
 

 
 

 

 

 

Ren, Y. et al. (2016) Experimental characterization of a 400  Gbit/s orbital angular 
momentum multiplexed free-space optical link over 120 m. Optics Letters, 41(3), 

pp. 622-625. 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 

 

 

http://eprints.gla.ac.uk/115873/ 
     

 

 

 

 

 

 

Deposited on: 29 January 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/115873/
http://eprints.gla.ac.uk/115873/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Experimental characterization of a 400 Gbit/s orbital 

angular momentum multiplexed free-space optical 

link over 120-meters 

YONGXIONG REN,
1,*

 ZHE WANG,
1
 PEICHENG LIAO,

1
 LONG LI,

1
 GUODONG XIE,

1
 HAO 

HUANG,
1
 ZHE ZHAO,

1 
YAN YAN,

1 
NISAR AHMED,

1
 ASHER WILLNER,

1 
MARTIN P. J. 

LAVERY,
2
 NIMA ASHRAFI,

3
 SOLYMAN ASHRAFI,

3
 ROBERT BOCK,

4
 MOSHE TUR,

5
 IVAN 

B. DJORDJEVIC,
6
 MARK A. NEIFELD,

6
 AND ALAN E. WILLNER

1
 

1
Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA 

2
School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK 

3
NxGen Partners, Dallas, Texas 75219, USA 

4
R-DEX Systems, Marietta, GA 30068, USA 

5
School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel 

6
Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, USA 

*Corresponding author: yongxior@usc.edu  

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

 

We experimentally demonstrate and characterize the 

performance of a 400-Gbit/s orbital angular momentum 

(OAM) multiplexed free-space optical link over 120-

meters on the roof of a building. Four OAM beams, each 

carrying a 100-Gbit/s QPSK channel are multiplexed and 

transmitted. We investigate the influence of channel 

impairments on the received power, inter-modal 

crosstalk among channels, and system power penalties. 

Without laser tracking and compensation systems, the 

measured received power and crosstalk among OAM 

channels fluctuate by 4.5 dB and 5 dB, respectively, over 

180 seconds. For a beam displacement of 2 mm that 

corresponds to a pointing error less than 16.7 µrad, the 

link bit-error-rates are below the forward error 

correction threshold of 3.8×10-3 for all channels. Both 

experimental and simulation results show that power 

penalties increase rapidly when the displacement 

increases. © 2015 Optical Society of America 

OCIS codes: 060.2605 (Free-space optical communication); 060.4230 

(Multiplexing); 999.9999 (Orbital angular momentum). 

http://dx.doi.org/10.1364/OL.99.099999 

Free-space optical (FSO) communications has attracted much attention for a variety of applications, such as back-haul and data centers [1, 2]. Given the rapid growth of bandwidth demand for these applications, there is increased interest in utilizing advanced multiplexing of multiple data streams to increase the data capacity and 

