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Experimental characterisation of 
the bound acoustic surface modes 
supported by honeycomb and 
hexagonal hole arrays
Timothy A. Starkey*, Vicky Kyrimi, Gareth P. Ward, J. Roy Sambles & Alastair P. Hibbins  

The Dirac point and associated linear dispersion exhibited in the band structure of bound (non-radiative) 

acoustic surface modes supported on a honeycomb array of holes is explored. An aluminium plate 

with a honeycomb lattice of periodic sub-wavelength perforations is characterised by local pressure 

field measurements above the sample surface to obtain the full band-structure of bound modes. The 
local pressure fields of the bound modes at the K and M symmetry points are imaged, and the losses at 

frequencies near the Dirac frequency are shown to increase monotonically as the mode travels through 

the K point at the Dirac frequency on the honeycomb lattice. Results are contrasted with those from 

a simple hexagonal array of similar holes, and both experimentally obtained dispersion relations are 

shown to agree well with the predictions of a numerical model.

The unusual dispersion of the electronic bands in graphene has inspired a wealth of studies examining the anal-
ogous behaviour of classical waves propagating on surfaces or through materials comprising structures with 
similar symmetries, so-called ‘artificial graphene’ structures. Although the behaviour of electrons, optical waves, 
and elastic waves is described by scalar, vector, and tensor waves respectively, studies exploring electronic1, pho-
tonic2–4, polaritonic5, phononic6–8, and plasmonic systems9–11, all exhibit linearity in their dispersion near high 
symmetry points in momentum space. An example of a 2D phononic crystal that exhibits regions of linear dis-
persion is a triangular lattice of iron rods embedded in a water host12. In that study, the gradients of the linear 
dispersion at multiple high symmetry points (at Γ and K) were found to be proportional to the strength of cou-
pling between degenerate Bloch states. Recently, researchers have reported the existence of both acoustic Dirac 
(deterministic) and Dirac-like points at the Brillouin zone centre13–15, and this phenomenon has been highlighted 
as important for the realisation of either zero phase change propagation13 or topologically protected edge states 
for acoustic waves12,15,16.

In recent years, following the discovery of ‘spoof ’ surface plasmons (SSPs) in the electromagnetic domain17,18, 
bound acoustic surface waves with behaviour analogous to that of SSPs have received considerable attention19. 
Bound acoustic surface waves on sculpted surfaces arise from the interference between localised (evanes-
cent) and propagating fields, and have been used to demonstrate applications such as super-resolution20 and 
deep-subwavelength focusing21. On these structures, the pressure field profile decays exponentially in the direc-
tion normal to the surface, and the magnitude of momentum supported in the direction parallel to the surface 
significantly exceeds the momentum of sound in air.

Some structures supporting bound surface states display an interesting feature in their dispersion relation; a 
linear crossing, or Dirac point, lying outside the sound line (defined by the dispersion of a free space sound wave). 
The existence of acoustic Dirac points at the Brillouin zone edges was first studied theoretically by Zhong et al.22, 
and modes that propagate along the zig-zag edge were numerically demonstrated. Experimentally observed Dirac 
cone acoustic surface waves at the Brillouin zone corners were first reported by Torrent et al.23, who studied the 
dispersion relation of an acoustically rigid surface with cylindrical cavities drilled in a honeycomb lattice using a 
phase-delay measurement. The presence of Dirac points in the dispersion relation of the acoustic surface waves 
supported by this surface was demonstrated, with comparisons made between experiment and theory.

In this work, using experimental techniques and numerical modelling, we explore, in the vicinity of the 
deterministic Dirac points, the dispersion of acoustic surface waves supported by a solid plate patterned with a 
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honeycomb array of ‘through’ holes (Fig. 1), and compare with results from a similar hexagonal array. By meas-
uring the acoustic pressure field across these structured surfaces, we obtain a full picture of the dispersion of the 
supported surface waves.

