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Tissue-mimicking phantoms with high scatterer concentrations were examined using quantitative

ultrasound techniques based on four scattering models: The Gaussian model (GM), the Faran model

(FM), the structure factor model (SFM), and the particle model (PM). Experiments were conducted

using 10- and 17.5-MHz focused transducers on tissue-mimicking phantoms with scatterer concen-

trations ranging from 1% to 25%. Theoretical backscatter coefficients (BSCs) were first compared

with the experimentally measured BSCs in the forward problem framework. The measured BSC

versus scatterer concentration relationship was predicted satisfactorily by the SFM and the PM. The

FM and the PM overestimated the BSC magnitude at actual concentrations greater than 2.5% and

10%, respectively. The SFM was the model that better matched the BSC magnitude at all the scat-

terer concentrations tested. Second, the four scattering models were compared in the inverse prob-

lem framework to estimate the scatterer size and concentration from the experimentally measured

BSCs. The FM did not predict the concentration accurately at actual concentrations greater than

12.5%. The SFM and PM need to be associated with another quantitative parameter to differentiate

between low and high concentrations. In that case, the SFM predicted the concentration satisfacto-

rily with relative errors below 38% at actual concentrations ranging from 10% to 25%.
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PACS number(s): 43.35.Bf, 43.35.Yb, 43.80.Vj, 43.80.Cs [CCC] Pages: 3735–3747

I. INTRODUCTION

Quantitative ultrasound (QUS) techniques are based on

the frequency-based analysis of the signals backscattered

from biological tissues to determine the physical properties of

the average tissue microstructures. These tissue characteriza-

tion techniques aim to differentiate between diseased and

healthy tissue and to detect cancer tumors. QUS techniques

rely on theoretical scattering models to fit the spectrum of the

echoes backscattered by biological tissues to an estimated

spectrum using an appropriate model. The theoretical scatter-

ing model most frequently used for this purpose is the Gaus-

sian model (GM) developed by Lizzi1,2 that yields two tissue

properties: The average scatterer size and the acoustic concen-

tration (i.e., the product of the scatterer number density by the

square of the relative impedance difference between the scat-

terers and the surrounding medium). This approach has been

successfully used to characterize the eye,3 prostate,4 breast,5–7

apoptotic cells,8 and cancerous lymph nodes.9 Other theoreti-

cal scattering models such as the fluid-filled sphere model

(FFSM)6,7 and the solid sphere model10 [which we refer to

here as the Faran model (FM)] have also been used to predict

average scatterer sizes by modeling the medium by an ensem-

ble of fluid or solid spheres. In the aforementioned models

(GM, FFSM and FM), the scatterers were assumed to be ran-

domly distributed (i.e., to have a low scatterer concentration),

and multiple scattering was neglected (in line with the Born

approximation). Under these hypotheses, the power of the

backscattered signals increases linearly with the scatterer con-

centration and depends on the size and acoustic properties of

the tissue scattering structures. This linear relationship has

been used to monitor the scatterer size and concentration.

However, the assumption that the scatterers are randomly

distributed may not hold in tumors with densely packed

cells.11 This means that a scattering theory involving a high

cell concentration (i.e., accounting for a dense medium)

should improve QUS techniques to determine the microstruc-

tural properties of tissues. Some theoretical efforts have been

made in the field of ultrasonic blood characterization to take

the high cell concentrations into account12 because the con-

centration of red blood cells in blood (or hematocrit) ranges

between 30% and 50%. In the Rayleigh scattering regime

(i.e., where the product of the wavenumber by the scatterer ra-

dius is ka � 1), Twersky13 developed a particle model (PM)

giving an expression for the backscattered intensity in terms

of the single-particle backscattering cross section, the particle

number density, and the packing factor. The packing factor is

a measure of orderliness in the spatial arrangement of par-

ticles. It depends on the cell concentration but not on the fre-

quency. The PM succeeded in explaining the nonlinear

relationship between the backscatter amplitude and the scat-

terer concentration in the case of non-aggregating red blood

cells.14 Again in the field of blood characterization, the PM

was later generalized to include any cell spatial distributions

(i.e., aggregating red blood cell distributions) by introducing

the frequency dependent structure factor and called the struc-

ture factor model (SFM).15,16 The SFM sums the contribu-

tions from individual cells and models the cellular interaction

by a statistical mechanics structure factor, which is defined as
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the Fourier transform of the spatial distribution of the

cells.15,16 Note that the low frequency limit of the structure

factor is by definition the packing factor used under Rayleigh

conditions.13 Until quite recently, the PM and SFM were only

used for blood characterization purposes, but Vlad et al.11

have performed two-dimensional computer simulations based

on the SFM to explain the backscatter behavior as a function

of the particle size variance in the case of centrifuged cells

undergoing cell death processes. These centrifuged cells mim-

icked the spatial distribution and packing of tumor cells.11

The aim of this study was to compare the backscatter

coefficient (BSC) predictions given by four theoretical

scattering models, namely, the GM, FM, PM, and SFM,

with the BSCs measured experimentally on tissue-

mimicking phantoms. These phantoms consisted of poly-

amide microspheres (mean radius, 6 lm) suspended in

water at various scatterer concentrations ranging from 1%

to 25%. The high scatterer concentrations were used to

mimic densely packed cells in tumors. Ultrasonic back-

scatter measurements were performed at frequencies rang-

ing from 6 to 22 MHz. The theoretical BSCs based on

different scattering models were first compared with the

BSCs measured experimentally in the forward problem

framework, i.e., the theoretical BSCs were determined

from known structural and acoustical properties of the

polyamide microspheres. Second, comparisons were made

between the four theoretical scattering models in the

inverse problem framework to estimate the scatterer size

and concentration from the experimentally measured

BSCs. To our knowledge, the scatterer concentration has

never been previously determined using the PM and SFM.

Last, the validity of the PM and the SFM as means of

determining scatterer concentrations is discussed.

