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ABSTRACT
This paper reports experimental results comparing the per-
formance of four platforms employed in spectrum sensing
and dynamic spectrum access research: a sensing engine de-
veloped at imec and built around a prototype RFIC; the
Universal Software Radio Peripheral (USRP) with the Iris
software defined radio (SDR) solution; the TelosB sensor
network platform; and the Wi-Spy low cost spectrum sensor
solution targeted at the ISM band. We use experimental
data to derive the receiver operating characteristics (ROC)
of each of the four platforms. We observe that for low
signal powers, narrow bandwidth signals, high shadowing,
or stringent probability of false alarm (PFA) requirements
tradeoffs among the platforms tested are most pronounced,
whereas for high signal powers, large bandwidths, stable
environments, and more flexible PFA requirements less ex-
pensive, commercial-off-the-shelf equipment performs suffi-
ciently well.

Categories and Subject Descriptors
B.4.1 [Input/output and data communications]: Data
Communications Devices; C.4 [Performance of Systems]

General Terms
Experimentation, Measurement
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1. INTRODUCTION
Experimental work on dynamic spectrum access (DSA)

and cognitive radio networks requires the deployment of
spectrum sensing devices that network nodes can rely on
to observe current spectrum utilization and adapt accord-
ing to channel availability and network conditions. This
paper discusses and characterizes the performance tradeoffs
among different sensing solutions currently used in wireless
network research. Our experiments involve both inexpen-
sive, commercial-off-the shelf (COTS) platforms, such as the
Wi-Spy and TelosB devices, and hardware and software so-
lutions developed in-house at our research institutions. The
latter include the imec sensing platform and the Iris software
defined radio (SDR) solution developed at Trinity College
Dublin.

The performance of spectrum sensing solutions has been
a topic of investigation since the introduction of dynamic
spectrum access networks. Many techniques have been pro-
posed, and some fundamental limits of sensing have been
established [11]. Experiments have verified the existence of
these limits, often using prototype hardware and expensive
processing techniques focusing on sensing a simple known
signal [13]. In parallel, many sensing experiments that focus
on measuring energy over time for a specific location have
been carried out [7]. In the military domain, feature detec-
tion techniques are being developed to detect signals with
special properties.

The experiments described in this paper were carried out
as part of the Cognitive Radio Experimentation World
(CREW) consortium, a federation of cognitive radio testbeds
formed among academic and industrial research groups in
Europe [2]. In the remainder of this section, we discuss some
of the relevant literature on the spectrum sensing platforms
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and their utilization in cognitive radio testbeds. Section 2
describes our experimental set-up, with the results of these
experiments presented and discussed in Section 3. Section 4
discusses sustainable comparison through the use of bench-
marking. We outline our main conclusions and directions of
future work in Section 5.

1.1 Related work
While many sensing techniques have been proposed in the

literature, they mostly focus on theoretical or fundamental
sensing results that are not specific to any technology or
standard [11]. The focus of this paper is not on the mea-
surement or verification of different sensing algorithms, but
on comparing the sensing that can be done with a range
of existing sensing solutions. The measurement-based ver-
ification of sensing results also has a long tradition in the
cognitive radio research community. The theoretical work
of [8] was verified experimentally in [13] for a pilot signal,
experimentally confirming the existence of the SNR wall.
Experiments have also been carried out to evaluate the per-
formance of cooperative sensing [7]. These papers focus on
the evaluation of sensing information and correlation, and
not purely on the evaluation of the sensing performance of
the hardware used.

Verification of sensing functionality is often based on the
use of spectrum analyzers or expensive power hungry equip-
ment. Alternatively, SDR solutions that have been designed
specifically for research purposes are also used [3, 1]. In this
paper, we consider sensing solutions that are all part of the
CREW federated testbed for cognitive radio experimenta-
tion. These include energy and feature detection solutions
implemented with USRP radios [3], off-the-shelf sniffers for
the ISM band, as well as dedicated sensing and software-
defined radio hardware [14].

2. EXPERIMENTAL DESCRIPTION

2.1 Broad Objectives
The primary objective of our experiment is to carry out a

simple sensing task that encompassed many different sensing
platforms with a view to identifying the similarities as well
as the differences in the output of each platform. During
this experiment we endeavor to maintain as similar an oper-
ating environment as possible between the platforms so that
we can say with confidence that the input to each platform
was identical and the differences in the outputs are entirely
a function of some aspect of the platform, be it the quality
of the hardware, the elegance of the design, or the sophis-
tication of the software implementation. We then hope to
discover similarities in the outputs and ideally to attribute
these similarities to some similarity in the design of the re-
spective platforms. Finally, we compare the performance of
the four platforms and assess their strengths and weaknesses.