Results
Here, we study the lowest order surface modes, for which there are two for the honeycomb and one for the hexag-
onal array, as determined by the available number of degrees of freedom of the unit cell (i.e. here this corresponds 
to the holes per unit cell). These surface modes are associated with the diffraction between cavity resonances sup-
ported by quantisation of the pressure field in the cavity depth; here, the cavity resonances have the approximate 
character of a half-wavelength pipe modes (λ/2 resonance) within the open holes, and are coupled by diffraction 
near their resonant frequency producing an eigenmode that is strongly localised to the top and bottom interface 
of the structured surface, which decays exponentially from the surface. This mode is termed an Acoustic Surface 
Wave (ASW) since it is both trapped, because it has too much momentum to radiate into free space, and is wholly 
mediated by the air above the sample (unlike a Surface Acoustic Wave (SAW))24–26.

Samples were designed to have acoustic modes that exist within the audible frequency range, and for surface 
mode wavelengths that make measurements feasible on a desktop scale. The samples studied, shown in Fig. 1, 
have holes milled through a plate with cylinder radius, r = 1.5 mm, hexagonal lattice periodicity, a = 8.66 mm, 

and plate thickness t = 8.0 mm. The dispersion relations as a function of in-plane momentum ( = +||k k kx y
2 2 , 

where kx|y is the momentum in x|y direction), obtained using Finite Element Method (FEM) eigenvalue numerical 
simulations (see Methods), between points of high symmetry (Γ, K, and M) are shown in Fig. 1(c). These eigen-
value solutions show both honeycomb and hexagonal hole array structures support bound acoustic surface waves, 
as indicated by solutions that are bound within the sound line (black line), i.e. in the non-radiative regime. In the 
vicinity of each K symmetry point, the dispersion curve for the honeycomb structure is linear and exhibits a Dirac 
crossing of two surface modes, whilst at the M point a band gap exists. For the hexagonal array, the dispersion 
shows a different behaviour; only one surface mode crosses both the K and M symmetry points at frequencies 
close to the crossing point of the honeycomb array. Both arrays show relatively flat dispersion in the proximity of 
K point for the structure dimensions considered here.

To experimentally obtain the full dispersion, an acoustic pressure field mapping technique was used; a loud-
speaker source fixed at the centre of the sample generated a pulse which was measured by a detector on the other 
side of the sample mounted on a translation stage (for further details see Methods and Fig. S1). The point-like 
acoustic excitation, which is diffracted through the hole at the centre of the scan area, excites the surface modes 
due to the overlap of spectral- and wavevector- spectra of source and surface mode. By scanning the detector over 
the sample surface the data collected forms a 2D map of the signal as a function of time, from which temporal 
and spatial Fourier analysis produce full dispersion information. Figure S2 displays an example of the time-space 

Figure 1. (a,b) Photographs of the aluminium samples and unit cell schematics (inset) for (a) the honeycomb 
array, and (b) the hexagonal array explored in the numerical modelling and experiments. The nearest neighbour 
distance between holes for the honeycomb sample and the hexagonal sample is s = 5 mm and 8.66 mm (not 
shown), respectively. The hole radius, r = 1.5 mm, and the mean plate thickness (length of the open cavity), 
t = 8.0 ± 0.1 mm, are the same for both samples. (c) Numerically (FEM) calculated band structure of the 
acoustic surface waves for samples in (a,b). The sound line, calculated for sound propagating with velocity, 
c = 342 ms−1, is shown as a solid black line, and the vertical dashed lines indicate the 1st Brillouin zone edge at 
the K and M points. Inset: shows the points of high symmetry in momentum space for both lattices.
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map of an acoustic pulse propagating across the sample surface and examples of the pressure field distribution 
obtained after the temporal signals are Fourier transformed.

Figure 2 displays the measured dispersion curves in the Γ-K, M-K, and Γ-M directions in momentum space 
for both the honeycomb array and the hexagonal array. Experimental data are compared to numerical simulations 
for the range of momenta lying beyond the sound line (as shown in Fig. 1(c)) and inside the first Brillouin zone 
(dashed lines). The dispersion of the surface mode(s) correspond to data that lie outside the sound line, explic-
itly data with larger magnitude of in-plane momentum, k∥, than that of a free-space grazing acoustic wave. The 
dispersion is plotted to values beyond the first Brillouin zone, since the experiment allows for good resolution of 
the modes far out in momentum-space. All data with momenta values smaller than the sound line correspond 
to direct sound transmission between the source and microphone detector, or other unwanted noise, and are not 
discussed.