II. SCATTERING

Four scattering models, GM, FM, SFM, and PM, are

presented in this section. For all four scattering models, the

formulations were written for monodisperse spheres, and it

was assumed that no multiple scattering occurred among the

scatterers. When solving the inverse problem in the frame-

work of each theory, the acoustical properties of spheres and

the surrounding fluid were assumed to be known a priori,

and a minimization procedure was used to fit a curve to the

measured BSC to estimate the size a* and concentration /*

of the scatterers.

A. The GM

The BSC can be modeled using a spatial autocorrelation

function describing the shape and distribution of the scatter-

ers in the medium. The scattering sites are usually assumed

to be randomly distributed and to have simple geometric

shapes, which can be modeled in the form of Gaussian scat-

terers representing continuous functions of changing imped-

ance. In this framework, the BSC can be expressed as the

product of the BSC in the Rayleigh limit and the backscatter

form factor.17 The form factor describes the frequency de-

pendence of the scattering based on the size and shape of the

scatterers. The Gaussian form factor has been used for many

applications.3–9 It describes tissue structures as continuously

varying distributions of acoustic impedance fluctuations

about the mean value, and the effective radius is related to

the impedance distribution of the scatterer.

The theoretical BSC used with the GM formulation is

therefore written as follows:5,17

BSCGMðkÞ ¼
k4V2

s nz

4p2
e�0:827k2a2 ; (1)

where k is the wave number, Vs the sphere volume, nz the

acoustic concentration, and a the mean effective radius of

the scatterer.

The effective radius a* and the acoustic concentration

n�z were determined by comparing the logarithm of the ex-

perimental BSC values, denoted BSCexp, with the logarithm

of the theoretical BSCGM given by Eq. (1) as previously

done by Oelze et al.6 Note that this fit was realized in the fre-

quency bandwidth from 6 to 22MHz.

B. The FM

The original theory developed by Faran18 provides an

exact solution for the scattering of sound by a solid sphere in

a surrounding fluid medium and therefore includes shear

waves in addition to compressional waves. The sphere is

assumed to be insonified by a harmonic plane wave and to

be located far from the point at which the scattered pressure

field is observed. In the present study, the differential back-

scattering cross section at 180� for a single scatterer rb was

computed for a sphere of radius a using Faran’s theory18 and

then scaled by the number density to obtain the BSC from an

ensemble of identical solid spheres as follows:

BSCFMðkÞ ¼
/

Vs

rbðkÞ; (2)

where / is the scatterer concentration. The ratio //Vs,

denoted m, corresponds to the number density of spheres.

The values of the unknown parameters were estimated

by matching the experimentally measured BSCexp with the

theoretical BSCFM given by Eq. (2). For this purpose, we

searched for values of ða;/Þ 2 ½0; 50��½0:001; 0:74�, where
a was expressed in lm, minimizing the cost function:

FFMða;/Þ ¼
X

i

kBSCFMðkiÞ � BSCexpðkiÞk
2: (3)

Note that the maximum concentration was fixed to 0.74,

which corresponds to the closely packed hexagonal arrange-

ment. The cost function synthesizes all the wavenumbers ki
(i¼ 1,…, N) in the 6–22MHz frequency bandwidth. Figures

1(a) and 1(b) give an example of a cost function surface

FFM(a, /) obtained from the experiments performed with an

actual microsphere radius of 6 lm and an actual concentra-

tion of 2.5% presented in the following text in Sec. III. It can

be seen from this figure that at a given value of the radius,

the cost functions have a single minimum. Figure 1(c) shows

the gradient in the region of interest (ROI) around the values

of the actual parameters.
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Because there exists no analytical expression for rb
using Faran’s theory,18 an exhaustive search was conducted

on the value of a to minimize the cost function FFM given by

Eq. (3). In these studies, we started the exhaustive search in

the 1–50 lm range with a 5 lm step. The step was then

decreased to 0.1 lm, while performing the search 10 lm

around, the best value obtained so far. At each fixed value of

the radius, the parameter / was obtained using a trust-

region-reflective algorithm with a minimization routine

lsqnonlin in MATLAB (The MathWorks, Natick, MA).

C. The SFM and the PM

The SFM15 is based on the assumption that at high

scatterer concentrations, interference effects are mainly

caused by correlations between the spatial positions of indi-

vidual scatterers. The SFM has generally been applied to an

ensemble of fluid spheres to model red blood cells in

blood.15,16,19 Herein, the SFM was slightly adapted to the

case of an ensemble of solid spheres that are homogene-

ously distributed in space. In comparison with the Faran

model described in Eq. (2), the SFM considers the interfer-

ence effects relatively easily by replacing the single-

particle backscattering contribution rb(k) by the product

rb(k)S(k), where S(k) is the structure factor depending on

the scatterer concentration and the pattern of the spatial

arrangement of the scatterers. By considering an ensemble

of identical solid spheres of radius a, the theoretical BSC

for the SFM formulation is given by

BSCSFMðkÞ ¼
/

Vs

rbðkÞSðkÞ; (4)

where the differential backscattering cross section rb was

calculated using the Faran’s theory. The structure factor S is

related by definition to the three-dimensional (3D) Fourier

transform of the total correlation function [g(r)� 1] as

follows:

SðkÞ ¼ 1þ m

ð

�

gðrÞ � 1
�

e�2jkrdr: (5)

where g(r) is the pair-correlation function, which is the prob-

ability of finding two particles separated by the distance r. In

this case, the structure factor can be interpreted as being a

line of the 3D Fourier transform of the total correlation func-

tion [g(r)� 1], the line being in the direction of the incident

wave (see appendix of Ref. 20). The structure factor S there-

fore depends only on the modulus k of the wave vector k.

The structure factor cannot be calculated analytically for a

complex spatial positioning of particles as occurs in the case

of aggregates of particles. However, for an ensemble of iden-

tical hard spheres homogeneously distributed, an analytical

expression for the structure factor can be obtained as estab-

lished by Wertheim.21 The modified version of the analytical

expression for the structure factor used here is described in

detail in the Appendix.

