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Abstract 

In the field of dry machining, recent researchindicates that surface texture has potential to influence tribological 

conditions. However, very little attention has been given to controlled surface texturing of cutting tools. An 

experimental study of the performance of the micro-texture high speed steel (HSS) grade M2 cutting tool in 

machining of AISI 1040 steel samples is carried out. Surface textures were made using Rockwell hardness tester 

on rake face of the HSS M2 tool. Structural analyses are done on cutting tool using ANSYS workbench to 

evaluate the effect of micro-texture on the stresses and strains generationat cutting edge of the cutting tool in 

cutting operations. It is found that the effect of micro-texture on stress generation is very small which can be 

neglected. Dry cutting tests were carried out on AISI 1040 steel sample using lathe machine with micro-textured 

tools and conventional cutting tool for a varying range of feed and cutting speed. The machining performance 

was analyzed in terms of feed force, cutting force and coefficient of friction. The results demonstrate that the 

surface texture on the rake face of cutting tools significantly reduces cutting forces and coefficient of friction 

when compared with that of the conventional tool. 
Keywords: Surface texture, Cutting tools, Dry cutting 

1. Introduction 

Severe friction exists as the chip flows over the 

rake face and the tool flank of the cutting tool in dry 

machining. Relative motion between the tool and chip 

surfaces produces frictional heating to the cutting tool, 

resulting in high temperature at the tool–chip 

interface. As a result, crater and flank wear develops 

quickly on the tool rake face and flank face under the 

high pressure, high temperature and sliding speed at 

the interface. According to Shaw (1984), wear 

processes involve both chemical and mechanical 

interaction between contacting surfaces and are very 

complex in nature, which are mostly governed by the 

cutting speeds, the cutting forces and the chemical 

composition of workpiece and tool materials. As 

expressed by Kramer (1991): “Metal machining have 

a unique tribological situation in which clean surfaces 

are cleaved from the interior of the workpiece and 

maintained in a condition of nearly 100% real area of 

contact with the tool surface during 

sliding.”Therefore, decreasing the contact area 

between the tool-workpiece interface and tool-chip 

interface is of particular interest in mechanical 

micromachining. The friction and adhesion between 

tool and chip is tend to be higher in dry cutting 

operation, which causes high wear rates, high 

temperature generation, which ultimately results in 

shorter tool life. This motivates researchers like Deng 

et al. (2009) and Renevier and Hamphire (2001) to 

develop new cutting tool with self-lubricating 

properties to reduce cutting temperature by reducing 

coefficient of friction between contact surfaces. Few 

self-lubricationapproaches have been attempted, out 

of those methods; Deng et al. (2006) used a ceramic 

tool with burnishing of CaF2 solid lubricants over rake 

face of cutting tools. By experimentation, they 

observed that the friction coefficient between the tool-

chip interfacesis decreased in dry cutting with ceramic 

tool burnished with CaF2 solid lubricant as compared 

with that of tool without solid lubricants.  Liu et al. 

(1999) have found that coating of MoS2 or MoS2/Ti 

over tool surfaces can enhance the tribological 

properties. 
Enomoto and Sugihara (2010) attempted surface 

texturing of tool to improve tribological properties of 

lubricated surface, and the presence of artificially 

created micro-dimples on frictional surface results in 

substantial reduction in friction and wear as compared 

with non-textured surfaces.Surface texturing as a 

means for enhancing tribological properties of 

mechanical components has received a great deal of 

attention and has already been put to practical use in 

some fieldssuch as a piston/cylinder system by Etsion 

(2004).Various different processes are used for 

texturing from conventional machining to focused 

energy-beam processes, due to which improvement is 

attributed to several physical mechanism such as local 

supply of lubricant increases by creation of lubricant 

reservoir, wear debris entrapment and also increase of 

load carrying capacity by a hydrodynamic effect as 

mentioned by Basnyat (2008). For example, Jayal et 

al. (2008) employed uncoated cemented tungsten 

carbide tools with rake surfaces ground to different 

tolerance levels during production and observed that 

several surface texture parameters for the tool’s rake 
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cutting speed are shown in the Fig. 4 (a) – 4 (d).From 

the force analysis of conventional cutting tool and 

textured tool it can be observed that forces in the 

textured tool are less compared to the conventional 

tool. Set of experiments with varying cutting speeds 

and feed on micro-scale conical dimple textured 

highspeed steel M2 cutting tool (TT), and 

conventional high speed steel cutting tool (CT) were 

performed. 

