadj(pl — A)B + Did(p) € R""[p] ®)
To(p) £ Coadj(pl — A)B + Dod(p) € RV™>"[p]  (9)

3(p) £ det(pl — A) € R[p| (10)

where / is the n X n identity matrix and adj denotes the adjugate.
Then, the transmissibility operator from y; to y, is the operator [12]

T(p)=To(p)I; " (p) (11)

Note that Eq. (11) is independent of both the initial condition x,
and the input u. As in Ref. [12]

Yo(t) =T (p)yi() (12)
represents the differential equation
detl'i(p)yo(7) = Lo (p)[adj I'i(p)lyi(1) (13)

The transmissibility operator (11) is in continuous time. Hence-
forth, we assume that measurements of the output signals are
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obtained in discrete time, and we consider discrete-time transmis-
sibility operators in the forward-shift operator q [41].

3 Noncausal Finite Impulse Response Approximation
of Transmissibility Operators

Expression (11) shows that 7 (p) contains information about
the zeros of the system but not the poles. Therefore, a non-
minimum-phase zero in the input channel of a transmissibility
operator results in an unstable transmissibility operator. More-
over, if the output channel of a transmissibility operator has more
zeros than the input channel, then the transmissibility operator is
improper, that is, noncausal. Since this information may not be
known in advance, we consider a class of models that can be used
to approximate transmissibility operators that may be both unsta-
ble and improper.

Finite impulse response models can be used to describe linear
asymptotically stable systems [42]. In addition, noncausal FIR
models can be used to describe systems that are both noncausal
and unstable [34]. A noncausal FIR model, which approximates
the Laurent series of an unstable system, involves both positive
and negative powers of the Z-transform variable z. The negative
powers of z approximate the asymptotically stable part of the plant
outside of a disk (that is, inside a punctured plane), whereas the
positive powers of z approximate the unstable part of the plant
inside a disk. Inside the common region, which is an annulus, the
Laurent series represents a noncausal model, as evidenced by the
positive powers of z [34]. Noncausal FIR models were also used
in Refs. [43-45].

Consider the transmissibility operator whose input is y; and
whose output is y,. We can write

ZHy, —i) (14)

i=—00

where H; € RP~™*" for all i € (—o0,00) are the coefficients of
the Laurent series of 7 (z) in the annulus of analyticity that con-
tains the unit circle. Let r, d be positive integers and define

0,0 2[H 4 H,] € Re—m)xum (15)

where yér +d+ 1. Let q~! be the backward shift operator and
define the noncausal FIR model for the transmissibility (11) as [34]

SN (16)

i=—d

71 01d

Then, the noncausal FIR model output can be defined as [34]

Yok|0ra) 2T (q", 60,.4)3:(k) 17

4 Identification of Transmissibility Operators Using
Noncausal Finite Impulse Response and State Space
Models

To identify transmissibility operators that are possibly
improper, unstable, and of unknown order, we first use noncausal

FIR models with LS, PEM [46], and IV [47].
For each choice of transmissibility coefficients

91‘711 é[H,d } c Rp m) X (r+d+1)m (18)

it follows that:

71 Hld

LR (19)

i=—d
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The residual of the transmissibility T(qfl,(g,.,d) at time k is

defined to be the one-step prediction error

e(k0,.4) 2 yo (k) = yo(k|0,.4)
= Yok) = T(q",B,.0)yi (k)
= > Hiyi(k —i) (20)
i=—d

The accuracy of 9,.,,1 is measured by the performance metric

(—d
_ A 1 _
V(0,a,0) =——— k|0, 21
)2 S e
where || - ||, is the Euclidean norm and £ 4- 1 is the number of data

samples. Then, the least squares estimate 0, 4 ¢ of 0, 4 is given by

ér',dl Larg ming | V(é,.‘d, 0) (22)

where

Orac2[H gy H,,] € Ro=mx(rtdtim (23)
We use the maTLAB functions pem and iv4 to obtain PEM and IV
estimates 9, d, of 0, 4, respectively.