In the low frequency limit, the structure factor tends to-

ward a constant value S(k) ! S0¼W called the packing fac-

tor.13 The most commonly used expression for the packing

factor is based on the Percus–Yevick pair-correlation func-

tion for identical, hard, and radially symmetric particles. The

Percus–Yevick packing factor WPY is related with the scat-

terer concentration / as follows:13

WPY ¼
ð1� /Þ4

ð1þ 2/Þ2
: (6)

In comparison with the SFM described in Eq. (4), the theo-

retical BSC for the PM is thus obtained by replacing the

structure factor S by the Percus–Yevick packing factor WPY

as follows:

BSCPMðkÞ ¼
/

Vs

ð1� /Þ4

ð1þ 2/Þ2
rbðkÞ: (7)

Estimated values of a* and /* were determined by fit-

ting the measured BSCexp to the theoretical BSCSFM given by

Eq. (4) in the case of the SFM [or with the theoretical BSCPM

given by Eq. (7) in the case of the PM]. For this purpose, we

searched for values of (a, /) 2 [0, 50]� [0.001, 0.74], where

a was expressed in lm, minimizing the cost function:

FIG. 1. (Color online) (a) Typical aspect of the logarithm of the cost function FFM(a, /) for the FM obtained from the experiments with actual microsphere ra-

dius of 6lm and actual concentration of 2.5%. The logarithm is shown here to enhance the visual contrast. Black rectangle indicates the ROI used to compute

the gradient in subplot (c). (b) Typical aspects of the function log [FFM(a, /)] obtained with several fixed values of a. These cost functions have a single mini-

mum. (c) Direction and relative magnitude of the gradient in the ROI around the values of the actual parameters.
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FSFMða;/Þ¼
X

i

kBSCSFMðkiÞ�BSCexpðkiÞk
2; for the SFM;

FPMða;/Þ¼
X

i

kBSCPMðkiÞ�BSCexpðkiÞk
2; for the PM:

(8)

The cost function had several local minima as observed by

plotting the cost function surfaces. Figures 2(a) and 2(b)

give an example of a cost function surface FSFM(a, /) for

the SFM obtained from the experiments performed with an

actual microsphere radius of 6lm and an actual concentra-

tion of 20% described in the following text in Sec. III. Simi-

lar behavior was observed in the case of the PM. One can

observe that at a given value of the radius, the cost functions

show either one or two minima. In the case of two minima,

one minimum corresponds to a low scatterer concentration

estimate and the other one to a high concentration estimate.

This point will be discussed in the following text in

Sec. VC. Figure 2(c) shows the gradient in the ROI around

the values of the actual parameters.

The same procedure was used to estimate a* and /* with

the SFM and the PM. Because no analytical expression for rb
is available in the framework of Faran’s theory,18 as men-

tioned in the preceding text, an exhaustive search was con-

ducted on the values of a in the 1–50lm range to minimize

the cost function FSFM (or FPM) given by Eq. (8). Because the

cost functions can display two minima, we searched for two

concentration estimates /1 and /2 at each given value of a,

using a trust-region-reflective algorithm with the MATLAB non-

linear data-fitting lsqnonlin (The MathWorks, Natick, MA).

The concentration value obtained /1 (or /2, respectively) cor-

responds to the minimum of the cost function obtained with

an initial concentration of /init¼ 0.001 (or /init¼ 0.74) at the

beginning of the minimization routine. By varying the value

of a, two possible solutions ða�1;/
�
1Þ and ða�2;/

�
2Þ were

obtained, corresponding to a low initial value and a high ini-

tial value of the concentration at the beginning of the minimi-

zation routine. The solution (a*,/*) corresponds to the

minimum value between FSFMða
�
1;/

�
1Þ and FSFMða

�
2;/

�
2Þ with

the SFM [or equivalently FPMða
�
1;/

�
1Þ and FPMða

�
2;/

�
2Þ with

the PM]. Note that in some cases, the values of FSFMða
�
1;/

�
1Þ

and FSFMða
�
2;/

�
2Þ [or equivalently the values of FPMða

�
1;/

�
1Þ

and FPMða
�
2;/

�
2Þ for the PM] are equal.

III. METHODS

A. Tissue-mimicking phantoms

The tissue-mimicking phantoms consisted of polyamide

microspheres with a radius of 66 2lm (orgasol 2001 EXD

NAT1, Arkema, France) gently stirred in water. The size dis-

tribution of the microspheres measured using optical micros-

copy is presented in Fig. 3. The tissue-mimicking phantoms

usually consisted of microspheres in agar–agar phantom. In

the present study, the microspheres were suspended in water

because agar–agar phantoms consisting of polyamide micro-

spheres are difficult to degas at high scatterer concentration

(>15%). The phantoms had identical scatterer sizes but dif-

ferent scatterer concentrations ranging from 1% to 25%. The

acoustic parameters (the sound speed c, density q, imped-

ance z, and Poisson’s ratio) of the polyamide microspheres

are given in Table I. The tissue-mimicking phantoms were

designed to mimic the structural and acoustical properties of

FIG. 2. (Color online) (a) Typical aspect of the logarithm of the cost function FSFM(a, /) for the SFM obtained from the experiments with actual microsphere

radius of 6lm and actual concentration of 20%. The logarithm is shown here to enhance the visual contrast. This cost function has two possible solutions

ða�1;/
�
1Þ and ða�2;/

�
2Þ. Black rectangle indicates the ROI used to compute the gradient in subplot (c). (b) Typical aspects of the function log [FSFM(a, /)]

obtained with several fixed values of a. These cost functions can display either one or two minima. (c) Direction and relative magnitude of the gradient in the

ROI around the values of the actual parameters.

FIG. 3. Normalized histogram of the microsphere radii.
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densely packed cells in tumors. The properties of the cell

components are not well known and vary widely in the liter-

ature. Table I gives an example of cell properties used by

Baddour and Kolios22 and Doyle et al.23 Note that the im-

pedance and Poisson’s ratio of polyamide microspheres are

similar to those of human acute myeloid leukemia cell

nuclei.