For the honeycomb array (see Fig. 2(a–c)), experimental results (greyscale data) agree well with numerical 
simulations (open circles), with one exception; the upper branch of the Dirac cone in the Γ-K direction (Fig. 2(a)) 
is present in the model, but is not observed experimentally in the first Brillouin zone. Conversely, the existence 
of the upper branch is shown in the M-K direction for the honeycomb sample (Fig. 2(b)) beyond the K point 
towards Γ at higher momentum, where it meets the lower branch at the Dirac frequency, fD = 16.5 kHz. The 
absence of the upper branch in the Γ-K direction within the first Brillouin zone is a consequence of the asymme-
try of the mode pressure field with respect to its propagation direction. In an equivalent study of microwave hon-
eycomb structures, Dautova et al. show that a non-zero valued reciprocal lattice vector, G, is necessary to observe 
the upper branch of mode above the Dirac frequency27, due to a vanishing integral in the Fourier intensity for 
a mode with an anti-symmetric field distribution. The data in Fig. 2, confirms this analysis; the upper branch 
is never observed in the first Brillouin zone, but becomes present beyond the Brillouin zone boundary into the 
second zone (prominently shown in panel (b)).

Figure 2. Dispersion measurements and numerical predictions for the honeycomb, left panels (a–c), and 
hexagonal structure, right panels (d–f). Measured data (greyscale) is shown as the Fourier intensity, and the 
simulated data (points) is shown for positive momenta in the first Brillouin zone (indicated by the dashed lines). 
Top panels show dispersion on Γ-K plane (with ky = 0 fixed, and kx varying); middle panels show dispersion on 
M-K plane (for π= −k a2 / 3y , and kx varying); bottom panels show dispersion on the Γ-M plane (with kx = 0 
fixed, and ky varying). White areas mask the radiative regime (i.e. from Γ to the sound line), and the labels A 
(anti-symmetric) and S (symmetric) on panels (a,b) denote the mode pressure field symmetry with respect to 
the mode propagation direction.
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By plotting the dispersion data (honeycomb) beyond the first Brillouin zone, the modes coming from 
higher-order diffraction points are clearly seen, being particularly prominent in the M-K and Γ-M directions 
(Fig. 2(b,c)) as the modes folded back from large positive and negative momentum states cross at the K and M 
points. From Fig. 2(a,c) it is evident that the surface mode behaviour is quite different; the mode at K clearly has 
real group velocity (as expected at Dirac-like points), whilst the mode approaching the Brillouin zone at M from 
Γ has zero group velocity producing two standing wave states of different energy. The experimental results for 
the hexagonal sample (see Fig. 2(d–f)), also show good agreement with the surface mode predicted by numerical 
simulations, but unlike the honeycomb, the hexagonal sample does not exhibit a Dirac point.

Further insight into the dispersion of these surface modes is obtained by imaging the dispersion on a momen-
tum plane at a fixed frequency (an isofrequency map), providing information within the planes between points 
of high symmetry. Figure 3 shows this data at frequency, fD, corresponding to the Dirac point (in the honeycomb 
system) for both samples studied. In these graphs, the radiative components are masked by a white circle. At the 
edge of this circle, there is a dark ring that corresponds to the sound line, beyond which are the surface modes 
localised at the K points.

Due to the real space lattice symmetry of each sample, we might expect the honeycomb isofrequency contour 
to display six-fold rotational symmetry, however, Fig. 3(a) clearly shows only a three-fold rotational symmetry 
around the Γ point; this reduction in symmetry arises due to the point source excitation of one cavity of the 
two-cavity lattice basis. By contrast the hexagonal lattice, Fig. 3(b), does indeed have a six-fold rotational symme-
try. For the honeycomb data, at the K point there is strong Fourier intensity, with a region of much lower intensity 
in a direction towards one of the neighbouring diffracted Γ points. Referring back to Fig. 2(b) we see this feature 
is also present; the surface mode is well coupled from low frequency near M and exists through the K point 
and beyond into the second Brillouin zone, and the upper cone is present, but weakly coupled to along the first 
Brillouin zone between M and K as dictated by the dashed lines. By looking at the momentum-frequency plane 
rotated by a multiple of π/3 radians around the Γ point, the plane with the other 3-fold symmetry is visualised and 
the upper edge of the Dirac cone is less well resolved along first Brillouin zone, as shown in Fig. S3.