It follows from Eq. (20) that the residual of the identified trans-

missibility 7 (q ', 0, 4¢) at time k is given by
e(k|él',d,[) = yo(k) - yo(klar.d.é)
=o(k) = T(q",0,.a0)yi(k)
= > Hipilk—1i) (24)
i=—d
and thus
1 (—d

V(0 t) = =g

Forall r <k </¢—w —d, define

ekl Ol @9
k=r

wk

> leil0ran)ll3 (26)
i=k

E(k|, g0, w) 2

which is the norm of the residual of the data window of size w + 1
starting at time-step k. Expressions (24)—(26) measure the accu-
racy of the transmissibility from y; to y, for the estimate 0, 4 of
0,4. The identification data set used to obtain 0,4, is different
from the validation data set used to compute Egs. (24)—(26).

For subspace identification, we delay the pseudo output d steps
with respect to the pseudo input, and we use the MATLAB command
n4sid(data, n)Ato obtain a noncausal state space model of order 7.
Let Ogsﬁn’d,/ —(Anﬂ"[, Bn dis C,“M, D,, d /) be the identified state
space model of order n using ¢ samples and d steps of delay
applied for the pseudo output with respect to the pseudo input.

Then, the identified transmissibility operator 7 (q~", Os.4.¢) can
be represented by the noncausal state space model

x(k+1) = A, gpx(k) + Bragyi(k + d) @27

yo(k‘(t)ss,n,d,k) - én,djx(k) + ljn,d,(fyi(k + d) (28)

Therefore, we can write

T(qil 5 ess,n,d,[) = qd(én#dﬁé(q] - An,d.i)ilénd.i + Dn,d,l) (29)
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and the state space model output can be written as

yo(kléssn‘d/) - T(q717 éssn,d,é’)yi(k) (30)

The residual of the identified transmissibility 7 (q~", 955‘,,7,175) at
time £ is defined to be the one-step prediction error

E(k‘g)ss,n.dl) é))o (k) — Yo (k|éss,n.d.1.’)

= Yo(k) = T(q", Oss pa0)yi(k) 31

The accuracy of OSS‘,,M is measured by the performance metric

1 1—d

V(Onanrr ) 25 S lesnadll, G2

—d—r—+1

where 7 has the same value as in Eq. (25) in order to perform a
fair comparison between Eqs. (25) and (32).

Constructing a meaningful transmissibility operator requires
knowledge of the number m of independent external excitation
signals acting on the system. Since m may be unknown, we esti-
mate m using the following procedure. Let i1 € {1,...,p — 1} and
p €{l,...,p—m}. We identify a transmissibility operator with
m pseudo inputs and p pseudo outputs using the methods dis-
cussed earlier. For each identified transmissibility operator, we
compute the residual using Eq. (24) or (31) and the norm of the
residual using Eq. (25) or (32). The estimated number of inde-
pendent external excitation signals is the value of 7 at which a
sharp drop occurs in the norm of the residual. If a sharp drop is
not obvious, then the estimated number of external excitation sig-
nals is the smallest value of 7 for which no sizable improvement
is obtained for larger values of 7. Redundant sensors can then be
removed or retained for possible benefit in terms of the accuracy
of the identified transmissibility operators. This method will be
illustrated in Sec. 5.2.

5 Application to Health Monitoring in Acoustic
Systems

In order to investigate the ability of transmissibility operators to
detect changes in the dynamics of an acoustic system, we consider
the experimental setup shown in Fig. 1. The setup consists of an acous-
tic space with three speakers Spkl, Spk2, and Spk3 and six micro-
phones Micl, ..., Mic6. Each speaker is an actuator, and each
microphone is a sensor that measures the acoustic response at its loca-
tion. All actuator signals are generated using MATLAB and sent to the
speakers through a data acquisition card. The sampling rate is 1000 Hz.

Let uy, up, and uz be the measurements of the signals of the
speakers Spk1, Spk2, and Spk3, respectively, and let yy, ..., ys be
the measurements obtained by the sensors Micl, ..., Mic6, respec-
tively. We assume that data are available for 1 < £ < 20, 000.

5.1 Identification of Transmissibility Operators Under
Healthy Conditions. To identify transmissibility operators, we
delay the pseudo output d steps with respect to the pseudo input
and perform the identification using the pseudo input and the
delayed pseudo output. We use LS, PEM, and IV with a noncausal
FIR model with r=24, d =25, and the first £ = 6000 samples
to obtain the identified transmissibilities. The least squares
estimate is obtained using Eq. (22), where the PEM and IV
estimates are obtained wusing the MATLAB commands
pem(data,’ n’ , (r+d+1)* ones (1, i), ' nc , r+d+1)
and 1iv4(data,’nb’, (r+d+1)*ones(l,1i)), respec-
tively, where i is the number of pseudo inputs.