B. Experimental setup

Two broadband focused transducers with center fre-

quencies of 10 and 17.5MHz (and focuses of 14.2 and

13.8mm, respectively) were used in these experiments. The

pulse-echo acquisition system was composed of an Olympus

model 5072 PR pulser-receiver and a Gagescope model

8500CS acquisition board. The transducer was placed in an

agar–agar gel, i.e., a solidified mixture of distilled water and

2% (w/w) agar powder (A9799, Sigma Aldrich, France) so

that the distance between the transducer and the suspension

was equal to 13.2 mm in the 10MHz experiment (and

12.8mm in the 17.5MHz experiment). The transducer focus

was therefore positioned below the agar–agar/suspension

interface at a distance of 1mm. The suspension was stirred

in a beaker with a magnetic agitator to prevent sedimenta-

tion. Sixty RF lines were acquired and stored. Echoes were

selected in the focal zone with a rectangular window

d¼ 0.13 cm in length. The power spectra of the backscat-

tered RF echoes were then averaged to provide Pmeas: This
procedure was repeated twice with the two transducers at

each scatterer concentration.

C. Attenuation measurements

The attenuation coefficients of the tissue-mimicking

phantoms were determined using a standard substitution

method. The 10MHz transducer was used in the reflection

mode with a reflector on the opposite side as shown in Fig. 4.

At each phantom concentration, acquisitions of 100 RF lines

were performed both with the suspension and with water. The

water acquisition was used for normalization. At each acquisi-

tion, the phantom attenuation was calculated using log spec-

tral difference technique.24 These values were then averaged

to obtain aph and are summarized in Fig. 5.

D. BSC estimation

The measured BSC values reported in this study were

computed using the normalization technique for focused

transducers described by Wang and Shung.25 This normaliza-

tion technique consists of using a reference scattering medium

instead of a perfect flat reflector on condition that the BSC of

the reference scattering medium is known or can be deter-

mined.25 The reference scattering medium allows to compen-

sate the measured backscattered power spectrum Pmeas for the

electromechanical system response and the depth-dependent

diffraction and focusing effects caused by the ultrasound

beam. In the case of blood ultrasound characterization, the ref-

erence scattering medium is generally a low 6% hematocrit

red blood cell suspension.25,26 Because the radius of one red

blood cell sphere-shaped model is around 2.75lm, the corre-

sponding theoretical BSC is given by the classical version of

the PM written for an ensemble of identical Rayleigh scatter-

ers [see Eq. (7) in Ref. 26]. In the present study, the reference

scattering medium used was a suspension of polyamide

TABLE I. Summary of the parameters used to calculate the theoretical BSC

response of the polyamide microsphere. Comparisons with parameters for

human acute myeloid leukemia cell OCI-AML-5 used in Baddour and

Kolios (Ref. 22).

Polyamide

microsphere

OCI-AML-5

nucleus

OCI-AML-5

cell

Radius a (lm) 6 4.55 5.75

Sound speed c (m/s) 2300 1503 1535

Density q (kg/m3) 1030 1430 1240

Impedance z (Mrayl) 2.37 2.15 1.90

Poisson’s ratio 0.42 0.42 0.487

FIG. 4. (Color online) Diagram of the experimental setup used to perform

the attenuation measurement.

FIG. 5. Attenuation aph of the tissue-mimicking phantoms as a function of

the actual concentration.
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microspheres with a radius of 2.5lm (orgasol 2001 UD

NAT1, Arkema, France) present at a low concentration of

0.5% and gently stirred in water. The sample is easy to pre-

pare and to handle, and the scattering process occurring in an

ensemble of identical solid microspheres at a very low con-

centration (dilute medium) has been well documented using

the FM.18,27 Note that a small scatterer size of 2.5lm was

chosen so that the reference scattering medium would be in

the Rayleigh scattering regime (ka� 1) and to avoid the reso-

nant peaks that occur with higher scatterer sizes. Echoes from

the reference scattering medium were windowed as with the

tissue-mimicking phantoms at the same depth, and 60 echoes

were also averaged to obtain Pref . The measured BSC was

thus computed as follows:25,26

BSCexpðkÞ ¼ BSCref ðkÞ
PmeasðkÞ

Pref ðkÞ
eð4=8:68ÞðaphdÞkðc=2pÞ

¼ BSCref ðkÞ
PmeasðkÞ

Pref ðkÞ
eð4=8:68ÞðaphdÞf ; (9)

where f is the frequency in MHz and the theoretical BSC of

the reference sample BSCref is given by Eq. (2) using the FM.

Note that the last term in Eq. (9) compensates the measured

BSCexp for the predetermined phantom attenuation values aph
(in dB/cm/MHz). The coefficient 8.68 expresses unit conver-

sion from dB to Neper: aph[Neper/cm/MHz]¼ aph[dB/cm/

MHz]/8.68.

IV. RESULTS

A. Forward problem: Comparison between theoretical
and experimental results

Figures 6 and 7 give the measured BSCexp versus the

frequency at scatterer concentrations of 1%, 5%, 10%, 15%,

and 25%. The solid lines give the BSCexp values based on

measurements performed with the 10-MHz center frequency

transducer in the 6–15MHz frequency bandwidth and with

the 17.5-MHz center frequency transducer in the 10–22MHz

frequency bandwidth. At all the concentrations tested, the

BSCexp measured with the two transducers in the 10–15MHz

FIG. 6. (Color online) BSCs at scatterer concentrations of 1%, 5%, and 10%. (a) Comparison between the measured BSCs and the FM predictions. (b) Com-

parison between the measured BSCs and the SFM and PM predictions.

FIG. 7. (Color online) BSCs at scatterer concentrations of 15% and 25%. (a) Comparison between the measured BSCs and the FM predictions. (b) Comparison

between the measured BSCs and the SFM and PM predictions.
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frequency bandwidth were similar. This means that the

results were not influenced by the system’s transfer function.

Figures 6(a) and 7(a) also give the theoretical BSC predic-

tions based on the FM, and Figs. 6(b) and 7(b) give the theo-

retical BSC predictions based on the SFM and PM. At all the

scatterer concentrations tested, the best agreement between

the experimental BSCexp and theoretical BSCs was obtained

with the SFM in the 6–15MHz frequency bandwidth,

whereas the results obtained with the FM were only satisfac-

tory at the 1% scatterer concentration, and those obtained

with the PM were satisfactory at concentrations of 1%, 5%,

10%, and 15%. Note that the results obtained with the GM

were not presented in the forward problem study because the

GM does not include shear wave in the modeling. The GM

therefore gave less satisfactory results that the FM (data not

shown), even at the lowest concentration of 1%.

