
21 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Experimental comparison of neighborhood filtering strategies in unstructured P2P-TV systems / Traverso, Stefano; Luca,
Abeni; Robert, Birke; Csaba, Kiraly; Leonardi, Emilio; Renato Lo, Cigno; Mellia, Marco. - STAMPA. - (2012), pp. 13-24.
((Intervento presentato al convegno IEEE P2P tenutosi a Terragona, Spain nel September 2012
[10.1109/P2P.2012.6335794].

Original

Experimental comparison of neighborhood filtering strategies in unstructured P2P-TV systems

Publisher:

Published
DOI:10.1109/P2P.2012.6335794

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2502295 since:

IEEE / Institute of Electrical and Electronics Engineers Incorporated:445 Hoes Lane:Piscataway, NJ 08854:

Experimental comparison of neighborhood filtering

strategies in unstructured P2P-TV systems

S. Traversoa, L. Abenib, R. Birkec, C. Kiralyb, E. Leonardia, R. Lo Cignob, M. Melliaa

a DELEN, Politecnico di Torino, Italy – {lastname}@tlc.polito.it
b DISI, Univesity of Trento, Italy – {lastname}@disi.unitn.it

c IBM Research Lab. Zurich, CH – bir@zurich.ibm.com

Abstract—P2P-TV systems performance are driven by the
overlay topology that peers form. Several proposals have been
made in the past to optimize it, yet little experimental studies
have corroborated results. The aim of this work is to provide
a comprehensive experimental comparison of different strategies
for the construction and maintenance of the overlay topology in
P2P-TV systems. To this goal, we have implemented different
fully-distributed strategies in a P2P-TV application, called Peer-
Streamer, that we use to run extensive experimental campaigns in
a completely controlled set-up which involves thousands of peers,
spanning very different networking scenarios. Results show that
the topological properties of the overlay have a deep impact
on both user quality of experience and network load. Strategies
based solely on random peer selection are greatly outperformed
by smart, yet simple strategies that can be implemented with
negligible overhead. Even with different and complex scenarios,
the neighborhood filtering strategy we devised as most perform-

ing guarantees to deliver almost all chunks to all peers with a
play-out delay as low as only 6s even with system loads close to
1.0. Results are confirmed by running experiments on PlanetLab.
PeerStreamer is open-source to make results reproducible and
allow further research by the community.

I. INTRODUCTION

Mesh based live P2P streaming systems (P2P-TV in short)

are among the most promising solutions for inexpensive broad-

cast of real time video contents over the Internet. They offer

content providers and broadcasters the opportunity of reach-

ing a potentially unlimited audience without expensive infra-

structural investments. Just as in file sharing P2P systems, in

mesh based P2P-TV systems the video content is sliced in

pieces called chunks, which are distributed onto an overlay

topology exploiting a fully distributed epidemic approach. But,

contrary to file sharing P2P systems, chunks are generated in

real time, sequentially and (in general) periodically. They must

also be received by the peers within a deadline to be played

out, so that timely delivery is the key aspect of these systems.

This makes P2P-TV systems design deeply different from file

sharing applications design, and solutions proposed for file

sharing P2P systems can be adapted to live P2P-TV systems

only at price of large play-out delays.

Two are the key features that characterize a mesh based P2P-

TV system: i) the algorithms adopted to build and maintain the

overlay topology [1], [2], [3], [4], [5], [6], ii) the algorithms

employed to trade chunks [7], [8]. A large body of research

work has focused on the design and analysis of efficient algo-

rithms for both the overlay topology maintenance and chunk

scheduling. Most of the previous works, however, have mainly

a theoretical flavor, thus performance analysis of different

proposed strategies have been carried out in rather idealized

scenarios exploiting simulations or analytical models [3], [4],

[5], [6]. Few works undergo implementation and present actual

experiments, and even those are usually limited to few tens

of peers [9], [10]. A detailed discussion of related work is

presented in Sect. VIII.

Indeed, only an actual implementation allows to fully eval-

uate the different policies, assessing the impact of signaling,

measurements, implementation issues, etc. This paper tries to

fill this gap, providing a comprehensive and purely experimen-

tal comparison of different strategies for the construction and

the maintenance of the overlay topology for P2P-TV systems.

The algorithms we investigate are all based on the selection

of the neighbors a peer chooses, keeping the system fully

distributed and without the need for external help, or a

centralized ‘oracle’ to help peers. Algorithms are based on

selection and replacement criteria, according to which each

peer chooses the peers he would like to download chunks from.

A simple blacklist-like hysteresis prevent peers to continuously

select peers replaced due to poor performance. Overall, we

explore 12 different combinations of criteria (24 if blacklisting

is enabled), based on metrics such as Round Trip Time (RTT),

upload capacity, number of received chunks, etc. Intuitively,

these are metrics that are known to either i) favor traffic

localization, e.g., choosing peers with smaller RTT, or ii)

improve system performance, e.g., choosing peers with larger

upload capacity [6], [7].

