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Abstract—Detailed performance assessment of space–time
coding algorithms in realistic channels is critically dependent upon
accurate knowledge of the wireless channel spatial characteristics.
This paper presents an experimental measurement platform
capable of providing the narrowband channel transfer matrix
for wireless communications scenarios. The system is used to
directly measure key multiple-input–multiple-output parameters
in an indoor environment at 2.45 GHz. Linear antenna arrays
of different sizes and construction with up to ten elements at
transmit and receive are utilized in the measurement campaign.
This data is analyzed to reveal channel properties such as transfer
matrix element statistical distributions and temporal and spatial
correlation. Additionally, the impact of parameters such as an-
tenna element polarization, directivity, and array size on channel
capacity are highlighted. The paper concludes with a discussion of
the relationship between multipath richness and path loss, as well
as their joint role in determining channel capacity.

Index Terms—Indoor channels, measured channel data, mul-
tiple-input–multiple-output (MIMO) channels.

I. INTRODUCTION

T HE increasing demand for capacity in wireless systems
has motivated considerable research aimed at achieving

higher throughput on a given bandwidth. One important finding
of this activity is the recent demonstration that for an envi-
ronment sufficiently rich in multipath components, the wire-
less channel capacity can be increased using multiple antennas
on both transmit and receive sides of the link [1]–[5]. For ex-
ample, recent research results have demonstrated data rates as
high as 40 b/s/Hz in an indoor environment [6]. Algorithms
that achieve this increased capacity actuallyexploit the mul-
tipath structure by cleverly coding the data in both time and
space. Therefore, in order to assess the performance of sys-
tems that implement these algorithms, we must gain an im-
proved understanding of the complexspatialbehavior of wire-
less multiple-input–multiple-output (MIMO) channels [7].

Past methods for characterizing multipath MIMO channels
include approximate statistical analyses [1] and ray tracing
procedures [8]. These solutions offer information concerning
the general channel behavior but suffer from their inability
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to accommodate an adequately detailed representation of the
propagation environment. More recently, experimental mea-
surement campaigns have been initiated in order to statistically
characterize both indoor and outdoor wireless MIMO chan-
nels [9]–[11]. Results from these experiments have provided
considerable insight concerning the capacity increases possible
using MIMO systems.

In this work, we report the development of and results from
an experimental platform designed to probe the transfer ma-
trix for indoor MIMO channels. This system is used to ob-
tain narrowband channel transfer matrix data at 2.45 GHz using
two different linear arrays: one with four dual-polarization el-
ements and one with ten single polarization elements. The key
aspects of the hardware system are presented, including a dis-
cussion of measurement issues and data processing methodolo-
gies. Representative data obtained with the instrument in several
indoor environments are also provided, with emphasis placed on
key parameters such as channel stationarity, transfer matrix el-
ement statistics, and channel spatial correlation. Additionally,
the paper highlights the effect of such factors as antenna ele-
ment polarization and directivity on the capacity, and illustrates
the decrease in capacity per antenna that occurs as the array size
increases. Finally, a discussion is provided concerning the rela-
tionship between multipath richness and path loss, as well as
their joint role in determining channel capacity.

II. M EASUREMENTSYSTEM

Experimental probing of the MIMO wireless channel in-
volves measuring the transfer matrix, where the element

represents the frequency dependent transfer function
between the th transmitter and th receiver antennas. The
experimental platform, depicted in Fig. 1, uses a custom
narrowband MIMO communications system operating with a
center frequency between 0.8 and 6 GHz [12]. For this work,
a center frequency of 2.45 GHz has been chosen. The system
operates by transmitting uniquely coded and co-channel
binary phase-shift keyed (BPSK) signals from distinct
antennas. The receiver downconverts the signal from each of
the antennas and stores the resulting sequences on a PC for
post-processing. The system can accommodate up to
transmit and receive antenna elements although only
ten channels are used in this study. A calibration procedure is
applied before data collection to remove the effects of unequal
channel gains and phases in the transmitter and receiver hard-
ware. The calibration coefficients obtained are applied during
the data post-processing.

1536-1276/03$17.00 © 2003 IEEE
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Fig. 1. High-level system diagram of the narrowband wireless MIMO measurement system.

Fig. 2. Algorithm for recovering the carrier phase.