To enhance the lecture of these results, Fig. 8 shows the

measured BSCexp magnitude averaged in the frequency band-

width from 6 to 15MHz and in the frequency bandwidth from

15 to 22MHz as a function of the scatterer concentration. The

standard deviation plotted in Fig. 8 was computed as described

in the following text. The power spectra of 10 backscattered

RF echoes were averaged to obtain P0
meas . Six power spectra

P0
meas were thus obtained from all 60 RF echoes acquired, and

the six corresponding BSC0
exp were calculated using Eq. (9).

The standard deviation of the BSC0
exp averaged over the fre-

quency bandwidth was then computed. Note that the BSCexp

magnitude changed with the concentration: The BSCexp mag-

nitude increased with increasing concentration between 1%

and 10%, then decreased with increasing concentration

between 10% and 25%. Also plotted in Fig. 8 are the theoreti-

cal BSC values predicted with the FM, SFM, and PM. Good

agreement was obtained at a low scatterer concentration of 1%

and 2.5% for all models. The FM and the PM overestimated

the BSC amplitude at /> 2.5% and for /> 10%, respec-

tively. The SFM was the model showing the best agreement

with the experimental data, especially in the 6–15MHz fre-

quency bandwidth. The SFM slightly overestimates the BSC

magnitude at /> 10% in the 15–22MHz frequency

bandwidth.

A quantitative ultrasonic parameter that has often been

used for tissue characterization is the spectral slope (SS).

The SS is the linear slope of the BSC as a function of the

frequency on a log–log scale. The changes in the SS in the

6–22MHz frequency bandwidth with the actual concentra-

tion are shown in Fig. 9. The experimental data did not show

the occurrence of any significant changes in the frequency

dependence of the BSCexp at the various scatterer concentra-

tions tested because the SS varies randomly between 3.4 and

3.7. The SSs obtained with the three scatterings models were

all in the same range of values. The SSs of the FM and the

PM were equal to a constant value of 3.44 at all the concen-

trations tested, whereas the SS of the SFM slightly increased

from 3.46 to 3.75 with increasing concentrations.

B. Inverse problem: Radius and concentration
estimates

In what follows, the relative errors for parameters a*

and /* correspond to

�a� ¼
a� � a

a
; �/� ¼

/� � /

/
: (10)

FIG. 8. (Color online) Comparison between the measured and theoretical mean BSC versus the scatterer concentration (a) in the 6–15MHz frequency range

and (b) in the 15-22MHz frequency range.

FIG. 9. (Color online) Spectral slopes obtained in the 6–22 MHz frequency

bandwidth as a function of the actual concentration in the experiments and

with the three theoretical scattering models (FM, SFM, and PM).
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1. Radius and concentration estimates using the GM
and FM

The estimated values a* and /* using the GM and the FM

and the corresponding relative errors are given in Fig. 10. The

results obtained with the GM are presented in the inverse prob-

lem framework because that model has been widely used in pre-

vious studies.3–9 Because the impedance difference cz between

the microspheres and the water is known a priori, the estimated

concentration /� ¼ ðn�z ð4=3Þpa
�3Þ=c2z with the GM is given

here instead of the estimated acoustic concentration n�z usually

given in previous studies.5,6 The GM overestimated the micro-

sphere radii: The average effective radii estimated at all the

concentrations was found equal to 10.436 1.65lm, corre-

sponding to a relative error of 74%6 27%. The GM therefore

underestimated the scatterer concentrations, giving relative

errors between 88% and 100% (average relative errors

90%6 9%) at all the actual concentrations tested. The results

obtained with the GM were somewhat anticipated because this

model is well adapted for fluid spheres in a dilute medium and

is therefore not very suitable for modeling solid spheres in a

dense medium.

The radii estimated using the FM were quantitatively sat-

isfactory at all the actual concentrations tested because rela-

tive absolute errors of less than 22% were obtained except for

the actual concentration of 5% at which a relative error of

approximately 38% occurred (see Fig. 10). At concentrations

of 1%, 2.5%, 7.5%, 10%, and 12.5%, the estimated concentra-

tions given by the FM were qualitatively consistent with a sig-

nificant correlation with r2 of 0.96 between the true and

estimated concentrations (data not shown). The estimated con-

centrations were quantitatively satisfactory for the actual con-

centrations 7.5%, 10%, and 12.5% with relative errors inferior

to 23%. Note that at the actual concentration of 5%, underesti-

mating the radius resulted in overestimating the concentration.

The FM concentrations were underestimated at the highest

actual concentrations, i.e., those greater than 12.5%, as it was

expected.

2. Radius and concentration estimates using the SFM
and PM

The results obtained using the SFM are shown in Fig. 11.

The triangular symbols (and the diamond-shaped symbols)

represent the possible solutions ða�1;/
�
1Þ [and the possible sol-

utions ða�2;/
�
2Þ, respectively] given by the SFM with an initial

concentration of /init¼ 0.001 (and /init¼ 0.74, respectively)

at the beginning of the minimization routine. The SFM gave

quantitatively satisfactory radius estimates a�1 and a�2 at the

concentrations studied with relative absolute errors of less

than 20%. The estimated concentrations /�
1 obtained with a

low initial concentration /init¼ 0.001 were quantitatively sat-

isfactory, giving relative absolute errors of less than 31% at

actual concentrations ranging from 5% to 15%, and were

qualitatively consistent at the two lowest concentrations of

1% and 2.5%, giving relative absolute errors of 77% and

58%, respectively [see the triangular symbols in Figs. 11(a2)

and 11(b2)]. The estimated concentrations /�
2 obtained with a

high initial concentration /init¼ 0.74 were quantitatively sat-

isfactory giving relative absolute errors of less than 38% at

actual concentrations ranging from 10% to 25% [see the

diamond-shaped symbols in Figs. 11(a2) and 11(b2)]. The cir-

cular symbols in Fig. 11 give the final solution (a*,/*) corre-

sponding to the global minimum of the cost function studied.

