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Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor’s

factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability

for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that

this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum

phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The

approach is verified to be well suited for prethreshold quantum processors by investigating its superior

robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a

promising route to unlock the power of quantum phase estimation much sooner than previously believed.

DOI: 10.1103/PhysRevLett.118.100503

Introduction.—Quantum algorithms promise exponential

advantages over their classical counterparts, allowing the

possibility to accomplish tasks otherwise unachievable on a

classical computer [1,2]. A fundamental tool in quantum

computing is the quantum phase estimation algorithm

(PEA), necessary for harnessing many of its main applica-

tions, e.g factorization of large numbers [1,3–6] and sim-

ulation of molecular properties [7–11]. An efficient

implementation of PEA will thus be a crucial subroutine

for quantum computers. Kitaev’s iterative phase estimation

algorithm (IPEA) [12] and its adaptive version [13,14] have

been employed in proof-of-principle implementations of

PEA, as they solely rely on a relatively small number of

qubits and logic gates [4–10]. However, they require

exponentially long coherence of the quantum hardware

and are very susceptible to experimental noise [9,14–16].

This means that conventional quantum phase estimation

algorithms rapidly become impractical if the quantum

computer is not fully error corrected, limiting the feasibility

in near-term, pre-fault-tolerant quantum machines.

A new efficient Bayesian phase estimation algorithm,

called rejection filtering phase estimation (RFPE), has been

recently proposed to overcome this issue [16]. The algo-

rithm applies an approximate form of Bayesian inference

to efficiently estimate the correct eigenphase. Theoretical

results suggest that RFPE has a number of desirable

features: high robustness to noise, a well-motivated con-

fidence interval for the estimated eigenphase, minuscule

memory requirement for the classical control, and speed-up

over the standard IPEA.

The potential of RFPE to exhibit these properties has

so far been suggested by numerical simulations of the

algorithm [16]. Experimental evidence with realistic noise

sources is now required to demonstrate the high perfor-

mance of the approach, potentially vindicating RFPE as a

scalable, practical, and quadratically faster alternative to

other statistical methods [17,18].

Here we exploit a fully reconfigurable silicon quantum

photonic device to investigate the experimental viability of

RFPE. We compare and contrast the performance of both

RFPE and IPEA under the action of different controllable

experimental noises. Specifically, we find experimental

evidence that RFPE is robust against realistic sources of

errors, making it very appealing for near-term useful

applications. Our results are made possible by our ability

to generate and manipulate single photons states on-chip

via an arbitrary controlled-unitary operation as well as the

high level of precision and reconfigurability offered by the

photonic chip.

Phase estimation.—The goal of phase estimation is, given

a unitary Û and a quantum state jψi , to learn an eigenvalue
eiϕ of Ûwithin the support of jψi . Standard algorithmswork

by interfering paths in which either 1̂ or Ûj is applied to jψi ,
for integer values of j, and then recombining the paths

together to allow them to interfere [3]. Iterative phase

estimation works by pooling the results of many such experi-

ments and using a classical inference algorithm to estimate

an eigenphase of Û from the resultant interference pattern.

IPEA allows eigenvalues of Û to be learned quadratically

faster than by statistical sampling and requires exponen-

tially fewer measurements. However, it typically requires

long evolution times which can reduce its utility in prefault
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tolerant hardware [12–14]. The most commonly used IPEA

algorithm works by inferring each of the bits in a binary

expansion of the eigenphase ϕ in reverse order [12–14].

The method uses the circuit in Fig. 1(a), where the

measurement on the control qubit gives output 0 or 1 with

probabilities cos2ðπM½ϕ − θ�Þ and sin2ðπM½ϕ − θ�Þ,
respectively. As each bit is learned iteratively, the algorithm

applies a fixed policy for updating M and θ (see

Supplemental Material [19]).

RFPE is in many ways simpler. This Bayesian approach

uses a Gaussian probability distribution PðϕÞ (the prior)

representing the confidence that the current hypotheses is

the correct eigenphase. The result of each new measure-

ment is used to update the mean μ and standard deviation σ

according to Bayes’ theorem, approximated with rejection

sampling (see Supplemental Material [19]). Specifically, a

host of particles are drawn from the prior distribution and

then probabilistically discarded based on the likelihood

function. The remaining samples model the posterior

probability distribution, which becomes the new prior.

Since the number of surviving particles decreases expo-

nentially, the posterior distribution is refit to a new

Gaussian at each step and fresh particles added, drawn

from this new distribution. Rather than learning each of the

bits of ϕ individually, the RFPE algorithm gains informa-

tion about every bit simultaneously.