A. Transmitter

The transmit system consists of a custom radio frequency
(RF) subsystem that accepts binary sequences from an external
digital pattern generator and a local oscillator (LO) signal from
a tunable microwave source. The subsystem distributes these
signals to 16 individual cards, each of which amplifies the LO
signal and multiplies it with one of the binary sequences to pro-
duce BPSK modulation. The resulting signal is amplified to
0.5 W and fed to one of the transmit antennas. The pseu-
dorandom binary sequences used in the system are constructed
using a shift-generator initialized with a maximum-length se-
quence polynomial. The resulting codes have good correlation
properties but are not perfectly orthogonal, necessitating the
channel inversion technique discussed in Section III-C.

B. Receiver

The receive system consists of a second RF subsystem that
accepts a LO signal from a microwave source. Each of 16
receive cards amplifies, downconverts, and filters the signal
from one of the receive antennas. The resulting inter-
mediate frequency (IF) signals are sampled on a 16-channel
1.25 Msample/s analog-to-digital (A/D) conversion card for
storage on the PC. This data is then post processed according
to the procedures outlined below.

III. D ATA PROCESSING

The raw data collected using the measurement platform is
processed to obtain estimates of the time-variant channel matrix.

The technique consists of 3 basic steps: 1) code synchronization;
2) carrier recovery; and 3) channel estimation.

A. Code Synchronization

Locating the start of the modulating codes begins by corre-
lating the signal from one of the receive antennas with a
baseband representation of one of the transmit codes. A fast
Fourier transform (FFT) of this result produces a peak at the
IF when the known code and the code in the receive signal are
aligned. The algorithm expedites the process by using shortened
correlating codes and coarse steps at the beginning of the search
process, and adaptively reducing the step size and switching to
full-length codes as the search converges. Additionally, if the
signal carrying the specified code is weak, the maximum corre-
lation may not occur at code alignment. To overcome this, our
procedure searches over every combination of receive channel
and code to ensure accurate code synchronization.

B. Carrier Recovery

The FFT peak obtained during code synchronization provides
an estimate of the IF. This result is refined using a subplex op-
timization loop that maximizes the magnitude of the discrete
time Fourier transform (DTFT) of the despread signal (known
aligned code multiplied by the receive signal). Following fre-
quency estimation, the phase variation is recovered by moving
a window along the despread signal and correlating this wave-
form against a complex sinusoid at the IF, as shown in Fig. 2.
The phase of this result represents the phase at the center of the
recovery window. An averaging window is then used to smooth
this phase estimate.
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C. Channel Estimation

Because the pseudorandom codes used in the probing system
are not strictly orthogonal, it is necessary to perform an inver-
sion to extract the complex channel transfer matrix from the
measured data. This inversion is formulated by first recognizing
that the IF signal on the th receive channel is composed of
BPSK codes, with each code represented by an amplitude
and phase . If represents theth sample of the th
code, the discrete received signal is given as

(1)

where is the discrete (recovered) carrier frequency, is
the randomly varying carrier phase, and represents the dis-
crete noise sample that is assumed to be spectrally white with a
zero-mean Gaussian amplitude distribution.

To construct channel matrices, we must infer channel param-
eters and from the sequence . To this end, con-
sider forming an estimate of these parameters based upon

samples of the sequence (corresponding to the code
length). Also assume that is the observed signal. Using
the zero-mean Gaussian distribution of the noise, the maximum-
likelihood estimation (MLE) of the channel parameters results
from finding the values of
that minimize the expression

(2)

where

(3)

In order to determine the MLE values of , we take the
derivative of with respect to both and , ,
and set the result to zero. Performing this operation produces

(4)

(5)

where , , and
. These equations can now be formed

into the block matrix

(6)

The channel matrix elements are given by .

TABLE I
MEASUREMENTSYSTEM LOCATIONS WITHIN THE ENGINEERING BUILDING

ALONG WITH ANTENNA CONFIGURATIONS

IV. CHANNEL MATRIX CHARACTERISTICS

The measurement system was deployed on the fourth-floor of
the five-story engineering building on the Brigham Young Uni-
versity campus. This building, constructed with cinder-block
partition walls and steel-reinforced concrete structural walls
contains classrooms, laboratories, and several small offices.
Data were collected at a center frequency of 2.45 GHz using
1000-bit binary codes at a chip rate of 12.5 kb/s, yielding a
nominal bandwidth of 25 kHz. This narrow bandwidth is clearly
not representative of most modern communications systems
and, therefore, additional work is required to fully characterize
the frequency behavior of the MIMO channel matrix. However,
the results obtained can be used to assess the channel spatial
behavior and temporal variation, as well as the effect of antenna
characteristics on the achievable channel capacity.