For subspace identification, we delay the pseudo output d steps
with respect to the pseudo input, and we use the MATLAB command
ndsid(data,n) and the first £ = 6000 samples to obtain the
identified noncausal state space model of order ». Since an nth-order
infinite impulse response model has 2n + 2 parameters and an nth-
order FIR model has n parameters, we compare an infinite impulse
response model of order n to an FIR model of order 2n 4 2. Since
the order of the noncausal FIR model is r +d + 1, for subspace
identification, we use the model order n = (r +d — 1)/2 = 24.

Fig. 1 Experimental setup. The setup consists of an acoustic space with three speakers
Spk1, Spk2, and Spk3 and six microphones Mic1, ... Mic6. Each speaker is an actuator, and
each microphone is a sensor that measures the acoustic response at its location.
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Fig. 2 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1 is driven with a realization of
bandlimited white noise with a bandwidth of 500 Hz and Spk2
and Spk3 are not operating. Th|s plot shows the estimated Mar-
kov parameters 0, a0 0of T(q71,0, 4) from the pseudo input y; to
the pseudo output y, for two dlfferent runs of the experiment.

0.05

005! | | I . .
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Fig. 3 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1 is driven with a realization of
bandlimited white noise with a bandwidth of 500 Hz. This plot
shows the measurements of ys and the computed one-step pre-
diction ys =7 (q" B,dg)yh where 0,” is obtained from run 1
shown in Fig. 2.

Suppose that Spk1 is driven with a realization of band-limited
white noise with a bandwidth of 500 Hz and Spk2 and Spk3 are
not operating. Figure 2 shows the estimated Markov parameters
0,q00f T(q7",0,4) from the pseudo input y; to the pseudo output
Ve obtained using least squares for two different runs of the experi-
ment. Flgure 3 shows yg and the computed one-step prediction
$6=T(q ", 0ra¢)y1 for 15,000 < k < 15,300, that is, for r €
[15,15.3] s.

Next, suppose that Spk1 and Spk2 are driven with realizations
of bandlimited white noise with a bandwidth of 500 Hz and Spk3
is not operating. Figure 4 shows the entries of the estimated Mar-

kov parameters @,.,dj of T(q7!,0,,4) from each pseudo input y,
and y; to the pseudo output yg obtained using least squares for two
different runs of the experiment. Figure 5 shows ys and the com-

puted one-step prediction yg 2 T(q ", 0r00)[y1 y3]" for 15,000 <
k < 15,300, that is, for 7 € [15,15.3] s.

Next, suppose that Spkl, Spk2, and Spk3 are driven with real-
izations of bandlimited white noise with a bandwidth of 500 Hz.
Figure 6 shows the entries of the estimated Markov parameters
0,40 0f T(q',0,,) from each pseudo input y;, y3, and ys to the
pseudo output ys obtained using least squares for two different
runs of the experiment. Flgure 7 shows yg and the computed one-
step prediction o277 (q~",0,4¢)[y1 y3 ys] for 15,000 <k <
15,300, that is, for 7 € [15, 15.3] .