In more detail, if an outcome E ∈ f0; 1g is obtained from
an experiment with parameters M and θ, the likelihood

function for the host of particles fxig is calculated:

PðEjxi;M; θÞ=κ ¼
�

cos2½Mπðxi − θÞ�=κ E ¼ 0

sin2½Mπðxi − θÞ�=κ E ¼ 1;

where κ is a rescaling constant [16]. Particles from the prior

are discarded probabilistically based on this function. In

order to maximize the information gain at each step, new

values of M and θ can be extracted from the prior

distribution using various optimization methods. A near-

optimal choice is provided by particle guess heuristics

[22,23], giving θ ∼ PðϕÞ and M ¼ ⌈1.25=σ⌉. If the

likelihood function fails to describe the data (due to

experimental noise) then the algorithm estimates the best

model for the experimental results within the assumptions,

and gives a firm estimate of the uncertainty in the

eigenphase. While in standard IPEA any error that occurs

in inferring a bit cannot be corrected in subsequent

algorithm steps, RFPE does not suffer this issue because

it does not try to infer the bits sequentially. While these

expectations have been born out in simulation [16], they

have not been verified in practice. We provide such

verification below using an integrated quantum photonic

device. Further details for RFPE and IPEA can be found in

Supplemental Material [19].

Integrated quantum photonic device.—Silicon quantum

photonics have emerged as a promising approach for the

realization of quantum hardware, since, in principle, all the

necessary photonic components (sources, circuits, filters,

and detectors) for quantum information processing can be

integrated on a single platform [24]. We developed a

quantum photonic device in silicon waveguides for the

experimental implementation of RFPE, shown in Fig. 1(b).

The chip was manufactured on a standard silicon-on-

insulator platform and is capable of performing arbitrary

two-qubit controlled unitary operations. Using spontaneous

four-wave mixing, photon pairs were created in two spiral

sources pumped with ≃20 mW bright light near 1550 nm

State preparation Path-info eraserControl unitaryPhoton source

(b)

(a)

 Rotation & 
State measurement

FIG. 1. (a) Quantum circuit for standard iterative and Bayesian phase estimation algorithms. (b) Experimental setup and the integrated

silicon quantum photonic device. The quantum chip can perform any controlled-Uð2Þ operation and any single-qubit state preparation

and analysis. Photons are produced and guided in the silicon waveguides (black wires) and reconfigurably controlled by thermo-optical

phase shifters. Coherent light was used to generate photons and superconducting nanowire detectors were used for the detection, both

coupled to the chip through lensed-single mode fibers. The implementation of the algorithms was achieved by interfacing the quantum

device with a classical CPU.
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wavelength [25]. Separating the photons by multimode

interferometer beam splitters (BS) and swapping the two

modes by a waveguide crosser yield a maximally

entangled two-photon postselected state ð j0i C j0i T þ
j1i C j1i TÞ=

ffiffiffi

2
p

, where j0i ( j1i ) indicates the photon

state either in its upper or lower spatial mode [26,27],

whereas CðTÞ subscript refers to the control (target)

register. Two additional spatial modes are then added to

the target register, obtaining a path encoded qubit for each

of the two modes of the target wave function. After an

initial state preparation jϕiT , each qubit is manipulated

with a separate transformation, depending on which path

the photon is traveling on the identity 1̂ for the upper modes

(the ones corresponding to a j0i C) and an arbitrary unitary

V̂ for the bottom modes (the ones corresponding to a

j1i C). The path information is erased by two BSs and the

state is finally postselected obtaining the equivalent photon

count statistics of an arbitrary control-unitary operation

ð j0i C⊗ jϕi Tþ j1i C⊗ V̂ jϕi TÞ=
ffiffiffi

2
p

[10,28]. The quan-

tum logic of Fig. 1(a) is completed by performing a single

qubit operation on the control photon. All the processes

required for state preparation, manipulation, and measure-

ment are achieved through thermo-optical phase shifters

and Mach-Zehnder interferometers, as shown in Fig. 1(b)

[27,29]. Controlling the electric power supplied to the

phase shifters, each phase φ can be driven with an average

precision of ≃0.01 rad (see Supplemental Material [19]).

Finally, photons were detected by superconducting nano-

wire single photon detectors (SNSPD) and coincidence

counts obtained by a time interval analyzer. The photon

statistics were used to measure the projectorsΠð0; 1Þ on the
computational basis of the photonic qubits. The Bayesian

update and changes to the controls of the quantum device

required by RFPE can be calculated and fed to the quantum

system using an interfaced classical computer.