The 12.5-kb/s chip rate produces one channel matrix estimate
every 80 ms, where the estimate represents the average channel
response over the code length. Because channel changes occur
on the time scales of relatively slow physical motion (people
moving, doors closing, etc.), this sample interval is adequate for
the indoor environment under investigation (see Section IV-B
for a discussion of channel temporal variation). Shorter codes
could be used to reduce this time if necessary. Alternatively,
a higher speed data acquisition system could be employed in
conjunction with a higher chip rate to decrease the time between
channel estimates.

Table I lists the five different locations for the transmit and
receive subsystems used in this study. Rooms 400 and 484 are
central labs in the building separated by a hallway (designated
as “Hall”), “5 Rooms” and “Many Rooms” in the table indicate
that the receiver was placed at several locations in different
rooms. The specific linear antenna arrays employed were
four-element single polarization patches with spacing
(4SP), two-element dual polarization (V/H) patches with
spacing (2DP), and ten-element monopole antennas with
spacing (10SP). Data records were each 10 s long.

Since the actual received power varies as a function of the
transmit and receive locations, some type of channel normal-
ization is required to facilitate comparison of the results. One
reasonable normalization is to scale the channel matrices such
that on average, the power transfer between a single transmit and
single receive antenna is unity. To see this, let and
represent the observed and normalized matrices, respectively,
where the superscript denotes the index of the matrix sample in
time. Using to represent a normalization constant such that
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Fig. 3. Plot illustrating the power dynamic range of the receiver system and
histogram of the received power level for all measurements used in this analysis.

, the unity average power gain constraint may be
expressed as

(7)

where is the total number of matrix samples. Solving this
equation for leads to

(8)

If the matrix samples include the entire data set under con-
sideration, this scaling allows assessment of the effects of path
loss on the channel characteristics. If, on the other hand,
is used, each individual matrix will produce the same signal-to-
noise ratio (SNR). This is useful when assessing the impact of
antenna parameters such as polarization, directivity, or array
size on capacity. In this paper, therefore, data is normalized
using unless specifically stated in the discussion.

Finally, it is important to assess the dynamic range of the re-
ceiver system. To accomplish this, the carrier modulated with
a single code was directly injected into each receive channel
and the channel estimation procedure was applied. The car-
rier power was varied linearly until saturation occurred at high
power and until the carrier estimation procedure failed at low
power. Fig. 3 shows the response from one of the channels (all
channels were within 1 dB of each other). This plot also con-
tains a histogram of the received power level for all measure-
ments used in this work. These results imply that the effective
SNR for most measurements is above 40 dB and never falls
below 20 dB. It is important to point out that error in the carrier
recovery introduces about 1% error, producing an upper bound
of 40 dB on the effective channel SNR. This high SNR level
implies that the statistical channel properties will be minimally
influenced by the noise.

A. Channel Matrix Element Statistics

We begin this study by presenting the marginal probability
density functions (PDF) for the magnitude and phase of the el-
ements of . These empirical PDFs are computed according to

HIST (9)

Fig. 4. Empirical PDFs for the magnitude and phase of the 4� 4H matrix
elements compared with Rayleigh and uniform PDFs, respectively.

Fig. 5. Empirical PDFs for the magnitude and phase of the 10� 10Hmatrix
elements compared with Rayleigh and uniform PDFs, respectively.

HIST (10)

where HIST represents a histogram of the function
with bins of size and is the number of matrix samples.
In this case histograms are computed by treating each combina-
tion of matrix sample, transmit antenna, and receive antenna as
an observation.

Figs. 4 and 5 show the empirical PDFs for sets 44(a) and
10 10(a) respectively. These results are compared with the
Rayleigh distribution (magnitude) with parameter and
the uniform distribution (phase) on . The agreement be-
tween the analytical and empirical PDFs is excellent. The im-
proved fit for 10 10 data arises from more records and an-
tennas available.