Experimentally we have shown that both honeycomb and hexagonal arrays of holes in an acoustically rigid 
material support bound acoustic surface waves. Results show the existence of the Dirac point and the linear dis-
persion of acoustic surface waves supported by the honeycomb lattice, but not for the similar hexagonal lattice. 
The modes of the honeycomb lattice at the K and M high symmetry points are interesting because one exhibits 
a band gap and the other does not. To further interpret the nature of these modes, computed and measured 
real-space pressure fields are studied for the honeycomb sample. Such analysis can be used to understand whether 
a band gap or a crossing of the surface modes exists, and is an approach that has been used to describe dispersion 
relations in terms of the spatial symmetries of resonance states, for instance, in Sakoda28 and in Li et al.29.

To image the pressure field distributions for modes near the points of high-symmetry, small area (15 mm by 
15 mm) high spatial resolution scans were made. The pressure field distributions are selected by frequency and 
propagation direction; the experimental data in Fig. 4 is obtained from small area scans and the Fourier analysis 
of the time domain data only. The pressure field data is then presented at frequencies that correspond to the fre-
quency of the mode at the K point and of the upper and lower branch at the M point. The small measured areas, 
measured some distance from the source in either the x- or y- direction, allow the surface mode field profiles to 
be selected based on their propagation direction in real space (modes at K and M are present in real space at 90 
degrees to one another). We note that because the modes are selected by frequency and propagation direction - 
not frequency and wavevector - all wavevectors of that frequency are present in the measured fields, the surface 
wave being dominant, due to the close proximity of the detector to the surface. The distance from the 2D scan 
area to the source was a critical factor in recording high quality data that can be usefully interpreted; close to the 

Figure 3. Isofrequency contour plots for (a) the honeycomb and the (b) hexagonal lattices at the Dirac 
frequency fD = 16.5 kHz. The centre white circle masks all radiated components. The greyscale data shows 
Fourier intensity normalised to unity.
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source the imaged fields are dominated by cylindrical spreading of wavefronts, whilst further away, the surface 
wave pressure amplitude suffers due to thermo-viscous losses at the sample surface. The K point (see Fig. 4) scan 
was taken approximately 116 mm from the source in the x-direction, whilst field maps at the M point are taken at 
approximately half that distance in the orthogonal direction.

Figure 4 compares the calculated and measured fields at K and M for the honeycomb lattice. Simulated pres-
sure fields are the calculated eigenmodes when the in-plane momentum is equal to the momentum of the sym-
metry point (with appropriate boundary conditions on the unit cell). Measured pressure fields are presented at the 
frequency at which that mode meets the Brillouin zone. Figure 4(a,b) show the computed eigenmode solutions 
close (k|| = 0.99kK) to the K point in order to break the degeneracy of the two solutions when k|| = kK. The pressure 
field distribution for the lower branch of mode is symmetric, whereas the pressure field for the upper branch is 
anti-symmetric with respect to the Γ-K vector (the direction of propagation in real space). Commonly in the liter-
ature, the fields (pressure or otherwise) of larger scale systems are compared to electron wavefunctions in atomic 

Figure 4. Calculated (frequency- and wavevector-selected) and measured (spatially- and frequency-selected) 
acoustic pressure fields for the honeycomb structure for modes at K and M points: (a–c) show field distributions 
at the Dirac frequency for the surface mode propagating along the Γ-K direction at the Dirac frequency fD 
(experiment) and K point, kK = 4π/3a (model). (d,e) Show field distributions for the lowest energy mode at 
frequency f = 0.97fD (experiment) and M point, π=k a2 / 3M  (model). (f,g) Show equivalent plots the upper 
mode at f = 1.01fD. Red and blue indicate the maximum positive and negative pressure respectively. Model data 
is obtained by numerically evaluating the pressure field on the sample surface at the appropriate in-plane 
wavevector and frequency. The experimental pressure field is by obtained from the Fourier transform of the 
temporal field measured with the microphone tip approximately 100 µm above the surface over a 15 mm by 
15 mm area scan, and selecting the required frequency. The centre coordinates of each measured field map 
(c,e,g) are (x [mm], y [mm]) = (116.5, −2.5), (5, 62.5) and (0, 55) respectively, relative to the source. Note: 
figures are orientated so that surface modes would be travelling from left to right on the page.
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systems. Here we note these pressure field distributions show great similarity to the so-called px and py ‘photonic 
orbitals’ of ref.30 and are referred to as acoustic pseudo-spin dipolar states in analogous acoustic systems31. Apart 
from visible attenuation of the measure pressure field, from left to right of the figure (Fig. 4(c)), data for the lower 
branch of the mode agree well with simulations. There is no experimental pressure field configuration for the 
upper frequency mode since we have not been able to detect this experimentally due to attenuation and the mode 
group velocity.

