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Experimental characterization of three-band braid relations in non-Hermitian acoustic lattices
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The nature of complex eigenenergy enables unique band topology in non-Hermitian (NH) lattices. Recently,
there has been fast growing interest in the elusive winding and braiding topologies of the NH single and
double bands, respectively. Here, we explore the even more intricate NH multiband topology and present
an experimental characterization of the three-band braid relations by acoustic systems. Based on a concise
tight-binding lattice model, we design a ternary cavity-tube structure equipped with a highly controllable
unidirectional coupler, through which acoustic NH Bloch bands are experimentally reproduced in a synthetic
space. We identify the NH braid relations from the global evolution of the eigenvalues and acoustic states,
including a noncommutative braid relation σ1σ2 �= σ2σ1 and a swappable braid relation σ1σ2σ1 = σ2σ1σ2. Our
results could promote the understanding of NH Bloch band topology and pave the way toward designing practical
devices for manipulating acoustic states.
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Introduction. Topological band theory, as one of the cor-
nerstones in condensed matter physics, provides a unified
framework for classifying distinct topological phases of mat-
ter [1,2]. Recently, the band topology in non-Hermitian (NH)
lattices has attracted fast growing attention since it sig-
nificantly broadens and deepens our understanding to the
conventional Hermitian case [3–20]. Unlike the Hermitian
band topology defined only by Bloch wave functions, the
NH one can be defined either by Bloch or non-Bloch wave
functions, because of the strikingly different energy spectra
under periodic and open boundary conditions. This yields the
Bloch or non-Bloch NH band theory. The former, still employ-
ing real-valued wave vectors and the conventional Brillouin
zone (BZ), classifies the nontrivial topology of complex band
structures [13–20], while the latter enables us to interpret
unique open-boundary phenomena (e.g., skin effects) through
introducing complex-valued wave vectors and a generalized
BZ [3–12].

In the NH context, even a single Bloch band can be topo-
logically nontrivial by generating complex-energy windings
[21–24] and vortices [25,26]. While considering two Bloch
bands, the systems can further exhibit rich braiding struc-
tures [2,27–29], which directly connect with the topology of
encircling exceptional points (EPs) [2,30–36]. As for multi-
band systems, there are even more distinctive topological
properties (e.g., noncommutative braid relations and associ-
ated nontrivial state permutations), since (i) they permit the
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existence of multiple and higher-order EPs [37–41], and (ii)
their homotopy group BN (N > 2) is non-Abelian [42–44].
Very recently, the appealing winding and braiding topologies
have been demonstrated for single- and double-band systems
by various experimental platforms [23,24,27–29]. However,
experimental progress on multiband topology is still in its
infancy [45]. Some recent experimental advances made for
achieving acoustic non-Hermicity could benefit the experi-
mental implementation of this topic [24,29,46–49].

In this Letter, we report an experimental characterization
of the NH three-band braid relations by acoustic systems.
Theoretically, we propose a NH three-band lattice model,
in which a series of band braids and state permutations are
revealed from the topology of encircling multiple EPs. Ex-
perimentally, we employ the concept of synthetic dimension
[23,27,49–53] to demonstrate the highly intricate three-band
braiding physics inherited in one-dimensional (1D) NH Bloch
bands, instead of using a large finite system where the
truncated boundary drastically modifies the energy spec-
trum and eigenstates of the corresponding infinite lattice
[2–5]. We consider a ternary-cavity structure equipped with
a well-controlled unidirectional coupler. The latter, consisting
of an external amplifier and a phase modulator, is elabo-
rately designed to achieve the long-range, complex-valued,
and momentum-resolved nonreciprocal couplings, which are
extremely challenging in acoustics [29]. Typically, a noncom-
mutative braid relation (NBR) and a swappable braid relation
(SBR) are unambiguously captured not only by retrieving
the complex band structures from the synthesized Hamil-
tonian, but also by directly observing the permutations of
acoustic states. Our findings demonstrate the NH multiband
topology in a fundamental manner that has no analog to the
Hermitian one.