spectral efficiency of an FSO system [3]. Multiplexing in wavelength and polarization, known as wavelength division multiplexing (WDM) and polarization division multiplexing (PDM) respectively, have previously been used for FSO transmission [3, 4].       Another potential approach is to use space division multiplexing (SDM), for which multiple beams each carrying an independent data stream are transmitted through a common medium [5, 6]. Provided these spatially-overlapping beams can be properly demultiplexed with tolerable crosstalk,  the total capacity and spectral efficiency of the communication system is increased by a factor equal to the number of transmitted orthogonal modes. An orthogonal spatial modal basis set for SDM that has gained interest is orbital angular momentum (OAM) [5-8]. OAM beams with different ℓ values (ℓ is an unbounded integer) are mutually orthogonal [8, 9], so that beams carrying different OAM can act as independent data channels for efficiently multiplexing multiple information-bearing signals in an SDM-based communication system [5]. Moreover, similar to any SDM approach, OAM multiplexing is in principle compatible with existing WDM and PDM techniques [6]. We note that compared to other modal sets, such as Hermite-Gaussian (HG) modes that could also be used for SDM, OAM modes might offer the potential advantage of being conveniently matched to many optical subsystems due to their circular symmetry.      It is known that the amount of phase change per unit area for an OAM beam is greatest in the beam center, and that collecting sufficient phase changes is critical for ensuring orthogonality among OAM beams [9]. As a result, OAM multiplexing might be more sensitive to system alignment as it relies more critically on a common optical axis to achieve low inter-modal crosstalk [10]. OAM multiplexing has been employed to demonstrate high-capacity FSO transmission links in laboratory settings [6, 7]. These experiments were generally 
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and ℓ = +3, compared to the back-to-back case (bypassing the link setup) are 7.7 dB, 4.3 dB, 4.4 dB, and 4.6 dB, respectively. To investigate the maximal beam jitter that the system allows, we intentionally adjust the displacement of the received beams with respect to the receiver axis. In this case, the total misalignment is a combination of this static displacement and the random time-varying jitter. It is expected that this misalignment would cause power coupling among neighboring channels, resulting in inter-channel crosstalk. The measured BERs and crosstalk values for OAM channels ℓ = +1 and +3 at an SNR of 21 dB as a function of various lateral displacement are depicted in Fig. 4(b). It is found that a maximum beam displacement of ~2 mm (16.7 µrad pointing error) can be tolerated to achieve BERs below 3.8×10-3.       Figure 5(a) shows the measured BERs (averaged over 60 second) for OAM channel ℓ = +3 under d = 0 mm, 1. 0 mm and 2.0 mm. We see that the BER performance degrades more rapidly when d is larger than 1.0 mm, which is also corroborated by the power penalty of OAM channel ℓ = +3 (at the FEC threshold) as shown in Fig. 5(a) inset. It is clear that the power penalty is larger than 10 dB at d = 2.0 mm. We also observe that power penalties increase rapidly when d is larger than 1.0 mm. In general, a pointing error of the order of µrad could be reduced to nrad level using a commercially available laser tracking system [10, 22, 23], which would improve system performance.        Figure 5(b) shows the simulated relative power penalty (compared to the case when there is no displacement) for all OAM channels as a function of lateral displacement when multiplexed OAM channels ℓ = ±1 and ℓ = ±3 are transmitted over 120-meters. This is obtained by applying the simulation model established in Ref. [10] with the link parameters of the experiment. We see that the simulation and experimental results share a similar trend, and power penalty increases dramatically as lateral displacement exceeds a certain value.       Our experiment was performed on a building roof under clear weather conditions and the effects of atmospheric turbulence seems to be weak according to our measured intensity profiles. The main channel impairment, namely beam jitter  would be more severe over a longer distance or if the transmitter and receiver are placed on different buildings [20, 21]. Meanwhile, the increased turbulence effects in a longer link would introduce additional beam jitter (i..e, beam wandering). The beam jitter caused by the two factors, each with a temporal bandwidth of ~0.1-1 kHz [16] could be corrected with commercially available pointing and tracking control technology [23].       We believe that our experiment could be potentially scaled to a larger number of OAM channels over a km-long distance through careful system design [10]. In general, the number of accommodated OAM beams is limited by various factors, including aperture sizes and channel condition. Given a fixed transmitter and receiver aperture size, a larger OAM ℓ value results in a larger beam size at the receiver such 

that the recovered power decreases. In addition, atmospheric turbulence may present a critical issue for long-distance scenarios or under bad weather conditions [1, 16]. Turbulence-induced high-order aberrations cause degradation of the mode purity for each OAM beam, leading to changes in the received power of each OAM channel and inter-channel crosstalk behaviors [17-19]. This might severely limit the number of OAM beams that can be used for transmission. In this case, turbulence mitigation approaches might be required [24].  
Funding. NxGen Partners; the Air Force Office of Scientific Research. 
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 Fig. 5. BER and system power penalty under various beam displacements.  (a) Measured BERs for OAM ℓ = +3 channel as a function of OSNR under various beam displacements; (b) Simulated power penalty for OAM channels ℓ = -3, -1, +1 and +3 under different beam displacements; this is calculated by using the simulation model established in [10].  
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