Note that the global minimum (a*,/*) did not always corre-

spond to the actual parameters, whereas the value of one of

the two local minima ða�1;/
�
1Þ or ða

�
2;/

�
2Þ is closed from the

actual parameters.

Figure 12 presents the results obtained using the PM.

These results were fairly similar to those obtained using the

SFM. Note that the PM yielded less satisfactory concentra-

tions /�
2 with relative errors of up to 105% at the highest

concentrations, i.e., those greater than 15% [see the

diamond-shaped symbols in Figs. 12(a2) and 12(b2)]. But

the estimated concentrations /�
1 were more accurate at the

low concentrations 1% and 2.5%, giving relative absolute

errors of less than 32%.

FIG. 10. (Color online) (a) Values of

a* and /* estimated by the GM and

the FM versus the actual concentra-

tion. Also represented are actual val-

ues of a and /. (b) Corresponding

relative errors of a* and /*.
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V. DISCUSSION

A. Forward problem: Discussion

BSCs in the 6–22MHz frequency range were measured

using tissue-mimicking phantoms at scatterer concentrations

ranging from 1% to 25%. The experimental data thus

obtained were compared with the predictions of three ultra-

sound scattering models, namely, the FM, PM, and SFM, in

the framework of a forward problem study. This study is in

line with that performed by Chen and Zagzebski28 using

Sephadex spheres immersed in gel. In the latter study, quali-

tative comparison were made between the experimental and

theoretical BSC behavior as a function of the scatterer con-

centration (see Figs. 1 and 8 in Ref. 28 using a continuum

scattering model). In the present study, the relationship

between the BSC magnitude and scatterer concentration was

studied quantitatively. The observed BSC magnitude versus

concentration relationship was satisfactorily predicted by the

SFM and the PM, whereas the FM predicted that the BSC

increases with increasing concentrations.

With the FM, the assumption that the scatterers were

randomly distributed failed due to the spatial correlation

among the scatterers at high scatterer concentrations. The

FM therefore failed to predict the BSC magnitude at scat-

terer concentrations above 2.5%. The BSCPM curves were in

good agreement with the BSCexp curves up to concentrations

of 15% (see Fig. 8). But the best agreement between the the-

oretical and experimental BSC curves in scattering magni-

tude was obtained with the SFM, even at the highest

concentration of more than 15%, especially in the 6–15MHz

frequency bandwidth [see Fig. 8(a)]. To conclude, the SFM

was found to be more suitable than the PM and the FM for

modeling high scatterer concentrations.

Concerning the frequency dependence of the BSC, the

relationship between the SS and the scatterer concentration

was also studied. Because the SS values obtained on the ba-

sis of the experimental data varied randomly around 3.55 at

the various concentrations tested, there is no clear variation

of the SS with the concentration. The experimental SSs did

not match the theoretical SSs given by the FM, SFM, and

FIG. 12. (Color online) (a) Parameter

estimates using the PM versus the

actual concentration. The triangular

and the diamond-shaped symbols rep-

resent the possible solutions ða�1;/
�
1Þ

and ða�2;/
�
2Þ, respectively, with an ini-

tial value of the concentration

/init¼ 0.001 and /init¼ 0.74, respec-

tively, at the beginning of the minimi-

zation routine. The circular symbols

give the global minimum, i.e., the solu-

tion (a*,/*). Also represented in

dashed lines are actual values of a and

/. (b) Corresponding relative errors.

FIG. 11. (Color online) (a) Parameter

estimates using the SFM versus the

actual concentration. The triangular

and the diamond-shaped symbols rep-

resent the possible solutions ða�1;/
�
1Þ

and ða�2;/
�
2Þ, respectively, with an ini-

tial value of the concentration

/init¼ 0.001 and /init¼ 0.74, respec-

tively, at the beginning of the minimi-

zation routine. The circular symbols

give the global minimum, i.e., the solu-

tion (a*,/*). Also represented in

dashed lines are actual values of a and

/. (b) Corresponding relative errors.
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PM. Contrary to what occurred with the experimental values,

the theoretical SSs obtained with the FM and PM are con-

stant as a function of the concentration because the BSC fre-

quency dependence with these models is determined only by

the frequency dependence of rb [see Eqs. (2) and (7)]. Note

that rb depends on the scatterer size and not on the concen-

tration. With the SFM, the SS was predicted to increase with

the concentration because of the structure factor. Indeed,

according to Eq. (4), the BSCSFM frequency dependence is

determined by the frequency dependences of rb and S. Note

that S depends on the scatterers’ radius and their concentra-

tion. However, the experimental and theoretical SSs values

obtained ranged between 3.4 and 3.75 with all three models.

B. On the use of polyamide microspheres to make
cell-mimicking phantoms

In the present study, experiments were performed at the

cell scale using solid polyamide microspheres with a radius

of 6 lm, having similar acoustic parameters to those of iso-

lated nuclei (see Table I). However, the suitability of models

for describing scattering by cells has given rise to some

debate. Cells have also been modeled as fluid media. Two

other approaches have been used so far to modeling a cell:

Using a single FFSM29 or modeling two concentric fluid

spheres30 with impedances of around 1.6 Mrayl. However,

weakly scattering fluid phantoms (i.e., with impedances of

around 1.6 Mrayl) consisting of small microspheres are diffi-

cult to manufacture. The smallest weakly scattering fluid

microspheres found in the literature were around 90–212lm

in size.31 This means that only large scale experiments

(using low frequencies) can be performed with these weakly

scattering fluid microspheres.

Besides the choice of an elastic or fluid medium for mod-

eling cells, another disadvantage of these tissue-mimicking

phantoms is the large impedance contrast involved: That

between polyamide microspheres and water is around 58%

versus 30% between cell nuclei and cytoplasm/extracellular

matrix (taking c¼ 1570m/s, q¼ 1.06, and z¼ 1.66 Mrayl for

the cytoplasm and the extracellular matrix and z¼ 2.15 Mrayl

for nuclei as given in Table I). Although the wave propagation

distance was quite short in our experiments (d¼ 1.3mm),

multiple scattering can occur at high scatterer concentrations;

this may explain the discrepancies observed between the

measured BSCexp and theoretical BSCSFM in the 15 – 22MHz

range [see Fig. 8(b)].