Three-band braid relations and lattice model. Here, we
introduce the NH three-band braid relations governed by the
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FIG. 1. Fundamental braid relations of NH three-band systems.
The red, blue, and purple lines represent three separable complex
energy bands braided in the (ER, EI , k) space. (a) Braid elements σ1

and σ2. (b) Noncommutative braid relation (NBR) σ1σ2 �= σ2σ1. (c)
Swappable braid relation (SBR) σ1σ2σ1=σ2σ1σ2.

braid group B3 [42]. As depicted in Fig. 1, each band braid
in the complex energy-momentum (E-k) space is specified
by a braid word, a product of the braid elements σ1 and
σ2. Specifically, σ1 (σ2) defines an anticlockwise braid where
the first (second) band crosses over the second (third) band
[Fig. 1(a)], resulting in an exchange of the eigenenergies E1

(E2) and E2 (E3). Note that the eigenenergies are sorted by
their real parts. Intriguing braid relations arise when we alter-
natively build up the band braids with σ1 and σ2, as shown
in Figs. 1(b) and 1(c). In terms of permuting eigenenergies,
the braids σ1σ2 and σ2σ1 exhibit an inequivalent braiding
consequence, i.e., σ1σ2 �= σ2σ1 (dubbed NBR). More specifi-
cally, σ1σ2 gives rise to [E1, E2, E3] → [E2, E3, E1], whereas
σ2σ1 results in [E1, E2, E3] → [E3, E1, E2]. In contrast, the
braids σ1σ2σ1 and σ2σ1σ2 present an equivalent braiding con-
sequence despite that the two elements are exchanged, i.e.,
σ1σ2σ1 = σ2σ1σ2. We refer to it as the SBR. In this case,
both σ1σ2σ1 and σ2σ1σ2 result in [E1, E2, E3] → [E3, E2, E1].
Similar permutation properties are also exhibited in the
global evolution of the eigenstates tied to the three separable
NH bands.

All the above band braids can be realized in a simple
three-band lattice model. As shown in Fig. 2(a), the orbitals
1, 2, and 3 (of zero on-site energy) are coupled by a reciprocal
intracell hopping t0, and two nonreciprocal intercell hoppings
tm and tn that span m and n lattices, respectively. The lattice
Hamiltonian reads

H(k) =

⎛
⎜⎝

0 t0 0

t0 0 t0
tmeimk + tneink t0 0

⎞
⎟⎠. (1)

To reflect the overall braiding degree of the three separable
NH bands, we introduce an integer topological invariant v

[27],

v :=
3∑

i, j=1

1

2π i

∮

BZ

dlnẼi j

dk
dk, (2)

where Ẽi j (k) = [Ei(k) − Ej (k)]/2 (i �= j). Importantly, the
nonreciprocal long-range couplings designed in our model
ensure that all the braids are composed of the anticlockwise
elements σ1 and σ2, and hence the braiding degree v equals
the total number of σ1 and σ2 (see the Supplemental Material
(SM) [54]). This guides us to seek the desired braids from the
phase diagram of v [Fig. 2(b)], where the dots label the pa-
rameters involved in our follow-up experiments. Note that the
braid words, which are defined in an intact BZ [k0, k0 + 2π ],
depend on the selection of the initial momentum k0 (−π/6
throughout the work) [20].

As examples, Figs. 2(c) and 2(d) display two representative
band braids, one for trivial (with t1 = 0.1 and t2 = 0.3) and
the other for nontrivial (with t1 = 1.2 and t2 = 0), respec-
tively. In the former case, the three bands do not braid with
each other since the three complex eigenvalues E1, E2, and
E3 return to themselves trivially over the BZ. In the latter
case, however, the eigenvalues permute and none of them
come back to themselves, i.e., [E1, E2, E3] → [E2, E3, E1], a

FIG. 2. One-dimensional NH lattice model and three-band braids. (a) A sketch of the three-band lattice model, where t0 = 1, tm, tn ∈ R,
and m, n > 0 are assumed for simplicity. (b) Phase diagram exemplified for m = 1 and n = 2. The dots mark the band braids to be realized
in our experiments. (c),(d) A trivial and a nontrivial three-band braids, respectively. (e),(f) The associated manifestations on Riemann surfaces
(real parts), where EP1 (EP2) represents the EP formed by the lower (higher) two Riemann sheets. The eigenvalues, the EPs, and their branch
cuts are projected to the α−β plane, on which the black dot is the starting point and the arrow indicates the evolution of the momentum.

L022050-2



EXPERIMENTAL CHARACTERIZATION OF THREE-BAND … PHYSICAL REVIEW RESEARCH 5, L022050 (2023)

FIG. 3. Experimental setup and acoustic realization of the elementary braids σ1 and σ2. (a) Experimental setup. The acoustic cavities 1,
2, and 3 emulate three orbitals and the narrow tubes in between mimic the reciprocal coupling t0. A controllable unidirectional coupler (UC),
consisting of a microphone DUC, an amplifier, a phase shifter, and a loudspeaker SUC, is introduced between the cavities 1 and 3 to generate
the unidirectional complex coupling κ = ρeiθ . A source S and a detector D are used to excite and detect acoustic transmission responses,
respectively, together with a detector R for phase reference. The inset exemplifies how the complex coupling κ is retrieved by fitting the
transmission response |S13(ω)|. (b),(c) Experimental results for the elementary braids σ1 and σ2, including the designed κ (left), the band
braids (middle), and their projections on 
R−k plane (insets), and associated acoustic states (right). To facilitate observation, the initial and
final eigenfrequencies (states) are linked into triangles. All experimental data (dots, circles) match well the theoretical predictions (lines).