Next, suppose that Spkl, Spk2, and Spk3 are driven with the
harmonic signals
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Fig. 4 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1 and Spk2 are driven with real-
izations of band-limited white noise with a bandwidth of 500 Hz
and Spk3 is not operating. This plot shows the entries of the
estimated Markov parameters 0,d ¢ of T(q7',0,4) from each
pseudo input y; and y; to the pseudo output y;s for two different
runs of the experiment.
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Fig. 5 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1 and Spk2 are driven with real-
izations of band-limited white noise with a bandwidth of 500 Hz.
This plot shows the measurements of ys and the computed
one-step prediction yg=7(q7" H,dg)[y1 y3] , Where 0,4, is
obtained from run 1 shown in Flg 4.
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Fig. 6 Spkl1, Spk2, and Spk3 are driven with realizations of
bandlimited white noise with a bandwidth of 500 Hz. The plot
shows the entries of the estimated Markov parameters 0, 4, of
T(q~',0,4) from each pseudo input y;, y3, and ys to the pseudo
output yg for two different runs of the experiment.
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Fig. 7 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1, Spk2, and Spk3 are driven with
realizations of bandlimited white noise with a bandwidth of
500 Hz. This plot shows the measurements of y; and the com-
puted one-step prediction Ve=T(q" ", 0ra0)y1 V3 y5]T, where
0, a. is obtained from run 1 shown in Fig. 6.
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Fig. 8 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1, Spk2, and Spk3 are driven with
the harmonic signals (33)—(35). This plot shows the measure-
ments of y; and the computed one-step prediction
Vo= ’T(q“,a,_,d_l)[m Vs ys]T, where 0, 4, is obtained from run 1
shown in Fig. 6. This figure confirms that the identified trans-
missibility obtained under one type of excitation signal can be
used under another type of excitation signal. This is advanta-
geous for fault detection, where transmissibilities are identified
under one set of conditions and used under a different set of
conditions.

uy (k) = sin (0.10k) + sin (0.11k) (33)
13 (k) = sin (0.12k) + sin (0.13k) (34)
uz(k) = sin (0.14k) + sin (0.15k) (35)

respectively. Figure 8 shows ys and the computed one-step predic-
tion yg éT(q”?@r,d,g)U] 3 ys]T for 15,000 < k < 15,300, that
is, for ¢ € [15,15.3] s, where 0, is the least squares estimate

obtained from run 1 shown in Fig. 6 using broadband excitation.
Figure 8 confirms that the identified transmissibility obtained
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Fig. 9 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1 is driven with a realization of
bandlimited white noise with a bandwidth of 500 Hz and Spk2
and Spk3 are not operating. This plot shows the norm of the
residual for the identified transmissibility operators with 1,....5
pseudo inputs. Note that the benefits produced by using 2, 3, 4,
or 5 pseudo inputs are not significant, which correctly suggests
that the number of independent external excitation signals act-
ing on the systems is 1.

under one type of excitation signal can be used under another type
of excitation signal. This is advantageous for fault detection,
where a transmissibility is identified under one set of conditions
and used under a different set of conditions.

5.2 Estimating the Number of Inputs Acting on the
System. Suppose that the system shown in Fig. 1 is operating
under healthy conditions, and suppose that Spk1 is driven with a
realization of bandlimited white noise with a bandwidth of 500 Hz
and Spk2 and Spk3 are not operating. Figure 9 shows the norm of
the residual for ea(:hA identified transmissibility operator whose
pseudo input is Y;=[y; -~-y,-]T, for i=1,...,5, and whose
pseudo output is ys obtained using LS, PEM, IV, and subspace
methods. Note from Fig. 9 that the improved residual obtained by
using 2, 3, 4, or 5 pseudo inputs is not significant, which correctly
suggests that there is one independent external excitation signal
acting on the system.

Next, suppose that the system shown in Fig. 1 is operating
under healthy conditions, and suppose that both Spkl and Spk2
are driven with realizations of bandlimited white noise with a
bandwidth of 500 Hz, and Spk3 is not operating. Figure 10 shows
the norm of the residual for each identified transmissibility opera-
tor whose pseudo input is Y; for i = 1,...,5, and whose pseudo
output is ys obtained using LS, PEM, IV, and subspace methods.
Figure 10 shows that the identified transmissibility operator with
two pseudo inputs yields significantly lower residual than the
identified transmissibility operators with one pseudo input. How-
ever, the improved residuals obtained by using 3, 4, or 5 pseudo
inputs are not significant, which correctly suggests that the num-
ber of independent external excitation signals acting on the sys-
tems is two.

Next, suppose that the system shown in Fig. 1 is operating
under healthy conditions, and suppose that Spk1, Spk2, and Spk3
are driven with realizations of bandlimited white noise with a
bandwidth of 500 Hz. Figure 11 shows the norm of the residual
for the identified transmissibility operator whose pseudo input is
Y;fori=1,...,5, and whose pseudo output is ys obtained using
LS, PEM, IV, and subspace methods. Figure 11 shows that the
identified transmissibility operators with three pseudo inputs yield
significantly lower residual than the identified transmissibility
operators with one and two pseudo inputs. However, the improved
residual obtained by using four or five pseudo input is not signifi-
cant, which correctly suggests that the number of independent
external excitation signals acting on the systems is three.