The hardware and software solutions used in experimen-
tal research on spectrum sensing differ in the algorithms
employed (energy detection, feature detection, etc.), bands
targeted, sensing time and bandwidth, and resulting sensi-
tivity. The experiments described in this paper explore some
of this tradeoff space.

The flexibility offered by the hardware and software solu-
tions sometimes translates into an important advantage of
one solution over another. Some of the sensing hardware
tested was limited to the ISM band, while others could op-

erate in a wider variety of bands. In terms of bandwidth,
the systems under test ranged from a 2 MHz sensor node to
a flexible front-end that can employ sensing bandwidth from
1 to 40 MHz. In some cases, the hardware provided I and Q
samples that can then be processed by the Iris SDR or by
a MATLAB script; in others, the hardware provided aver-
age energy readings obtained using an internal, proprietary
algorithm that is unknown to the end user.

To accommodate the variability in the sensing solutions
tested, we chose a common denominator test scenario that
allowed us to compare all solutions. This scenario consisted
of an 8-MHz DVB-T OFDM signal transmitted over the air
in the ISM band. We then derived the Receiver Operating
Characteristic (ROC) curve for each of the solutions. This
curve characterizes the sensitivity of the sensor, by relating
the probability of missed detection to the probability of false
alarm in a way that is independent of the energy detection
threshold selected.

2.2 Experimental Setups
The spectrum sensing experiments were performed in two

setups, where the main difference was how the signal prop-
agated between signal source and spectrum sensing devices.
In both setups, a common, OFDM-modulated DVB-T signal
with 8 MHz bandwidth was used and will be further referred
to as the test signal.

Setup 1 - Ideal Channel.
In Setup 1 the wireless channel consisted of coaxial cables

and signal splitters, according to Figure 1(a). This setup
ensures that all sensing devices receive the same signal and
thus allows a reliable comparison of the results, although
this method neglects wireless propagation effects.

The test signal was transmitted with a Signalion HaLo
430 signal generator in an infinite loop without frame pause
at center frequency 2.45 GHz. From there, it went through
a variable attenuator and two stages of T-connectors.

The first measurement was done with maximum attenua-
tion, where only one device could detect the signal. Then,
the signal strength was gradually increased until all the de-
vices could detect the emitted test signal.

Setup 2 - Real Wireless Channel.
In the second setup we performed experiments with a real

wireless environment between the signal source and the spec-
trum sensing devices. For this purpose, the hardware was
set up in a seminar room, where a signal generator (Anritsu
MG3700A) was placed approximately 1 m above the floor on
one side, while the sensing equipment was placed at same
height on the opposite side of the room. This setup is de-
picted in Figure 1(b). The distance between the transmit
antenna of the signal generator and the receive antennas of
the multiple sensing nodes was approximately 9 m.

The test signal was emitted with several transmission pat-
terns in order to compare the sensing nodes with respect to
sensitivity and sensing speed. Additionally, all experiments
in Setup 2 were performed under two conditions: either in
an empty room, or with 10-15 individuals moving randomly
between the signal generator and sensing equipment. The
objective of the latter experimental condition was to observe
the effects of shadowing and multipath.

While Setup 2 allows us to investigate the behavior of
sensing devices in a real wireless channel including multi-
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Figure 1: (a) Layout of Setup 1 with coaxial cable
connection; (b) Spectrum sensing setup with real
wireless channel.

path propagation, fading and shadowing effects, one draw-
back of this approach is the limited comparability of the
results among the sensing equipment employed, as despite
the receiving antennas of the devices being located close to
each other, the signal paths from the transmitter to the re-
ceivers are not identical between sensing devices.

A comparison of the measurement settings in Setups 1 and
2 is shown in Table 1.

Setup 1 2

fcenter 2.45GHz 2.404 . . . 2.496GHz

Tx power −20 · · · − 80 dBm {−4,−15,−30}dBm

Cont. Tx length ∞ {60, 0.01} s
Inter-Tx pause 0 s {60, 0.1} s
Distance Tx-Rx cable 0.1 . . . 9m

Test signal 8MHz OFDM-modulated DVB-T signal

Table 1: Measurement settings for Setup 1 and
Setup 2.