manifestation of the Bloch band braid σ1σ2. The nontrivial
eigenvalue permutation can be traced back to the underly-
ing topology of encircling EPs on Riemann surfaces. To
demonstrate that, we expand the k-space Hamiltonian H(k)
into a parametric-space Hamiltonian H(α, β ) by the substi-
tutions cosk → α and sink → β, so that the BZ is mapped
to a unit circle α2 + β2 = 1 in (α, β) space. As shown in
Figs. 2(e) and 2(f), the eigenvalues of H(α, β ) define three
sheets of Riemann surfaces, and the eigenvalues of H(k)
map out the colored loops on the sheets. When the loops
do not encircle any EPs, the three eigenvalues of H(k)
do not intersect and never exchange [Fig. 2(e)]. By con-
trast, encircling EPs inevitably cross the branch cuts of the
Riemann surfaces, leading to a permutation of the eigen-
values. For instance, encircling EP1 and EP2 in sequence
[Fig. 2(f)] results in the permutation process [E1, E2, E3] →
[E2, E1, E3] → [E2, E3, E1], in accordance with the band
braid σ1σ2 [Fig. 2(d)]. See more details in the SM [54]. Note
that our NH three-band model with versatile EP topology
is markedly different from the previous two-band models
[2,20,27–29], in which the two-eigenvalue permutation turns
out to be trivial in terms of non-Abelian effects.

Experimental characterization of the braid relations. Based
on a concept of synthetic dimension, the above model
can be implemented by designing an acoustic cavity-tube
structure equipped with a unidirectional coupler (UC). As
displayed in Fig. 3(a), the system consists of three identical
air cavities with a complex dipole resonance frequency 
0 ≈
3450−24.4i Hz. The narrow tubes connecting two adjacent

cavities produce a reciprocal intracell coupling t0 ≈ 43.3 Hz.
These intrinsic parameters are retrieved by fitting the trans-
mission response |S13(ω)| of the system in the absence of
UC, where the subscripts i and j in Si j (ω) denote the cavities
inserted with the acoustic detector D and source S, respec-
tively. On the other hand, a UC that consists of a microphone
DUC, an amplifier, a phase shifter, and a loudspeaker SUC

is introduced for achieving unidirectional coupling κ = ρeiθ

between the cavities 1 and 3. Notice that the amplitude ρ and
phase θ can be controlled by the amplifier and phase shifter,
respectively [29]. Thus, we can use κ to mimic the sole k-
dependent Hamiltonian element H31(k) = tmeimk + tneink , and
reproduce the braiding physics of H(k) in the synthesized
k space according to κ = H31(k). Turning on the UC and
using the already assessed intrinsic parameters, the value of κ

can be precisely retrieved by fitting the transmission response
|S13(ω)|, as exemplified in the inset of Fig. 3(a). Eventually,
we obtain the complex band structures by substituting all
the fitted parameters into H(k) and solving the k-resolved
eigenfrequencies 
 = 
R + i
I .

Figures 3(b) and 3(c) show our experimental results for
the two elementary band braids σ1 and σ2. First, we tune the
UC to ensure the unidirectional coupling κ (k) ≈ 1.0t0eik +
0.2t0ei2k , at a momentum step of π/6 [Fig. 3(b), left].
In the 3D space spanned by (
R,
I , k), the red and blue
bands twist around each other, and the purple band stays out of
the twist [Fig. 3(b), middle]. (For clarity, 
0 is deducted from
the complex eigenfrequency 
.) As a visual manifestation of
the band braid σ1, the eigenfrequencies E1 and E2 permute
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FIG. 4. Experimental characterization of the NBR σ1σ2 �= σ2σ1.
The results of the band braids σ1σ2 (a) and σ2σ1 (b) indicate inequiva-
lent braiding consequences in both the eigenvalues (left) and acoustic
states (right).

as k evolves over the BZ. Similarly, the band braid σ2 is
realized by tuning κ (k) ≈ 1.0t0eik − 0.2t0ei2k . As expected,
the retrieved band structure [Fig. 3(c), middle] exhibits a
clearly permutation between E2 and E3. It is worth pointing
out that the eigenfrequency permutations are closely related
to the global evolution of acoustic states in the synthetic k
space, since essentially the nonreciprocal coupling and the
resultant effective Hamiltonian are directly retrieved from real
acoustic signals. To demonstrate this more clearly, we further
measure the acoustic responses P1 = S13(
R), P2 = S23(
R),
and P3 = S33(
R), and extract their real-part information
[1, ReP̄2, ReP̄3 ]T with P̄2 = P2/P1 and P̄3 = P3/P1. The re-
sults are presented in the right panels of Figs. 3(b) and 3(c). It
is shown that the acoustic states exhibit consistent permutation
behaviors with those of eigenfrequencies, i.e., [S1, S2, S3] →
[S2, S1, S3] for σ1 and [S1, S2, S3] → [S1, S3, S2] for σ2.