Figure 12 shows the norm of the residuals for the identified
transmissibility operators obtained using least squares with
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Fig. 10 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1 and Spk2 are driven with real-
izations of bandlimited white noise with a bandwidth of 500 Hz
and Spk3 is not operating. This plot shows norm of the residual
for the identified transmissibility operators with 1,... 5 pseudo
inputs. Note that the benefits produced by using two pseudo
inputs are significant, but the benefits produced by using 3, 4,
or 5 pseudo inputs are not significant, which correctly suggests
that the number of independent external excitation signals act-
ing on the systems is 2.
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Fig. 11 For the acoustic system shown in Fig. 1 operating
under healthy conditions, Spk1, Spk2, and Spk3 are driven with
realizations of band-limited white noise with a bandwidth of
500 Hz. This plot shows norm of the residual for the identified
transmissibility operators with 1, ... 5 pseudo inputs. Note that
the benefits produced by using two or three pseudo inputs are
significant, but the benefits produced by using four or five
pseudo inputs are not significant, which correctly suggests
that the number of independent external excitation signals act-
ing on the systems is 3.

1,...,5 pseudo inputs for the case of one, two, or three speakers
driven with realizations of bandlimited white noise with a band-
width of 500Hz. Figure 12 shows that, in order to reduce the
residuals, the number of pseudo inputs has to be greater than or
equal to the number of independent inputs acting on the system.

5.3 Health Monitoring Using Transmissibility Operators

5.3.1 System Health Monitoring. To emulate change in the
dynamics of the acoustic system, we remove a blanket that covers
the acoustic space during the experiment. For structural health
monitoring, we use the identified transmissibility 7 (q~', 0, .4/)
whose pseudo input is y; = [y; y3 yS}T and whose pseudo output
is yo = y¢ and whose Markov parameters are obtained using least
squares from run 1 shown in Fig. 6.
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Fig. 12 For the acoustic system shown in Fig. 1 operating
under healthy conditions, this plot shows the norm of the resid-
uals for the identified transmissibility operators obtained using
LS with 1,... 5 pseudo inputs for the case of 1, 2, or 3 speakers
driven with realizations of bandlimited white noise with a band-
width of 500 Hz. This plot shows that to reduce the residuals,
the number of pseudo inputs has to be greater than or equal to
the number of independent inputs acting on the system.
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Fig. 13 For the acoustic system shown in Fig. 1, Spk1, Spk2,
and Spk3 are driven with a band-limited white noise with a
bandwidth of 500 Hz. At approximately t=11s, the blanket that
covers the acoustic system is removed. This plot shows
E(K|0,.q4.,w) for T(q",0,.4.), where w= 500 steps and 0, 4, is
the LS estimate obtained from run 1 shown in Fig. 6 using
broadband excitation. Note the change in E(k|0,q. w) at
approximately t=11s due to the change in the dynamics of the
acoustic system.

Suppose that Spkl, Spk2, and Spk3 are operating simultane-
ously and are driven with a band-limited white noise with a band-
width of 500Hz. At approximately t=11s, we remove the
blanket that covers the acoustic system. Figure 13 shows
E(k|0y.4.0,w) for T(q7",0,40), where w=500 steps. Note from
Fig. 13 the change in E(k|0, 4, w) at approximately 7= 11 due to
the change in the dynamics of the system.

Next, suppose that Spk1, Spk2, and Spk3 are operating simulta-
neously and are driven with the harmonic signals (33)—(35). At
approximately r=11s, we remove the blanket that covers the
acoustic system. Figure 14 shows E(k|0, 40, w) for T7(q ", 0,.4.),
where w=500 steps. Note from Fig. 14 the change in
E(k|0,40,w) at approximately /=11s due to the change in the
dynamics of the system.
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Fig. 14 For the acoustic system shown in Fig. 1, uy, u,, u; are
as shown in Egs. (33)—(35). At approximately t=11s, the blan-
ket that covers the acoustic system is removed. This plot
shows E(k|0; 4., w) for T(q™",0,4.), where w=500 steps and
0rq. is the LS estimate obtained from run 1 shown in Fig. 6
using broadband excitation. Note the change in E(k|0; 4., w) at
approximately t=11s due to the change in the dynamics of the
acoustic system.