2.3 Hardware and Software Platforms
As stated previously, in this paper we investigate the trade-

offs between four of the wireless sensing platforms used in
the CREW federated cognitive testbed. Two of these, the
imec advanced sensing platform and the USRP with the Iris
SDR solution, rely on components developed by member
institutions of the CREW project, whereas the other two,
the Metageek Wi-Spy 2.4x and the Crossbow TelosB, are
low-cost COTS sensing platforms.

2.3.1 imec advanced sensing platform
The imec sensing engine is built around an SDR prototype

RFIC [4]. The RFIC is a full transceiver in 40nm TSMC
technology and is targeted towards low cost and low power
handheld devices. The receiver has an RF input frequency
range from 100 MHz up to 6 GHz, a programmable chan-
nel bandwidth between 1 MHz and 40 MHz, and an onboard
10b 65 MS/s ADC. For testing purposes the RFIC has been
mounted on a PCB which connects to an FPGA mother-
board. This FPGA motherboard is an HAPS-32 [10] board
containing 2 Xilinx Virtex-IV FPGAs. The FPGA board
is connected, via a PCI link, to a Linux PC which runs
MATLAB to configure the RFIC and implement the signal
processing. In subsequent sections this platform will simply
be referred to as imec.

2.3.2 TelosB
Telos [6] is a popular sensor network hardware platform

developed at UC Berkeley. The platform uses the IEEE
802.15.4-compliant CC2420 transceiver [12], which enabled
us to measure RF energy on different subbands in the 2.4 GHz
band. The radio allows the users to adjust the center fre-
quency in steps of 1 MHz, but since an IEEE 802.15.4 chan-
nel has a bandwidth of 2 MHz in our measurements we typ-
ically sweep over the spectrum in steps of 2 MHz (e.g. 2400
MHz → 2402 MHz → 2404 MHz → etc.). On every chan-
nel we take a single RSSI measurement, which represents
the signal power averaged over 192µs, and then proceed to
the next channel in a round-robin fashion. It takes slightly
less than 2 ms to obtain an RSSI sample, to output the
data in realtime over the USB interface to a PC and to then
switch to the next channel, i.e. the overall sampling fre-
quency is about 500 Hz. In our experiments we used the
TelosB variant distributed by Crossbow/Memsic. The soft-
ware for sampling RSSI was developed by ourselves as a
TinyOS 2 [5] application.

2.3.3 Wi-Spy 2.4x
The MetaGeek Wi-Spy 2.4x is a low cost spectrum sensor

designed for use in the ISM 2.4 GHz band. In the experi-
ment the Wi-Spy was interfaced using Kismet Spec-tools for
Linux OS. This enabled us to dump power spectral density
estimates to a file in a non-proprietary format (a function
not available on the standard software Chanalyzer). Spec-
trum dumps are performed as fixed bandwidth sweeps of
the entire ISM 2.4 GHz band. The Wi-Spy offers high ease
of use.

2.3.4 USRP1.0 with Iris SDR
The Ettus Research USRP1.0 is a low cost highly flexi-

ble transceiver. The RFX2400 daughterboard is operational
in the range from 2.3 to 2.9 GHz and the USRP1.0 is ca-
pable of bandwidths up to 8 MHz. The Iris reconfigurable
SDR, developed by CTVR, The Telecommunications Centre
at Trinity College Dublin, makes use of a component-based
architecture. As described in [9], users specify which com-
ponents (such as an OFDM modulator or an RF front-end
interface) they would like their radio to make use of and in
what order. The user can change exposed parameters of each
component in real time, as well as change the components
themselves. The flexibility and run-time reconfigurability
that are enabled by Iris are not brought into play in this
experiment as there is no requirement for the radio to re-
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spond to any changes in the surrounding environment. For
this reason in this experiment, Iris simply passes I/Q sam-
ples from the USRP to a binary file; from here additional
processing is performed using MATLAB. When calculating
power spectral density (PSD) estimates with this set-up, the
bandwidth and the number of FFT bins are both variable;
this results in a completely flexible resolution bandwidth. A
complete energy detector implementation in Iris is, however,
also available which delivers the same level of flexibility as
achievable in MATLAB, only in real time. The reason that
it wasn’t implemented here was to enable the choosing of
parameters during post-processing. In subsequent sections
this hardware/software combination will simply be referred
to as USRP.