Analysis of variance (ANOVA) was used to 

check the accuracy. Table 3 shows the plan of cutting 

having two different input conditions keeping depth of 

cut constant at 0.5mm. To optimize number of 

experiments central composite rotatable design 

(CCRD) technique is used. As per CCRD technique, 

number of experiments = 2
k
 + rotatable + central runs, 

since in the present work number of variables k has 

been taken as 2 (cutting speed and feed rate), 

therefore the number of experiments required to be 

performed for single tool as per CCRD technique is 

(4+4+5), i.e., 13.  

Table 3 Plan of Experiments 

Experiment 

No. 

Feed (mm/rev) Cutting speed 

(rpm) 

1 0.52 88 

2 0.80 52 

3 0.92 88 

4 0.52 88 

5 0.52 88 

6 0.80 148 

7 0.04 88 

8 0.52 88 

9 0.16 148 

10 0.52 192 

11 0.16 52 

12 0.52 40 

13 0.52 88 

 

As it can be observed from the experiments 

results, the cutting forces and feed forces reduced for 

micro- textured tools comparatively conventional HSS 

M2 tools. Might be two reasons are possible for 

reduction of cutting forces and feed forces by this 

mechanism. The first reason is due to reduction of real 

contact area between tool-chip interfaces of rake face 

of micro-textured cutting tools due to presence of 

number of micro-pools over rake face of textured 

cutting tool. Reduction in cutting tool rake face and 

chip direct contact area leads to less friction force 

which results in decreasing of cutting forces. The 

other one is because of micro-wear debris entrapment 

inside these texture which were created by welding 

and rupture phenomena while dry cutting operations. 

But after some time of machining at high speed, it is 

observed that these micro-textures are fully filled with 

wear debris and at that point very small change is 

noticed in cutting force and feed force with respect to 

cutting speed as shown in Fig. 4(b) and 4(d). Trapped 

wear debris particle are shown by scanning electron 

microscopic (SEM) images in Fig. 5(a)-(c). 

 

 

 

 

Figure 4 Variation of:(a) cutting force with feed 

rate, (b) cutting forces with cutting speed, (c) feed 

forces with feed rate, and (d)feed forces with 

cuttingspeed 
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3.4 Friction Coefficient Analysis 

Friction angle can be related to feed force and 

cutting force by Merchant’s circle diagram. The 

average COF can be evaluated using the following 

formula (Ze et al., 2012): 

 

( )tan tan( arctan( / ))
t c

µ F Fαβ= = +    (1) 

Where � is the friction angle, � is the rake angle. In 

the present work for making texturing, flat type 

cutting tool is used (� = 0). Ft is feed force and Fc is 

cutting force. A decrease in tool face friction leads to 

a decrease in the energy required for chip formation, 

thus improving the efficiency of the process. Hence, 

the formula reduces to the following: 

( )tan /
t c

µ F Fβ= =        (2)
 

        

 

 

 

Figure 5SEM images of micro-dimples filled with 

wear debris 

 

Figure 6 Variation of friction force with: 

(a)feedrate, and (b)cutting speed 

In the present scenario as shown in Fig. 6(a), 

initially friction coefficient of micro-textured cutting 

tool is more but as feed increases up to a certain point 

it start decreasing because surface roughness of 

textured cutting tool is higher as compare to 

conventional tool, so initially friction coefficient is 

more than conventional tool but contact area between 

tool-chip interface is less for textured cutting tools so 

friction coefficient reduces after certain point. Fig. 

6(b) shows relationship between friction coefficient 

and speed. As shown in Fig. 6(b), at higher speed 

friction coefficient of textured tool is more because 

micro-texture were filled with wear debris at higher 

speed which were produced because of welding and 

rupture after some time of machining. So friction 

coefficient is more at higher speed.     

5 Conclusion 

Study was performed to investigate the effect of 

surface texturing over tool rake surface on cutting 

forces and friction coefficient under solid lubricating 

conditions. The following conclusions were obtained: 

1)Effect of micro-texture on the stresses and strains 

generationat cutting edge of the cutting tool in 

cutting operations isvery small which can be 

neglected. 

2) Surface texturing effectively reduces the cutting 

force and feed forces after texturing of cutting 

tools. 

3) Friction coefficient decreases with textured tools as 
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compare to conventional tool for large range of 

feed and speed. 

4)  Two reasons are possible for reduction of cutting 

forces and feed forces by micro-texturing of tool 

rake face. The first reason is due to reduction of 

contact area between tool-chip interfaces of rake 

face of micro-textured tools due to presence of 

number of micro-dimples. Reduction in tool rake 

face and chip direct contact area leads to less 

friction force which results in decreasing of cutting 

forces. The other one is because of micro-wear 

debris entrapment inside these texture which were 

created by welding and rupture phenomena while 

dry cutting operations. 
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