B. Channel Temporal Correlation

Because the indoor channel is subject to temporal drift due to
motion of people, doors, etc., it is interesting to explore the time
scales over which these changes occur. This study can be accom-
plished by examining the temporal autocorrelation function for
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Fig. 6. Temporal correlation coefficient over a 5 second interval for all data
sets.

each element of the transfer matrix. The average autocorrelation
is given as

(11)

where is a time sample, is a sample shift, and represents
an average over all combinations of transmit antenna, receive
antenna, and starting time sample. This averaging includes all
10-s records for the data set under investigation. The temporal
correlation coefficient is then given by .

Fig. 6 plots the magnitude of over a period of 5 s for each of
the data sets considered. We observe that for all measurements,
the correlation remains relatively high. This is significant, as it
provides insight into the required frequency of training events
for MIMO algorithms that use channel state information. We
also note that the temporal correlation seems to exhibit an ex-
ponential decay to a “resting” value, suggesting that the mean
of the channel elements remains relatively constant over the 5-s
interval. This behavior is reasonable, since channel disturbances
tend to be temporary, causing the channel transfer function to os-
cillate about a constant value. Over longer periods of time, the
correlation will likely decrease more substantially due to more
permanent changes in the channel.

The variation in for the different data sets considered is di-
rectly related to the measurement conditions. For example, the
10 10(a) and 4 4(a) data sets were taken during periods of
very low activity and the data sets were large, resulting in good
statistical averages. In contrast, sets 1010(c) and 4 4(b)
were both taken during the middle of the day when activity was
higher. Nearly half of the measurements in the 1010(b) data
set involved continuous movement of the receiver or transmitter
during acquisition, producing the more rapid decrease in corre-
lation values.

C. Channel Spatial Correlation

The channel spatial correlation is an important physical
mechanism since lower signal correlation between adjacent
antennas tends to produce higher average channel capacity. To
examine the channel spatial behavior, we assume a correlation
function that is separable in transmit and receive, or

E (12)

Fig. 7. Magnitude of the shift-invariant spatial correlation coefficients at
transmit and receive compared with Jakes’ model.

where the transmit and receive correlation functions are given
by

E (13)

E (14)

and E is an expectation. The transmit and receive correlation
functions are computed empirically by replacing the expectation
with an average over all time samples.

Fig. 7 shows the shift-invariant spatial transmit and receive
correlation coefficient compared with Jakes’ model [13], where

and is the an-
tenna separation in wavelengths. Data sets 44(a) and 10
10(a) were used for this example. For this shift-invariant case,
we treat all pairs of antennas with the same spacing as indepen-
dent observations. For small separation, the agreement between
the experimental correlation and Jakes’ model is very good. The
disparity at higher separations is likely due to nonuniform angle
of arrival of multipath components, as well as a reduced amount
of available data for computing the correlation statistics.

The correlation values obtained from this analysis represent
the temporal cross correlation function at zero time offset. We
have computed the full temporal cross correlation function
for the data collected here using an analysis similar to that
of Section IV-B. Comparing this result to the average tem-
poral autocorrelation function of (11) scaled by the spatial
correlation value shown in Fig. 7 for the appropriate antenna
separation shows that the two functions are always within 5%
and usually within 1%. This observation suggests that Figs. 6
and 7 completely specify the average correlation behavior of
the data.

V. CHANNEL CAPACITY

The channel statistical properties are interesting as they lend
insight into mechanisms for exploiting the increased capacity of
the environment using MIMO architectures. Ultimately, how-
ever, channel capacity, or the upper bound on achievable data
rates for the channel, is the key parameter of interest. In this
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study, capacities are computed from the measuredmatrices
according to the water filling solution of the channel orthogo-
nalized by the singular value decomposition (SVD) [5], [14].
This formulation yields the absolute upper bound on channel
capacity which can be expressed as

(15)

(16)

where and is the squared magnitude of
the th singular value of when these singular values are se-
quenced in descending order. is the total transmit power, and

represents the single receiver noise variance (additive white
Gaussian noise (AWGN) is assumed). The integerrepresents
the number of nonzero values of . Since appears in the ex-
pression of (16), must be repeatedly computed for to

. The value of used in the capacity computation is
then the largest value of such that all , .
It is important to recognize that due to the normalization given
in Section IV, represents the single-input–single-output
(SISO) SNR, which is held at 20 dB for all capacity computa-
tions that follow. Also, capacity is given in the standard units
of bits per channel use (bits/use) [14] which can be interpreted
here as b/s/Hz.