Experimental results.—The rapid reconfigurability and

the high precision of the silicon photonic device were

crucial to the practical implementation and testing of RFPE.

As is usual in photonic experiments, where measurements

provide probability distributions rather than single-shot

data, the value of E was determined by the majority voting

method on the projective measurement statistics for both

RFPE and IPEA (see Supplemental Material [19]). For the

stochastic representation of the prior, 1000 particles was

found to be reliable. The initial prior distribution was set to

a Gaussian N ðπ; π2Þ, which approximates a uniform prior.

In Fig. 2(a) we report the results from a single RFPE run,

which demonstrates that the estimation converges expo-

nentially to the true eigenphase. For this case an error as

low as 2.4 × 10−4 rad is achieved within 50 experiments on

the quantum device. This error is in good agreement with

the standard deviation of the final posterior Gaussian

distribution [≃4.2 × 10−4 rad after 50 experimental steps,

see the inset of Fig. 2(a)], thus confirming that the

algorithm provides a reliable uncertainty estimate. We

remark that this feature is not present in other phase

estimation techniques, which do not provide a rigorous

estimation of the phase uncertainty that arises in non-fault-

tolerant devices [16]. A possible strategy for obtaining such

uncertainty estimates from IPEAwould be to determine the

mean and the standard deviation of the measured eigen-

phase from repeated experiments. Figure 2(a) shows that

when adopting this strategy with a reasonable cardinality

for the experiments, 10 for the curve reported, RFPE

outperforms IPEA.

To extensively test how RFPE performs in key applica-

tions, we scanned the energy of molecular H2 for different

atomic separations, using 50 iterations of RFPE for each

eigenphase evaluation. The eigenstates of the molecular

Hamiltonian are mapped into a the qubit basis using the

Jordan-Wigner transformation and the eigenphases are

FIG. 2. (a) Convergence of RFPE to the true phase value

2πϕ0 ¼ 4.8741 rad related to the energy of the dissociated H2

molecule. The initial prior distribution is N ðπ; π2Þ. Data points

show an exponential shrink of the error, compatible with

simulations (blue line) of the device performance averaged over

1000 runs of the RFPE algorithm (shaded area: 67.5% credible

interval). The dashed black line denotes the convergence of the

standard IPEA using the parameters discussed in the main text.

Inset: convergence of the phase estimation to ϕ0 (red line), where

errors are evaluated using the s.d. of the prior distribution. Error

bars are obtained from the standard deviation of the median.

(b) Bonding energies of the H2 molecule for various atomic

distances using RFPE with 50 steps. Energy estimations are

achieved within chemical accuracy. Errors are smaller than the

markers and neglected in the plot for more clarity. The dashed

line represents theoretical energies.
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directly related to the binding energy [7,9–11]. As shown in

Fig. 2(b), the estimated energies match the theoretical

values with high precision. The average error for the data

set is 0.72 kCal=mol, providing a precision higher than

chemical accuracy (≃1 kCal=mol).

The main advantage of the Bayesian approach over

traditional methods comes from its expected reliability

on non-fault-tolerant devices. Here we investigate

experimentally the robustness of the protocol against

two main controllable sources of noises: gate errors and

decoherence.

The infidelity of unitary operations is a well-known

problem existing in quantum hardware, and is typically

given by a noisy control and imperfect manufacture and

calibration of the components. On integrated quantum

photonic devices it is mainly due to control noise and

residual crosstalk of the phase gates, which are expected to

occur on the device in Fig. 1 [10]. Our electronic phase-

shifter’s driver allows us to precisely control the thermo-

optical phase gates as residual thermal cross talk can be

compensated by further calibration (see Supplemental

Material [19]). The high controllability allows us to add

a tunable level of noise on the phase gates to study the

robustness of RFPE. This is achieved by replacing the

correct phases φ̄ required to implement the unitary trans-

formation with synthetic values φ sampled from a Gaussian

distribution φ ∼N ðφ̄; σphaseÞ. The parameter σphase mimics

a Gaussian noise in the phases, which in turn introduces a

controllable noise in the fidelity of both the implemented

state preparation and the unitary evolution. Figure 3(a)

shows the convergence of both RFPE and IPEA scanning

σphase up to 0.55 rad, corresponding to average state fidelity

94% and gate fidelity 91% expected in the chip (see

Supplemental Material [19]). We report the performance

of RFPE with 100 steps, compared to a 16-bit IPEA,

averaged over 10 runs to estimate the error bars, i.e., 160

total experiments per data point. We remark that since a

reasonable error bar estimation requires a higher number of

experiments for IPEA than RFPE, the relative rates of

convergence are not immediately obvious from these

figures. Rather, these plots illustrate how the performance

of each algorithm is affected by increasing errors, to

compare their robustness to noise. For σphase ≥ 0.05 rad

IPEA dramatically decreases in accuracy and becomes

quickly unreliable. This occurs because while the majority

voting scheme provides error resilience for small error

rates, it can diverge rapidly once the error rate crosses a

threshold (see Supplemental Material [19]).