Table 2 summarizes some properties of note. For further
information on the platforms the reader is directed toward
the equipment datasheets.

2.4 Expected outcomes
This subsection compares the expected performance of the

imec and USRP solutions. Note that the TelosB and Wi-Spy
perform energy detection based on proprietary algorithms.
The level of internal averaging is not known and we also
have no information on any internal filtering of the data. For
these reasons theoretical ROC plots for these two platforms
are not computed.

To determine the expected performance of the imec plat-
form we start from the noise figure of the RFIC as shown
in Table 2. For the imec sensor at 2.4GHz the noise figure
is 3.4dB [4] for the RFIC. The USRP RFX2400 has a noise
figure of 8dB. Based on the noise figure, the used bandwidth
and the RF input power we can compute the received SNR
at baseband.

Based on the SNR values computed for the different re-
ceivers we can now compute the expected receiver operating
characteristic (ROC) curves. The white noise is modeled
as a zero-mean Gaussian random variable and the signal is
modeled as a Gaussian random variable with a mean value
corresponding to the computed SNR. The noise and signal
power are averaged over a number of samples equal to the
averaging applied in the measurements. For the imec sen-
sor an average over 214 samples is computed and for USRP
averaging of 1200 samples is used.

As can be seen in Figure 2, when we allow a maximum
probability of false alarm and missed detection of 10% we
can see that the imec sensor performs within these specifica-
tions up to −106dBm. For the same requirements the USRP
works properly up to −108dBm. The USRP based solution
achieves better performance than the imec sensor, which has
a lower noise figure, by averaging over more samples.

3. RESULTS
In this section, firstly, we compare how the imec platform

and USRP with energy detection solution perform compared
with the theoretical outcomes presented in the previous sec-
tion. Secondly, we compare the performance between these
two platforms and the COTS equipment introduced in the
previous sections, which makes use of unspecified algorithms
for energy detection.

The comparison against COTS equipment is done in three
ways: Firstly, ROC curves for the different devices are com-
pared. Secondly, we compare the probabilities of detection
(PD) that each of the platforms can achieve across varying

signal power levels. Both of these first two comparisons were
set up over a coaxial cable according to Setup 1 shown in
Figure 1(a). Finally we look at the robustness of the detec-
tion in the devices subject to shadowing effects created by
the presence of people moving in the over-the-air environ-
ment shown in Figure 1(b) (Setup 2).

In each experiment each platform senses energy levels
within the 8MHz channel in which the test signal is transmit-
ted. As the sensing times of the different platforms are not
consistent, readings from platforms with faster sensing times
are averaged to achieve a common sensing time for all plat-
forms, within the observed channel. At each point in time
each platform reports whether they observe the channel as
either free or busy based on energy detection readings with
a chosen threshold. Thresholds are chosen to achieve de-
sired probabilities of false alarm (PFA) from measurements
where no signal is transmitted over the channel. Based on
each threshold a corresponding PD is calculated. Note that
the term signal power used in this section refers to the power
of the test signal on input to each sensing device.

3.1 Comparison against theoretical optimums
Figure 3(a) shows the ROC of each of the four platforms

for a signal power of −74dBm over coaxial cable. If we look
at the sensing curves for imec and USRP and compare these
to figures 2(a) and 2(b) we can see that the curves deviate
from the theoretical estimates. At this signal power the imec
curve more closely resembles the curve theoretically possible
at −104dBm while the USRP curve more closely resembles
that of −108dBm. We suspect that increased noise floor lev-
els were observed in this setup (Setup 1) due to a cumulative
amount of leakage from the connected devices. Although
theory predicts that, due to a larger number of samples, the
USRP solution should result in superior sensing performance
than the imec solution, this was not observed in practice.

3.2 ROC comparison against COTS
equipment

All four curves in Figure 3(a) remain close to the axes,
showing that all four platforms do, in fact, observe the sig-
nal.We observe that imec remains tightest to the axes al-
lowing a probability of missed detection (PMD) of 4.4% for
a PFA of 0.5%. We see that even though the curve of the
TelosB platform lies furthest from the axes it still capable of
providing a PD of 88.7% for a probability of false alarm of
15% at this low transmit power. We also see that near per-
fect detection is achieved by the other two platforms (USRP
and Wi-Spy) for PFA above 5%, below which the perfor-
mance of the platforms deteriorates.