Now we experimentally characterize the NBR through
controlling κ (k) to map the phase points (t1, t2) = (1.2, 0)
and (t1, t2) = (−1.2, 0) (see the SM [54]). Their braid
words can be recognized respectively as σ1σ2 [Fig. 4(a)]
and σ2σ1 [Fig. 4(b)] via the projected band structures (in-
sets). Under the braid σ1σ2, the eigenfrequencies change
from [E1, E2, E3] into [E2, E3, E1], and the corresponding
acoustic states permute from [S1, S2, S3] to [S2, S3, S1]. The
braid σ2σ1, however, undergoes an entirely different permuta-
tion process, [E1, E2, E3] → [E3, E1, E2] and [S1, S2, S3] →
[S3, S1, S2]. These phenomena directly witness the inequiv-
alent (or non-Abelian) braiding consequences of σ1σ2 and
σ2σ1. Different from the non-Abelian characteristics unveiled
for three NH states evolving in real space [58–60] or para-
metric space [61,62], here we aim to the braiding topology
in momentum space, which is of great significance for under-
standing the fundamental Bloch band theory for NH lattice
systems. Note that both the braids σ1σ2 and σ2σ1 have an even
permutation parity associated to the global biorthogonal Berry

FIG. 5. Experimental characterization of the SBR σ1σ2σ1 =
σ2σ1σ2. The results of the band braids σ1σ2σ1 (a) and σ2σ1σ2 (b)
identify equivalent braiding consequences in both the eigenvalues
(left) and acoustic states (right).

phase Q = 0 [20]. However, their inequivalent braiding con-
sequences are still characterized by the unequal non-Abelian
Berry phases [63], which can be explicitly described by the
unitary matrices [0 1 0; 0 0 1; 1 0 0] and [0 0 1; 1 0 0; 0 1 0],
respectively.

Figure 5 shows our experimental results for characterizing
the SBR σ1σ2σ1 = σ2σ1σ2. To reproduce such band braids,
we tune κ (k) to map the phase points (t1, t2) = (0.3,−1.2)
and (t1, t2) = (−0.3, 1.2) [54]. As predicted, the three acous-
tic bands twist in a more intricate way, which form two
band braids with swapped elements, i.e., σ1σ2σ1 [Fig. 5(a)]
and σ2σ1σ2 [Fig. 5(b)], respectively. More importantly, these
braids exhibit equivalent braiding consequences in terms
of permuting eigenvalues and eigenstates: [E1, E2, E3] →
[E3, E2, E1] and [S1, S2, S3] → [S3, S2, S1]. In addition, the
two braids have the same global biorthogonal Berry phase
Q = π and non-Abelian Berry phase [0 0 1; 0 1 0; 1 0
0]. The former indicates the same odd permutation par-
ity, while the latter evidences the equivalence in braiding
consequence.

Conclusions and discussion. From both the perspectives of
eigenfrequencies and acoustic states, we have evidenced the
two fundamental braid relations for the highly intricate NH
three-band braiding topology. We have not only demonstrated
a variety of NH acoustic braids in synthetic dimension, but
also achieved all possible permutation consequences for the
three-state braiding systems. Our experimental results indicate
that an input acoustic state can be manipulated into any of
the six output states by designing complex band structures,
which could advance the applications on acoustic logic gates
and switches.

The braid relations can be further generalized for any two
equilength but distinct braid sequences consisting of σ1 and
σ2 alternatively. That is, if the total number of the braiding
elements is a multiple of 3, their braiding consequences are
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equivalent; otherwise inequivalent (see the SM [54] for the
proof). The latter has been experimentally evidenced by the
braids σ1σ2σ1σ2 and σ2σ1σ2σ1 emerging in Fig. 2(b) [54].
In future, our experiments could also be extended to demon-
strate the collective behaviors (e.g., creation, split, braiding,
annihilation, coalescence, etc.) of multiple (or higher-order)
EPs and associated band topologies [41,44], the band braiding

topologies in two and higher dimensions [39–41], and the
interplays between the band braiding and non-Hermitian skin
effects/topological edge states [7,13,17,22].
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