The calculated pressure fields at the M point band gap in Fig. 4(d,f) for the lower and upper band. These are 
two standing wave solutions, as expected for a mode at the Brillouin zone with zero group velocity, and have sym-
metric pressure field distribution with respect to the propagation direction. As before, the experimental pressure 
field distributions (Fig. 4(e,g)) show good agreement with those predicted by the model. The symmetry of the 
crystal lattice causes a pair of symmetric Bloch states at the M point that result in a band gap, not a Dirac point. 
Whilst the asymmetry of two degenerate modes at the K point are characteristic of the deterministic degeneracy 
of Bloch states imposed by the symmetry of the crystal lattice, and have been studied in related acoustic systems12.

As alluded to above, in the experimental field maps and in Fig. S2, the attenuation of these acoustic surface 
modes is significant at the frequencies studied here. For instance, the pressure field distribution in Fig. S2(c) 
clearly shows that the surface mode is highly localised to the source, as the mode approaches the Dirac frequency 
where the mode group velocity approaches zero and loss is significant. Recent studies have explored such losses 
by implementing Laplace transform techniques in order to retrieve the imaginary component of the wavevec-
tor32. Here, the attenuation of the modes approaching or travelling through the K point is quantified through the 
width of the mode in momentum. Data is fit at each frequency by a skewed Lorentzian distribution for modes 
propagating with positive and negative momentum and the full-width at half-maximum (FWHM) is estimated 
(see Methods for further details).

The losses (widths) are shown in Fig. 5 for modes propagating on both the honeycomb and hexagonal lattice. 
We notice that the mode width increases with frequency monotonically for both lattices, which is consistent with 
the mode group velocity (▽kω). The mode propagating on the honeycomb lattice moves through the Dirac point 
without any perturbation to its width. In contrast, the mode on the hexagonal lattice is strongly perturbed by the 
lattice and becomes a standing wave at the K point. As the mode meets the Brillouin zone the mode width, ∆k 
and momentum, k, tend to a fixed value. This confirms the expected nature of the modes; namely one propagating 
and one stopping through/at the K symmetry point.

Conclusions
In summary, we have studied the dispersion relations and the pressure field configurations of acoustic surface 
waves on a honeycomb array and on a hexagonal array of open holes using both experiment and numerical sim-
ulations. For the honeycomb array, experimental results show that (for the lowest order cavity resonance) two 
acoustic surface modes exist, where at the K point they exhibit a Dirac point, and at the M point a band gap is 
seen. Numerical simulations were performed that show close agreement with the data obtained experimentally; 
confirming the Dirac point at K and a band gap at the M point. Moreover, it is shown that for the honeycomb 
sample the losses increase with increasing momentum along the Γ-K direction, reflecting the propagation of 
acoustic surface waves with diminishing group velocity. The measured dispersion relation in the Γ-K direction 
and in the isofrequency data, shows the excitation and detection of surface modes is dependent on the source 
conditions and that the mode symmetry can determine whether it is observable in the first Brillouin zone; in our 
measurement this manifested itself in the absence of the upper branch in the Γ-K direction in the first Brillouin 
zone, and may be the reason for partial resolution of the same mode in the previously reported measurements of 
acoustic graphene23.

Figure 5. Analysis of acoustic surface wave loss as a function of frequency (left) and wavevector (right) for 
mode propagating in the Γ to K plane for honeycomb and hexagonal lattices. Data points are the mean values 
from the fit of forward and backward travel modes; error bars span the difference in fit values.
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The results for the honeycomb lattice have also been compared with those from a hexagonal array. The hexag-
onal array was chosen to have the same unit cell dimensions in real space, to provide a comparator in momentum 
space. Results showed that only one lower order surface mode exists, that it occurs across similar frequencies to 
its honeycomb counterpart, but does not show Dirac-like behaviour. Analysis of the acoustic pressure fields at 
the K and M points of high lattice symmetry for the honeycomb array demonstrate the field symmetries for the 
Dirac point and the band gap.

