

Experimental CO2-driven granular flows under Martian atmospheric conditions

Lonneke Roelofs, Susan Conway, Matthew Sylvest, Manish Patel, Jim

Mcelwaine, Maarten Kleinhans, Tjalling de Haas

► To cite this version:

Lonneke Roelofs, Susan Conway, Matthew Sylvest, Manish Patel, Jim Mcelwaine, et al.. Experimental CO2-driven granular flows under Martian atmospheric conditions. EGU22, the 24th EGU General Assembly, May 2022, Vienna, Austria. 10.5194/egusphere-egu22-679. hal-03851168

HAL Id: hal-03851168 https://hal.science/hal-03851168

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EGU22-679 https://doi.org/10.5194/egusphere-egu22-679 EGU General Assembly 2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Experimental CO2-driven granular flows under Martian atmospheric conditions

Lonneke Roelofs¹, Susan Conway², Matthew Sylvest³, Manish Patel³, Jim McElwaine⁴, Maarten Kleinhans¹, and Tjalling de Haas¹

¹Utrecht University, Physical Geography, Utrecht, Netherlands (l.roelofs@uu.nl)

²Université de Nantes, Laboratoire De Planétologie Et Géodynamique, Nantes, France

³Open University, Milton Keynes, United Kingdom

⁴Durham University, Department of Earth Sciences, Durham, United Kingdom

Martian gullies are alcove-channel-fan systems that have been hypothesized to be formed by the action of liquid water and brines, the effects of sublimating CO₂ ice, or a combination of these processes. Recent activity and new flow deposits in these systems have shifted the leading hypothesis from water-based flows to CO₂-driven flows, as it is hard to reconcile present activity with the low availability of atmospheric water under present Martian conditions. Direct observations of flows driven by metastable CO₂ on the surface of Mars are however nonexistent, and our knowledge of CO₂-driven flows under Martian conditions remains limited. For the first time, we produced CO₂-driven granular flows in a small-scale flume under Martian atmospheric conditions in the Mars Chamber at the Open University (UK). The experiments were used to quantify the slope threshold and CO₂ fraction limits for fluidization. With these experiments, we show that the sublimation of CO₂ can fluidize sediment and sustain granular flows under Martian atmospheric conditions, and even transport sediment with grain sizes equal to half the flow depth. The morphology of the deposits is lobate and depends highly on the CO₂-sediment ratio, sediment grain size, and flume angle. The gas-driven granular flows are sustained under low (<20°) flume angles and small volumes of CO_2 (around 5% of the entire flow). Pilot experiments with sediment flowing over a layer of CO2 suggest that even smaller percentages of CO2 ice are needed for fluidization. The data further shows that the flow dynamics are complex with surging behavior and complex pressure distribution in the flow, through time and space.