3.3 The effect of signal power
Probability of detection versus signal power is presented in

Figure 3(b) for a PFA of 1%. What we first notice about this
plot is that below roughly −55dBm the divergences in how
well the platforms perform are dramatic. However, above
this value all platforms reach PD close to 1. We notice that
in this case imec experiences the most stable behaviour, with
its PD always remaining above 90%, while Wi-Spy displays
more-or-less an ”on-off”behaviour, detecting close to nothing
below −55dBm but then performing almost perfectly above
this.

From Figure 3(a) we have already seen that for PFAs
above 5% the performances of USRP and Wi-Spy are compa-

In Proc.of the 6th ACM Intl. Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization (WiNTECH), Las Vegas, USA, September 2011.



Table 2: Table of sensing platforms

Platform Operating Fre- RBW Noise Cost Datasheet

quencies(GHz) (Hz) Figure (dB) 1 ($) URL

imec 0.1 to 6 any, up to 40M 2.4 to 4 prototype [4]

TelosB 2.4 to 2.4835 2M 11 <100 www.memsic.com

Wi-Spy 2.4x 2.399 to 2.483 327k 9 <200 www.metageek.net

USRP (RFX2400) 2.3 to 2.9 any, up to 8M 8 <1000 www.ettus.com
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Figure 2: Theoretical ROC curves over a range of input powers (Pin) based on noise figures for: (a) imec
advanced sensing platform; (b) USRP with Iris SDR energy detection solution.

rable with that of imec. This means that for these platforms,
above this PFA a performance/cost tradeoff no longer exists.

3.4 Robustness in the presence of shadowing
Figure 4(a) shows the ROC produced at −15dBm in a

non-changing environment with direct line of sight between
Tx and Rx. Figure 4(b) shows the result of the same experi-
ment subject to shadowing and multipath effects created by
the movement of people between Tx and Rx to simulate the
environment observed in a busy/crowded location.

At first sight we notice that the effect of multipath on
imec and Wi-Spy is low and that the PMDs of both devices
remain close to 0% regardless. The same cannot be said,
however, for TelosB and USRP, which suffer more from the
deteriorated propagation conditions. At a PFA of 5% we see
an increase of roughly 3% in the PMD of TelosB and almost
24% for USRP in the presence of moving persons in the area
where the experiment was performed.

Strangely, we see Wi-Spy performing better in the multi-
path environment. This is unfortunately due to the unpre-
dictability of the over-the-air channel. It must be also noted
that the distance between Tx and Rx for the USRP node
was slightly higher than that of the other platforms, hence
we see that its overall performance is slightly worse than the
others.

Nonetheless, we can conclude that multipath does have
an impact on the sensing result which differs from device to
device.

4. SUSTAINABLE COMPARISON: A
BENCHMARKING APPROACH

While the results from the above comparison may be mean-
ingful to users planning on using one of these devices, the
applicability of the results can still be improved by offer-
ing a sustainable way to compare these results with results
obtained from other experiments. For this purpose, the con-
cept of benchmarking is applied. We define benchmarking
as the controlled and comparable evaluation of an experi-
ment relative to a reference evaluation. Comparability is
achieved by making an experiment (i) repeatable and (ii)
reproducible. Repeatability is a less restrictive requirement
than reproducibility, where it is required that the rerun of a
benchmark with the same test setup result in the same out-
come. Reproducibility imposes a sufficiently detailed bench-
mark description so that the entire experiment can be repro-
duced by peers in an other location, with the same results.

Comparability is a hard requirement to meet in the ex-
perimental environments used in our tests. More generally,
any wireless experiment executed in an (open) wireless en-
vironment poses great challenges to correctly quantify, due
to the unpredictability of the wireless medium. By adjust-
ing the test setup, moving from transmissions over the air

1The noise figure values for TelosB and Wi-Spy 2.4x were
calculated by subtracting from the minimum detectable sig-
nal power (according to the datasheets: -100 dBm and -
110 dBm, respectively) the noise output of an ideal receiver,
which is k · T · B (where k = Boltzman constant, T = 290
Kelvin and B = resolution bandwidth).
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Figure 3: Experiments in Setup 1: (a) Receiver Operating Characteristic (ROC) plot for signal power of
−74dBm; (b) Probability of detection of the transmitted signal vs, signal transmit power for probability of
missed detection of 1%.

to transmission over coax cable, the influence of the wire-
less medium was canceled out. However, in order to allow
other researchers to perform similar experiments, a detailed
benchmarking workflow is necessary describing all facets of
the experiment.