A. Polarization Dependence

The linear patch arrays employed in the measurements con-
sist of four dual-polarization elements. In order to assess the role
of polarization in the performance of MIMO architectures, we
used four transmit/receive channels [set 44(b)] to excite both
V and H feeds on two separated patches on each side of
the link. By looking at the appropriate submatrices of, the
complimentary cumulative distribution functions (CCDFs) of
capacity can be compared for three different 22 subchannels:
1) two elements with same polarization (V or H) but separated
by ; 2) two elements which have orthogonal polarization and
are colocated; and 3) two elements which have both orthogonal
polarization and are separated by .

Fig. 8 shows the results of this study. Two single polarization
elements (SP) is the inferior case, due to correlation between the
elements. The next line on the graph (IID) is the capacity for a
2 2 channel matrix with independent identically distributed
(i.i.d.) complex Gaussian elements with unit variance, the ca-
pacity being computed using Monte Carlo over channel re-
alizations. The capacities for the dual polarized elements (DP)
and dual polarized elements with separation (DPS) are virtually
identical. The fact that the dual polarized elements outperform
the IID case seems extraordinary at first glance. However, it is
a well-known phenomenon that coupling between the orthog-
onal polarizations will be small, presenting anmatrix which
is nearly diagonal. The final line (DIAG) shows the performance
when has i.i.d. complex Gaussian elements on the diagonal
but is identically zero everywhere else (computed in a manner
similar to IID). As expected, this case outperforms our dual-po-
larization elements which exhibit weak correlation.

Fig. 8. CCDFs for 2 � 2 channels employing different types of
polarization/spatial separation.

Fig. 9. CCDFs for 2 � 2 channels employing different types of
polarization/spatial separation with realistic normalization.

The channel matrix normalization applied in Fig. 8 ensures
that each 2 2 subchannel has the same SISO SNR. This type of
normalization is perhaps optimistic, since low transmission be-
tween the orthogonally polarized channels will translate into re-
duced average receive SNR. A more realistic comparison takes
each 4 4 channel matrix and normalizes to achieve an av-
erage SISO SNR of 20 dB over the co-polarized matrix elements
only. The 2 2 subchannels are then formedafter this normal-
ization, preserving the relative receive power of the subchan-
nels. Fig. 9 depicts the CCDFs resulting from measured data
and from Monte Carlo simulations of two ideal cases. In the
simulations, 4 4 channel matrices are generated having i.i.d.
complex Gaussian co-polarized elements, with the cross-polar-
ized elements set to zero. The new normalization is applied to
the simulated channels, and 22 single-polarization (sSP) and
dual polarization (sDP) subchannels are formed.

The conclusions drawn from Fig. 9 are quite different from
those drawn from Fig. 8. First, we note that the slopes in the new
plot are more gradual because the power in the subchannels has
higher variance (only the entire 4 4 matrix is constrained).
Second, in the simulations sSP clearly outperforms sDP due
to the advantage in receive SNR. For the measured data, how-
ever, the spatially separated elements have nonzero coupling,
and the increased capacity due to nearly orthogonal channels
offsets the degradation from reduced receive SNR. Thus, for
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Fig. 10. Capacity CCDFs for 4� 4 patches versus 4� 4 monopoles.

compact arrays of closely spaced elements, dual-polarization is
an attractive choice. However, when wide separation is possible,
spatially separated elements are more attractive due to the power
advantage.