On the other hand, in this regime the performance of

RFPE is initially only slightly affected, maintaining a very

high level of precision even when IPEA fails. This is

expected because RFPE does not make hard decisions

about bits as each experiment yields information about all

bits at once. Thus errors are unlikely to be critical. In order

for RFPE to be substantially affected we require σphase
higher than 0.3 rad, a value much higher than the actual

experimental noise in our device.

Decoherence is an important limitation in many quantum

computing experiments but it plays a minor role in

integrated quantum photonics. It must then be introduced

artificially in our experiment. In order to simulate it,

coincidence counts provided by the SNSPDs for the

Πð0Þ and Πð1Þ projectors were progressively flattened

out by classical postprocessing and combined with

Poissonian noise in the measurements. In agreement with

the depolarizing noise model we mimicked the presence of

FIG. 3. Effects of different experimental noises on phase estimation strategies. (a) Infidelity of quantum operation. Each of the correct

phases φ̄i for the phase gates is synthetically replaced with a Gaussian distributed φi ∼N ðφ̄i; σphaseÞ, where σphase represents a noise in
the phases. (b) Decoherence. For IPEA data, experiments were repeated 10 times with 16-bit accuracy to evaluate median error and error

bars, while the RFPE data were collected from a single run, after 100 measurements, and directly used to evaluate the error and

uncertainty within the algorithm. Error bars for the estimated phase represent in both plots either a 67.5% credible region for RFPE,

either a 67.5% confidence interval for IPEA. In the cases where error bars are smaller than the markers they have been omitted for clarity.

Points are experimental data and dashed lines are simulations averaged over 1000 runs. The simulations take into account the

characterized residual phase noise in the device.
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a normalized decoherence time T2 (see Supplemental

Material [19]) such that

P0ðDjϕÞ ¼ e−M=T2PðDjϕÞ þ 1 − e−M=T2

2
;

where PðDjϕÞ is the data obtained from the photon

coincidence counts for the outcome D ∈ f0; 1g. We intro-

duce this noise model while processing online the output

data during the iterative process, thus affecting the choice

of the experiments. In this way it is possible to simulate the

behavior of RFPE and IPEA in systems that are prone to

this model of decoherence.

We studied the action of the depolarizing noise up to

T2 ¼ 4 for both IPEA and RFPE, as shown in Fig. 3(b).

The performance of IPEA has a substantial and sharp

deterioration at T2 close to 32, whereas the median error

of 100-step RFPE decreases only polynomially with

1=T2, maintaining an error Oð10−2Þ even in the regime

where conventional IPEA fails to provide any reliable

estimate of the phase. In the presence of characterized

depolarizing noise an optimized value for M is given by

minð⌈1.25=σ⌉; T2Þ [16], which, however, implies that,

when decoherence is significant, the performance of

RFPE degrades significantly. This behavior is exhibited

by the experimental data in Fig. 4, where the convergence

of RFPE is reported under the action of various T2. We

observe that RFPE ceases to learn exponentially quickly

when 1=σ ∼ T2, after which the algorithm continues to

learn at a polynomial rate, unlike IPEA [16].

Conclusion.—Our work shows how the precision and

controllability developed in quantum technologies, here in

particular integrated photonics, allows us to go beyond the

basic proof-of-principle demonstrations of quantum algo-

rithms and to enter a regime where they can be extensively

tested and compared. We experimentally verified the

Bayesian phase estimation algorithm on a fully program-

mable silicon quantum photonic device and demonstrated

its superior performance in presence of noise. Although in

this work the experiment is performed using a small-scale

unitary and a photonic device, more complex future

implementation can be efficiently performed on any scal-

able quantum architecture. The Bayesian approach remark-

ably lowers the requirements for the implementation of

quantum phase estimation on pre-fault-tolerant devices,

showing a new route for practical and useful quantum

information processing in the near future. We remark that

the implications of the Bayesian approach to phase esti-

mation are not limited to photonic implementations: all

other quantum information processing platforms, e.g.,

superconducting qubits and ions traps, can benefit as well

from its enhanced performance and noise resilience.
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