The benchmarking workflow is performed in three steps:
(i) input, (ii) processing and (ii) output. The input con-
sists of a benchmarking scenario, where the behavior of the
Systems Under Test (SUT) and the operating environment
is fully described. In the case detailed in this paper, the
benchmarking scenario would contain the full configuration
of the signal generator and the measured attenuation caused
by cables and attenuators at the signal input of each SUT.
The processing step is responsible for translating the values
from the individual spectrum sensing tools to performance
metrics, using fully described algorithms. Finally, the output
of our benchmark is the automatic visualization of the met-
rics results. These graphs simplify result analysis and are
based on the selected performance metrics, possibly com-
bined with business metrics, such as the cost of the SUT
and the hardware flexibility.

However, the results of the benchmarking approach will
not be presented/further elaborated in this paper; they are
a subject of future work.

5. CONCLUSIONS AND FUTURE WORK
This paper presents the bringing together of four different

wireless platforms used/developed in four different research
institutions with the future aim of integrating these plat-
forms into a single federated testbed. This enables us to
test for tradeoffs between the platforms which would nor-
mally not be feasible to perform. We see that a tradeoff be-
tween cost and performance does exist, but only under cer-
tain conditions. For low signal powers, narrow bandwidths,
high shadowing, or stringent PFA requirements more ex-
pensive sensing platforms (such as imec and, to a certain
extent, USRP) significantly outperform the less expensive
platforms. On the other hand, for high signal powers, large

bandwidths, stable environments, and more flexible PFA re-
quirements less expensive equipment (e.g. TelosB and Wi-
Spy) can be seen to perform as well as more expensive coun-
terparts and be equally effective.

How we can interpret this is that for the majority of
nearby ISM traffic (possibly with the exception of Blue-
tooth) Wi-Spy and TelosB offer reliable detection, at low
cost, with great ease of use. Additionally, the built-in Zig-
bee transceiver in TelosB enables highly reliable detection
of Zigbee signals. In detecting further distant signals or
non-ISM traffic imec and USRP perform better. For more
sophisticated sensing, such as detecting spectrum holes in
signals which require synchronization to detect (possibly un-
used LTE PRBs in a particular area) or difficult to detect
signals such as those of wireless microphones, imec would be
the chosen platform.

Table 3 presents a final summary of the conditions under
which the performance of each platform was observed to
deteriorate.

While the experiments described in this paper characterize
the performance of each individual platform, one of our cur-
rent activities is to investigate the gain in sensing accuracy
by performing homogeneous and heterogeneous cooperative
sensing. Furthermore, we recognize that dynamic spectrum
access is expected to rely on geolocation databases, real-time
spectrum sensing, or, likely, a combination of both. As the
use of geolocation databases requires location awareness, an-
other of our current activities is the integration of assisted
GPS into some of the hardware platforms investigated in the
paper.

Future research includes building a library containing a
set of relevant test signals representing different wireless
technologies such as DVB, LTE, Wi-Fi or Bluetooth. Such
libraries will allow further characterization of the sensing
solutions with respect to their abilities to detect and/or rec-
ognize different primary user technologies and transmission
patterns. The entire measurement approach is furthermore
to be formalized by capturing the entire test set-up (input,
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Figure 4: Experiments in Setup 2: Reciever Opperating Characteristic (ROC) plot for transmission of -15dBm
subject to (a) standard fading of the channel (b) standard fading of the channel plus shadowing effects

Device PFA (%) Signal power (dBm) Multipath environment

imec < 1 none of those tested no

TelosB < 20 < −63 yes

Wi-Spy < 5 < −55 no

USRP < 5 < −63 yes

Table 3: Summary of conditions under which performance of the platforms was observed to deteriorate.

processing and output) in publicly shared benchmarking sce-
narios. We also plan to implement a test facility aimed at
enabling repeatable over the air experimentation capable of
emulating previously characterized wireless environments,
for example mimicking an office or a factory environment.
Such environments will also enable performance analysis of
distributed sensing approaches.
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