We test these algorithms in three network scenarios in

which we control peer upload capacity, end-to-end RTT and

packet loss. In the simplest scenario, peer upload capacities are

heterogeneous among peers, while RTT forms 4 clusters, with

intra-cluster RTT being smaller than inter-cluster RTT. Then

we consider a biased upload capacity distribution, where high

capacity peers are all in the same cluster. Finally, we add the

impact of eventual packet loss on long-distance paths among

clusters, facing an almost adversarial scenario.

Results show that simple random-based policies are outper-

formed by policies based on network distance coupled with

policies that drop peers based on their contribution in all

scenarios. The latter are experimentally proved to achieve ex-

cellent QoE even under almost adversarial network scenarios,

i.e., at load close to 1.0, with heterogeneous upload bandwidth

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

FFMPEG
or equiv.

FFMPEG
or equiv.

CHUNKIZER

CHUNK BUFFER

SCHEDULING AND

OFFERING CHUNKS

MAIN

LOOP

PEER
SAMPLER

MONITORING

AND MEASURES

DE−CHUNKIZER

MESSAGING, TCP, UDP, NAT TRAVERSAL, ...

Content Playout or generation

Chunk Trading Protocol

Overlay Management

NEIGHBORHOOD

MANAGER

Figure 1. PeerStreamer peer architecture.

and with clustered RTT. Similar conclusions are drawn from

PlanetLab experiments.

Finally, we wish to emphasize that, for the first time to the

best of our knowledge, we present reproducible experimental

results for a fully controlled and publicly available real imple-

mentation of a P2P-TV system referring to a rather large scale

set-up with thousands of peers. Our results have been collected

during large actual campaigns which totally amounts to more

than 1000 hours of experimental tests.

The software used in this paper is released Open Source

and includes all the components necessary to build a fully

functional P2P-TV system including video transcoding at the

source and play-out at clients.

II. PEERSTREAMER DESCRIPTION

Empowering this work is PeerStreamer1, an Open Source

P2P-TV client that stems from the developments and research

of the NAPA-WINE project2 whose overall architecture and

vision are described in [11]. PeerStreamer leverages GRA-

PES [12], a set of C libraries implementing building blocks

for P2P-TV streaming that enables building applications with

almost arbitrary characteristics, thus allowing for experimental

comparison of different choices to be done efficiently. Fig. 1

describes the logic and modular organization of PeerStreamer.

The overlay management, the focus of this paper, is detailed

in Sect. II-B, while in the following we sketch the high level

organization of the other application components.

A. PeerStreamer Architecture

PeerStreamer is based on a chunk-based stream diffusion.

Peers offer a selection of the chunks they own to some peers

in their neighborhood. The receiving peer acknowledges the

chunks it is interested in, thus avoiding multiple transmissions

of the same chunk to the same peer. The negotiation and

chunk transmission phase is based on signaling exchanges

with “Offer” and “Select” messages. For chunk scheduling,

Offers are sent to neighbors in round-robin. They contain the

buffer-map of the recent chunks the sender possesses at that

time. After receiving an Offer, a peer selects one chunk based

1available at http://www.peerstreamer.org
2http://napa-wine.eu

on a “latest useful” policy sending back a Select message:

the receiver selects the most recent chunk it does not have.

This has been proven optimal for streaming systems with

centralized and distributed scheduling associated to specific

peer choices in [7], [13]. The number of offers per second

a peer sends plays a key role in performance. Intuitively,

it should be large enough to fully exploit the peer upload

capacity, but it must not be too large to cause the accumulation

of chunks to be transmitted adding queuing delay prior to

chunk transmissions. We adopt Hose Rate Control (HRC)

proposed in [14] to automatically adapt the number of offers to

both peer upload capacity and system demand. Simpler trading

schemes are less performing and can hide the impact of the

overlay on the overall system performance.

The source is a standard peer, but it does not participate

in the Offer/Select protocol. It simply injects copies (5 in our

experiments) of the newly generated chunk into the overlay.

It implements a chunkiser to process the media stream (e.g.,

an encoded file, or a live stream coming from a DVB-T card,

or the video of a web-cam). The chunking strategy used in

PeerStreamer is chosen to avoid mingling its effects with the

topology-related ones: one-frame is encapsulated into one-

chunk to avoid that a missing chunk would impair several

frames due to, e.g., missing frame headers. The chunkiser is

implemented using the ffmpeg libraries3, so that several dif-

ferent codecs (e.g., MPEG, theora, H.264, etc.) are supported.

Receiving peers, instead, implement a de-chunkiser, which

reads from the local chunk buffer and pushes the chunks in

the correct sequence to the play-out system.

The main loop (at the center of Fig. 1) implements the

global application logic. It is responsible for the correct timing

and execution of both semi-periodic tasks, e.g., sending new

offers, and asynchronous activities, e.g., the arrival of a chunk

or signaling message from the messaging layer.