C. Inverse problem

In the forward problem study, it was established that the

SFM was the model giving the best match with the experi-

ments at all the concentrations tested. However, the best

model for use with inverse problems should not only give a

good fit with the data but also should be associated with a

highly variable cost function in the ROI. It is worth noting

that the cost function of the SFM has a higher gradient than

the FM in the ROI and that the area in which the gradient is

small is larger in the case of the FM [see Figs. 1(c) and 2(c)].

In addition, at a given value of the radius, the FM cost func-

tion minima all have similar values, whereas the SFM cost

function minima are extremely variable [see Figs. 1(b) and

2(b)]. The behavior of the cost functions shows that the SFM

is more sensitive than the FM to the unknown parameters,

which could be an important point when dealing with the

noisy data obtained in the case of real tissue.

The accuracy of the FM to estimate the scatterer size

and concentration was first examined. As can be seen from

Fig. 10, the FM does not give accurate scatterer concentra-

tions at /> 12.5%. However, good correlations between

the scatterer concentration predicted by the FM and the

actual concentration were found at actual concentrations

ranging between 1% and 12.5% (apart from 5%). We did

not actually expect to obtain such good results up to 12.5%

because the FM overestimates the BSC amplitude for

/> 2.5% as shown in the forward problem study. It is

worth noting that the concentration estimates obtained at

actual concentrations ranging between 7.5% and 12.5%

were associated with a slight underestimation of the scat-

terer radius; this may explain why such accurate results

were obtained at these actual concentrations.

The accuracy of the SFM and the PM to estimate the

scatterer size and concentration was then examined in the

case of high scatterer concentration because the PM and the

SFM are more suitable than the FM for modeling dense

media. To our knowledge, neither the PM nor the SFM have

been tested so far in blood characterization studies as means

of predicting the scatterer concentration because the hemato-

crit is assumed to be known a priori.26 However, our study

showed that the estimation of the scatterer concentration is

not straightforward using the PM or the SFM. The following

discussion intends to explain why the concentration esti-

mates cannot be obtained directly using standard minimiza-

tion procedures in the 6–22MHz frequency bandwidth

studied here.

As can be seen in Fig. 8(a), when the value of the radius

is fixed, the BSC magnitude can be the same at both small

and large scatterer concentrations (for example, at the concen-

trations 5% and 20% in the 6–15MHz frequency bandwidth),

apart from the maximum BSC magnitude at which the con-

centration is unique (herein, 10%). The BSCSFM magnitudes

computed with the SFM versus the concentration are plotted

in Fig. 13(a) at several radius sizes (ranging from 5 to 7lm).

It can be observed here that several pairs of parameters (a, /)

can have the same BSC magnitude. This explains why the

cost functions of the SFM and the PM had several local min-

ima as shown in Fig. 2. In Figs. 11 and 12, one can notice that

the global minimum (a*,/*) did not always correspond to the

actual parameters. However, one of the two local minima

ða�1;/
�
1Þ or ða

�
2;/

�
2Þ corresponded to the actual parameters. To

better understand what happened in these special cases, Fig.

13(b) gives the experimental BSCexp at a concentration of

20% and two fitted curves BSCSFM corresponding to the two

local minima. Although the curves fitted with the SFM were

similar, the concentration estimates were very different: ða�1
¼ 6:5lm;/�

1 ¼ 5:69%Þ and ða�2 ¼ 6:9lm;/�
2 ¼ 22:50%Þ. In

this example, the global minimum was obtained with the

smallest concentration (i.e., /� ¼ /�
1 ¼ 5:69%), whereas the

actual concentration was equal to 20%. This means that the

information used to solve the inverse problem did not suffice
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to be able to determine the concentration. The discussion

next considers some possible solutions to this problem.

One solution might be to increase the information avail-

able by using higher frequencies. Figure 13(c) shows the the-

oretical BSCSFM in the 6–40MHz frequency bandwidth at

concentrations of 5% and 20% with radii of 5.5 and 6 lm.

With the same fixed radius, the BSCSFM versus frequency

curves obtained at both scatterer concentrations share a simi-

lar pattern because the peaks and dips occur at the same fre-

quencies. In addition, at the same fixed radius, the BSCSFM

amplitudes are practically identical at low frequencies (<20

MHz), whereas the BSCSFM amplitude is larger at high fre-

quencies (>20 MHz) for the highest concentration of 20%.

The use of higher frequencies may thus (1) improve the

radius estimates because the BSC peaks and dips could be

captured in the 25–40MHz frequency bandwidth and (2)

increase the ability to differentiate between low and high

concentrations because the BSC amplitude differs between

low and high concentrations at higher frequencies. The use

of high frequencies with QUS techniques could be envisaged

when working with subcutaneous or excised tissues as in the

study performed by Mamou et al.9 on cancer patients’

freshly dissected lymph nodes. However, if one keeps a low

frequency bandwidth (6–22MHz as performed in our

in vitro study or even less) with a view to develop in vivo

SFM applications, the microstructure (i.e., the scatterer size

and concentration) estimations based on the SFM might be

associated with another quantitative parameter, such as the

attenuation. In the tissue-mimicking phantom study pre-

sented here, the attenuation was found to increase with the

concentration as shown in Fig. 5, and this information could

be used to choose a solution between the two local minima.

This means that if the attenuation is high, one can expect to

have high scatterer concentrations. Moreover, in the case of

some tissues such as liver or most cancer tissues, the cells

are known to be densely packed. Structural parameter esti-

mations based on the SFM could be possibly limited to a

high initial concentration value of /init¼ 0.74 at the begin-

ning of the minimization routine. It is worth emphasizing

that by combining the structural estimates with the attenua-

tion or by assuming a priori that the medium is dense, the

SFM yielded satisfactory concentration estimates with rela-

tive errors of less than 38% at actual concentrations ranging

from 10% to 25%.