0.5 T T T T

0.25 | |
| WJ
0.15 : i :
o 2 4 6 8 10 12 14 16 18 20

Time (sec)

Fig. 15 For the acoustic system shown in Fig. 1, Spk1, Spk2,
and Spk3 are driven with a band-limited white noise with a
bandwidth of 500 Hz. At approximately t=10s, a fault occurs in
Mic2. This plot shows E(k|0;q4,, w) for T(q'.0,4,). where
w =500 steps. Note the change in E(k|0, 4., w) at approximately
t=10s due to the faulty microphone.
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Fig. 16 For the acoustic system shown in Fig. 1 with uy,..., us

are as shown in Eqgs. (33)—(35). At approximately t=10s, a fault
occurs in Mic3. This plot shows E(k|0; 4., w) for T(q‘1,0,.d,¢),
where w = 500 steps. Note the change in E(k|0, 4., w) at approx-
imately t=10s due to the faulty microphone.

5.3.2 Sensor Health Monitoring. For sensor health monitor-
ing, the level of the residual for a transmissibility changes as one
of the sensors that are used to construct the transmissibility
becomes faulty. We introduce faults in the microphones by

021017-8 / Vol. 140, APRIL 2018

Table 1 Transmissibilities 71,..., 7 with the pseudo inputs
and the pseudo outputs as shown in this table are used in the
fault localization algorithm shown in Fig. 17

Yi Yo
T [y1y2y3vays]" Yo
7, 1 y2 33" Y4
Ts 233 )74]T Vs
T, [y y2 33" Vs
Ts [YI Y3 )’4]T Y5
Ts V1 s YS]T Yo

modifying the low-pass analog filter that the microphone signal
passes through before going to the dSPACE system.

Suppose that Spkl, Spk2, and Spk3 are operating simultane-
ously and are driven with a band-limited white noise with a band-
width of 500Hz. Let 7'(q*17 0r40), be the identified
transmissibility whose pseudo input is y; = [y; y2 y3]T and whose
pseudo output is y, = ys obtained using least squares with a non-
causal FIR model with r=24 and d=25. At approximately
t=10s, a fault occurs to Mic2. Figure 15 shows a plot of
E(k|0y.a.0,w) for T(q7",0,4¢), where w=>500 steps. Note the
change in E(k|0, 40, w) at approximately 7= 10s due to the faulty
microphone.

Next, suppose that u;, 1y, u3 are as shown in Egs. (33)—(35). At
approximately r=10s, a fault occurs to Mic3. Figure 16 shows a
plot of E(k|0, 4, w), where w =500 steps, for the identified trans-
missibility 7(q~!,0,4¢) obtained by driving the speakers with
white excitations. Note the change in E(k|0,4,,w) at approxi-
mately =10 due to the faulty microphone.

5.4 Fault Localization. Consider the transmissibilities
T4, ...,T¢ whose pseudo inputs and pseudo outputs are as shown
in Table 1. We assume that, during the experiment, at most one
microphone is faulty. Figure 17 shows an algorithm to localize the
fault whether it has occurred in the acoustic system or in one of
the microphones.

Suppose that only Spk1 is operating and is driven with a band-
limited white noise with a bandwidth of 500 Hz. We introduce a
change in the dynamics of the acoustic system by removing the
blanket at approximately 7=10s. Figure 18 shows a plot of
E(k|0, 40, w) for the identified transmissibilities Ti(q",0,40) of
T; for i=1,...,6. Note from Fig. 18 that a fault has been
detected by all transmissibilities, and thus, using Fig. 17, we cor-
rectly conclude that the fault is due to the change in the dynamics
of the acoustic system.

Next, suppose that u;,uy,u3 are as shown in Egs. (33)—(35).
We introduce a fault in Mic2 at approximately ¢ = 10s. Figure 19
shows a plot of E(k|0,4¢,w) for the identified transmissibilities
Ti(q',0,4¢) of T; fori=1,...,6. Note from Fig. 19 that a fault
is detected by all transmissibilities except 7's and 7, and thus,
using Fig. 17, we correctly conclude that the fault is in Mic2.