B. Directivity Dependence

The monopole antennas employed radiate uniformly in the
plane perpendicular to the antennas. The patch antennas, on the
other hand, only radiate into a half space. These two types of an-
tennas allow examination of the effect of antenna directivity on
channel capacity. Fig. 10 plots the capacity of the 44 channel
for four patch antennas (transmit and receive) from set 44(a)
and for four monopole antennas using subsets of set 1010(a).
These results indicate that the omnidirectional antennas slightly
outperform the more directive patch antennas. This result may
be somewhat misleading due to the normalization of. It is rea-
sonable that since the monopoles are omnidirectional, they re-
ceive more multipath components, resulting in higher capacity.
However, the reduced multipath richness in the directional case
is potentially offset by the improved SNR resulting from the
increased antenna gain, allowing a higher data rate than in the
omnidirectional case. This second effect is ignored since the
matrices are normalized to a specified SISO SNR. The similarity
of the CCDFs suggests that even though the patch antennas ex-
hibit reduced angular field of view, the multipath is nearly as
rich as the omnidirectional case for a small number of antennas.

C. Dependence on Number of Antennas

Naturally, it is not anticipated that the capacity will continue
to grow indefinitely as more antenna elements are added. To
explore this behavior, we examine the dependence of capacity
on the number of antennas for 2, 4, and 10 monopole transmit
and receive antennas. To make a fair comparison, each array in
the study possesses the same total length (2.25). This study
uses the data from set 10 10(a). Fig. 11 shows the capacity
CCDFs per number of transmit and receive antennas. Also,
Monte Carlo simulations were performed to obtain capacity
CCDFs for channel matrices having i.i.d. complex Gaussian
elements with unit variance. These results indicate an excellent
agreement between the measured 22 and ideal 2 2 (inde-
pendent Gaussian) channel due to the very wide separation of

Fig. 11. Capacity CCDFs per number of antennas for transmit/receive arrays
of increasing number of elements. The array length is 2.25� for all cases.

Fig. 12. Study showing the tradeoff between multipath and path loss with
regard to channel capacity. Arrows are drawn from transmit to receive. The top
number and bottom number in each box give capacity without and with path
loss, respectively.

the antennas (2.25). The ideal case predicts that the capacity
per antenna should approach a constant as the number of
antennas becomes large. Measurement shows, however, that as
we pack more antennas into our array, the capacity per antenna
drops, due to higher correlation between adjacent elements.

D. Path Loss Dependence

Studies on the capacity of the MIMO channel often focus on
the gains due to multipath interference and ignore the reduc-
tion in SNR due to path loss. In a hypothetical indoor wireless
MIMO system, as separation between transmit and receive in-
creases, capacity increases due to increased channel complexity
(multipath). However, path loss also increases, leading to lower
SNR and, therefore, reduced capacity. This interesting tradeoff
deserves some attention [11].

To highlight the importance of path loss, a study was
performed with several transmit and receive scenarios as
depicted in Fig. 12. The transmit and receive arrays are the
same linear monopole arrays with element separation as
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mentioned before. A total of seven transmit/receive locations
were possible, and for several combinations was probed.
Each arrow in the figure represents a single scenario with the
arrow pointing from transmit location to receive location. The
top number in the box on each arrow gives the channel capacity
using the standard single matrix normalization [ in
(8)] for 20 dB SNR. The second number (in italics) gives the
capacity when the normalization is applied overall matrices
in the study for an average SISO SNR of 20 dB. This second
value includes the capacity degradation due to path loss.

Several of the cases with large separation (53, for ex-
ample) exhibit a high capacity when path loss is excluded (due
to large multipath), but suffer greatly when this loss is included.
Other cases where transmit and receive are in closer proximity
(7 4 most notably) exhibit the opposite effect due to the high
SNR observed. These results demonstrate the importance of in-
cluding both path loss and multipath richness when comparing
the performance of different channels.

VI. CONCLUSION

Wireless communication systems employing multiple
transmit and receive antennas have potentially greater capacity
than their single antenna counterparts on the same bandwidth.
Understanding the gains that are possible with such systems
requires detailed knowledge of the MIMO channel transfer
matrix. This paper has presented narrowband MIMO measure-
ments of the indoor channel at 2.45 GHz for arrays with up
to ten antenna elements. Details of the required hardware and
data processing were outlined along with representative data.
The measured data were presented so as to allow assessment of
the channel statistical behavior including transfer matrix PDFs
and temporal and spatial correlation. Additionally, the impact
of polarization, directivity, and number of array elements on
channel capacity has been demonstrated. Finally, the impor-
tance of including both path loss and multipath richness when
comparing capacity of different wireless channels has been
illustrated. These results should provide invaluable insight into
the behavior of MIMO wireless channels.
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