VI. CONCLUSION

Four scattering models were examined for characteriz-

ing biological tissues with high scatterer concentrations. The

GM has been previously used in various tissue studies;3–9

whereas the FM has been mainly used for tissue-mimicking

phantoms composed of solid particles.10,28 Both of these

models assume randomly distributed scatterers such that the

theoretical BSC magnitude increases with scatterer concen-

tration. These models are therefore most suitable for dealing

with dilute media. The SFM and PM have been developed

for modeling dense blood medium13–16 to consider the inter-

ference effects caused by the correlation in the spatial dispo-

sition of individual scatterers.

The FM, SFM, and PM were first studied in the forward

problem framework to compare the theoretical and experi-

mental BSCs. The relationship between BSC magnitude and

scatterer concentration was addressed. The BSCexp magnitude

was found to increase with the concentration at low scatterer

concentrations and then decreased at concentrations greater

than 10%. This pattern of BSC behavior versus the concentra-

tion was satisfactorily predicted by the SFM and the PM but

not by the FM. The SFM was the model that better matched

the experiments at all the scatterer concentrations studied

especially in the 6–15MHz frequency bandwidth.

The four scattering models were then examined to esti-

mate the scatterer size and concentration from the experi-

mentally measured BSCexp. The GM did not yield accurate

structural parameters because it gave relative errors of

approximately 74% in the radius and 90% in the concentra-

tion. The FM provided significant correlations between the

estimated and true concentrations with r2 around 0.96 at

actual concentrations ranging from 1% and 12.5% (apart

from the actual concentration of 5%). However, the FM did

not predict the concentration accurately at /> 12.5%. The

minimization routines used with the SFM and the PM were

more complex than with the GM and FM because the cost

FIG. 13. (Color online) (a) BSCSFM magnitude versus the concentration computed with the SFM for several fixed microsphere radii ranging from 5 to 7 lm.

(b) Experimental BSCexp at a scatterer concentration of 20% and the theoretical BSCSFM computed with two possible solutions ða�1 ¼ 6:5 lm;/�
1 ¼ 5:69%Þ

and ða�2 ¼ 6:9lm;/�
2 ¼ 22:50%Þ. (c) Theoretical BSCSFM computed with the SFM for two scatterer concentrations of 5% and 20% with microsphere radii of

5.5 and 6 lm.
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functions associated with these models often exhibited two

local minima, corresponding to low and high scatterer con-

centration estimates. The global minimum did not always

correspond to the actual parameters, but one of the two local

minima corresponded to the actual parameter. To solve this

problem, it is possible to either (1) assume the medium to be

dense a priori or (2) associate the structural estimates with

another quantitative parameter, such as the attenuation. With

additional information of this kind, the SFM gave satisfac-

tory concentration estimates with relative errors of less than

38% at actual concentrations ranging from 10% to 25%.

Future works should focus on the combination of the SFM

with other quantitative parameters (attenuation, signal enve-

lope statistics32 and on the use of higher frequencies.
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APPENDIX: ANALYTICAL EXPRESSION
FOR THE STRUCTURE FACTOR

The analytical expression for the structure factor can be

obtained from the article of Wertheim21 giving the analytical

expression of the direct correlation function c(r). Indeed,

Percus–Yevick equation33 relates the pair correlation func-

tion (i.e., the radial distribution function) to the direct corre-

lation function. Wertheim developed the analytical solution

of the Percus–Yevick equation for hard spheres leading to21

�cðrÞ ¼ c0 þ c1
r

d
þ c3

r

d

� �3

for r � d

0 for r > d;

(

(A1)

where d is the hard-sphere diameter. The coefficients c0, c1,

and c3 are given by
21

c0 ¼
ð1þ 2/Þ2

ð1� /Þ4
;

c1 ¼ �
6/ð1þ /=2Þ2

ð1� /Þ4
;

c3 ¼
/

2
c0 ¼

/ð1þ 2/Þ2

2ð1� /Þ4
: (A2)

Note that the expression of c0 is related to the inverse of the

three-dimensional expression of the packing factor WPY

given in Eq. (6).

The Fourier transform of the structure factor S is linked

to the Fourier transform of the direct correlation function C

as follows:34

SðkÞ ¼
1

1� mCðkÞ
(A3)

with

CðkÞ ¼ 4pd3
ð1

0

r2
sinð2krÞ

2kr
cðrÞdr: (A4)

The structure factor S was also calculated by computing

the Fourier transform of a three-dimensional random distri-

bution of particles as performed in Ref. 35 and was com-

pared with the analytical expression of the structure factor

[see Fig. 14(a)]. The two curves show good agreement at

large ka> 1. To improve the analytical expression for small

ka, we slightly modified the coefficient c0 empirically as

follows:

c00 ¼
ð1 þ 3/Þ2

ð1 � /Þ4
: (A5)

FIG. 14. (Color online) Comparison between structure factors at three dif-

ferent concentrations 5%, 15%, and 25%, computed by the Fourier trans-

form (FT) of a three-dimensional random distribution of particles (Ref. 34)

and computed by two analytical methods based on the article of Wertheim

(Ref. 21) (a) using the coefficients given in Eq. (A2) and (b) using the coeffi-

cients given in Eqs. (A5) and (A6).
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The inverse of c00 corresponds to the modified packing

factor expression proposed by Twersky36 with the variance

parameter equals to 0 and with the shape parameter equals to

4. Because the new coefficients c00, c
0
1, and c03 verify the fol-

lowing equations: c03 ¼ ð/=2Þc00 and �cðdÞ ¼ c0 þ c1 þ c3
¼ c00 þ c01 þ c03, we obtained the following expressions:

c01 ¼ �
8/ð1þ /=2Þð1þ /Þ

ð1� /Þ4
;

c03 ¼
/

2
c00 ¼

/ð1þ 3/Þ2

2ð1� /Þ4
:

(A6)

Figure 14(b) represents the comparison of the structure fac-

tors computed by the Fourier transform of a three-

dimensional random distribution of particles and computed

by the modified analytical methods based on the article of

Wertheim21 using the coefficients given in Eqs. (A5) and

(A6). The two curves agree well for high scatterer concentra-

tion even for small ka.
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