Next, suppose that u;,u,,u3 are as shown in Egs. (33)—(35).
We introduce a fault in Mic3 at approximately ¢ = 10s. Figure 20
shows a plot of E(k|0,4¢,w) for the identified transmissibilities
Ti(q',0,4¢) of T; fori=1,...,6. Note from Fig. 20 that a fault
is detected by all transmissibilities except 7¢, and thus, using
Fig. 17, we correctly conclude that the fault is in Mic3.

Next, suppose that u;,uy,u3 are as shown in Egs. (33)—(35).
We introduce a fault in Mic5 at approximately t=10s. Figure
21 shows a plot of E(k|0, 4., w) for the identified transmissibil-
ities 7;(q",0,4¢) of T, fori = 1, ..., 6. Note from Fig. 21 that a
fault has been detected by all transmissibilities except 7 ,, and
thus, using Fig. 17, we correctly conclude that the fault is in
Mic5.
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using ‘B
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using B
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Fig. 17 Fault localization algorithm. This algorithm is consistent with the transmissibility operators as defined in Table 1.
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Fig. 18 For the acoustic system shown in Fig. 1, Spk1, Spk2,
and Spk3 are realizations of bandlimited white noise with a
bandwidth of 500 Hz. At approximately t=10s, the blanket that
covers the acoustic system is removed. This plot shows
E(k\(),dl, w) of the identified transmissibilities 7 ;(q~’ 0,,“) of
T;, for i=1,...,6, where w=500 steps. Note the change in
E(k\o,“, w) for all transmissibilities at approximately t=10s
due to the change in the dynamics of the system. Using Fig. 17,
we correctly conclude that the fault is in the system.
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Fig. 19 For the acoustic system shown in Fig. 1, uy, u,, u; are
as shown in Egs. (33)—-(35). At approximately t=10s, a fault
occurs in Mic2. This plot shows E(k|0,d¢ w) for the identified
transmissibilities 7 ;(q~’ 0,”) of T; for i=1,...,6, where
w =500 steps. Note the change in E(k|0, d.e, w) of aII transm|35|-
bilities except 75 and 7 at approximately t=10s due to the
faulty microphone. Using Fig. 17, we correctly conclude that
Mic2 is faulty.
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Fig. 20 For the acoustic system shown in Fig. 1, uy, U2, u; are
as shown in Egs. (33)—-(35). At approximately t=10s, a fault
occurs in Mic3. This plot shows E(k|0, 4., w) for the identified
transmissibilities 7;(q™",0,4,) of T;, for i=1,...,6, where
w =500 steps. Note the change in E(k|0, 4., w) of all transmissi-
bilities except 7 at approximately t=10s due to the faulty
microphone. Using Fig. 17, we correctly conclude that Mic3 is
faulty.
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Fig. 21 For the acoustic system shown in Fig. 1, uy, u>, u; are
as shown in Egs. (33)—(35). At approximately t=10s, a fault
occurs in Mic5. This plot shows E(k|0; 4., w) for the identified
transmissibilities 7;(q™",0,4,) of T;, for i=1,...,6, where
w =500 steps. Note the change in E(k|0, 4., w) of all transmissi-
bilities except 7, at approximately t=10s due to the faulty
microphone. Using Fig. 17, we correctly conclude that Mic5 is
faulty.

6 Conclusions

A transmissibility operator is a relationship between pairs or
sets of sensors that is independent of the excitation signal and the
initial conditions of the underlying system. Constructing a trans-
missibility operator requires knowledge of the number of external
excitation signals acting on the system, which as we showed can
be estimated from the sensor measurements. A transmissibility
operator can be noncausal, unstable, and of unknown order and
thus a noncausal FIR model can be used to identify transmissibil-
ity operators. This paper considered an application of

021017-10 / Vol. 140, APRIL 2018

transmissibility operators for fault detection and localization in
acoustic systems. The experimental setup we considered consists
of an acoustic system with three speakers and six microphones.
Measurements from the six microphones were used with least
squares, prediction error methods, instrumental variables, and sub-
space methods to identify transmissibility operators. The identi-
fied transmissibility operators were used to detect and localize
changes in the dynamics of the acoustic system and the
microphones.
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