Using a simple fitting-approach to estimate the mode loss we see that the mode that travels through the Dirac 
point from the first into the second Brillouin zone is unperturbed around the K-point. These results highlight the 
importance of excitation conditions and the acoustic loss of surface modes on structured surfaces on the realisa-
tion of designs that exploit surface modes at audible frequencies in the kilohertz range.

Methods
Numerical modelling. Surface mode dispersion was calculated using the Finite Element Method (FEM) 
modelling package, COMSOL Multiphysics (version 5.3a)33. The dispersion relations presented are the eigen-
modes of rhombic unit cells with repeat Floquet-periodic boundary used to represent an infinite surface. These 
unit cells are displayed in Fig. 1(a,b). The model assumes the holes are cylindrical cavities perforated through 
an acoustically-rigid plate of thickness, t. The acoustic loss that arises due to the no-slip and isothermal bound-
ary condition at the fluid-solid interfaces are accounted for (implemented using the pressure acoustic and ther-
mo-acoustic modules); for the geometries and frequencies studied here, loss causes a small (approx. 0.5 kHz) 
reduction in the frequency of the modes at the Brillouin zone when compared a loss-less system.

Sample manufacture. Experimental samples (photograph in Fig. 1) were fabricated in aluminium alloy by 
milling each hole array geometry through plates of mean thickness t = 8.0 ± 0.1 mm. The hole array structures 
occupy a 400 mm by 490 mm area on the plate surface.

Acoustic measurements. Acoustic measurements of the surface wave pressure field used a fixed loud-
speaker source and a detector on the opposite side of the sample on a translation stage. Figure S1 displays a 
simple schematic of this experimental setup. Acoustic surface modes were excited using a modified Tucker-Davis 
Technologies MF1 near-field source positioned over a hole in the centre of the sample to diffractively couple 
sound to the surface modes. This source was excited with single cycle sine-Gaussian waveform with 16 kHz car-
rier frequency. Surface wave propagation across the sample is measured with a Brüel & Kjær Type 4182 needle-tip 
probe microphone positioned on the opposite side of the sample and raster scanned in a plane approximately 
<0.4 mm above sample surface using the translation stage. At each spatial point the time-dependent signal (volt-
age) is recorded with a sampling frequency of 312.5 kHz, for a duration of 32 ms. The detecting microphone was 
scanned in square grid with raster step size, ∆x = ∆y, of 1.5 mm, for a total scan length, xmax = ymax, of 400 mm. 
The momentum-space resolution of this experiment is limited by the scan length, ∆k = 1/xmax, and the range is 
limited by minimum scan step size, ∆x (maximum wavevector kmax = 2π/∆x). The frequency resolution is deter-
mined in the same way.

Experimental data analysis. Fourier analysis of the acoustic signals in time (t) and space (x, y) was used 
to obtain the full dispersion relation (kx, ky, f) and pressure field of the surface waves measured close to the sam-
ple surface. The dispersion plots shown in Figs 2 and 3 are found by intersecting the full dispersion relation (kx, 
ky, f) with an appropriate 2D plane; for plots in Fig. 2 (k|| vs. f) intersections are made to map the Γ-X, Γ-M, and 
M-K directions as a function of frequency, and Fig. 3 (kx vs. ky) to show intersections of the kx-ky plane at a fixed 
frequency.

All dispersion data presented has undergone real-space windowing of the complex pressure field using a sym-
metric tapered cosine-window with shape parameter, α = 0.5 before being Fourier transformed and zero-padded 
by a factor of 3. Dispersion curves are plotted with in greyscale indicating the Fourier intensity without nor-
malisation to show the relative strength of features within the plots. All data was processed using the SciPy and 
NumPy packages and plotted using Matplotlib in Python. To provide an indication of the surface mode loss, the 
momentum, k, and momentum width, ∆k of the modes was found by fitting the asymmetric Lorentzian peaks34. 
Peaks were fit (using the curve_fit function in the Python SciPy optimise library) to the mode propagating in the 
positive and negative k-directions independently and results averaged.
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