PeerStreamer architecture is completed by the “messaging”

and “monitoring and measures” modules. The messaging

module is a network abstraction layer that frees the application

from all details of the networking environment, e.g., the

presence of NAT, middle-boxes and other communication

details. It offers a connection-oriented service on top of UDP,

with a lightweight retransmission mechanism that allows the

recovery of lost packets without high retransmission delay.

The monitoring and measures module extracts network in-

formation by running passive and/or active measurements [11].

In this paper we rely on the measurements of i) end-to-end

path delay between peers (e.g., RTT), ii) packet loss rate, and

iii) transmission rate of a peer.

B. Overlay Management

The approach for building the overlay topology in Peer-

Streamer is fully distributed: each peer builds its own neigh-

borhood following only local measures, rules and peer sam-

pling. The overlay topology is represented by a directed graph

in which the peer at the edge head receives chunks from the

3http://www.ffmpeg.org

peer at the edge tail, which is the one sending offers. Each

peer p handles thus an “in-neighborhood” NI(p) and an “out-

neighborhood” NO(p). NI(p) collects all peers that can send

chunks to p (p in-neighbors); NO(p) collects all peers that can

receive chunks from p (p out-neighbors). Alternatively, NI(p)
is the set of peers that offer p new chunks; while p offers

its chunks to peers in NO(p). Distinguishing between NI(p)
and NO(p) guarantees a greater flexibility in topology man-

agement than algorithms that impose the reciprocity between

peers. The overlay topology TS is then obtained as union of

all the edges connecting peers in NI(p) to p, i.e.:

TS =
⋃

p∈S

NI(p)× {p} (1)

where S is the set of all the peers in the swarm and the symbol

× denotes the Cartesian product operator4.

Referring again to Fig. 1, the topology management is split

into two separate functions. The peer sampler has the goal of

providing p with a stochastically good sample of all the peers

in S and their properties; PeerStreamer implements a variation

of Newscast [15] for this function. The neighborhood manager

realizes the task of filtering the peers most appropriate for

interaction. Filtering is based on appropriate metrics and

measures, and it is the main focus of this paper.

III. NEIGHBORHOOD AND TOPOLOGY CONSTRUCTION

In PeerStreamer every peer p selects other peers as in-

neighbors and establishes a management connection with

them. Thus each peer p actively selects in-neighbors to possi-

bly download chunks when building the set NI(p). Similarly,

p passively accepts contacts from other peers that will form the

set NO(p) of out-neighbors. There is no limitation to NO(p)
5.

Every peer p manages a blacklist of peers in which it

can put peers that were perceived as very poorly performing

in-neighbors. Peers in the blacklist cannot be selected for

inclusion in NI(p). Blacklisted peers are cleared after the

expiration of a time-out (set to 50 s in the experiments).

The size NI of NI(p) is equal for every peer p: its goal is to

guarantee that p has enough in-neighbors to sustain the stream

download with high probability in face of churn, randomness,

network fluctuations, etc. The size NO(p) of NO(p) is instead

a consequence of the filtering functions of the peers that select

p as in-neighbor. The goal is to let the dynamic filtering

functions of peers q ∈ {S\p} select NO(p) in such a way that

the swarm performances are maximized. For example, peers

with higher upload capacity should have larger number of out-

neighbors than peers with little or no upload capacity [4].

The update of neighborhoods is periodic, maintaining the

topology dynamic and variable, so that churn impairment is

limited, and the swarm can adapt to evolving networking

conditions. In particular, every Tup seconds each peer p

4Notice that since NO(p) are built passively, they do not contribute to
construction of the swarm topology.

5In the actual implementation NO(p) is limited to 200 peers, but the limit
is never reached.

independently updates NI(p) by dropping part of the old in-

neighbors while adding fresh new in-neighborsTwo parameters

are associated to this scheme: the update period Tup and the

fraction Fup of peers in NI(p) that is replaced at every update.

The add operation guarantees NI(p) has size NI (if at least

NI peers are known). Overall, the in-neighbor update rate can

be defined as

Rup =
FupNI

Tup
(2)

If not otherwise stated NI = 30, Tup = 10 s and Fup = 0.3.

The latter two values result in a good compromise between

adaptiveness and overhead. Their choice is robust, and sensi-

tivity analysis is presented in Sect VI-C.

A. Metrics Driving The Neighborhood Selection

At every update, NI(p) is the result of two separate filtering

functions: one that selects the peers to drop, and another one

selecting in-neighbors to add. For these filtering functions we

consider both simple network attributes such as peer upload

bandwidth, path RTT or path packet loss rate, and some

application layer metrics, such as the peer offer rate6 or

number of received chunks from an in-neighbor.

Some metrics are static peer metrics: once estimated, they

can be broadcast with gossiping messages and are known

a-priori. Other metrics instead are path attributes between

two peers and must be measured and can only be used as

a-posteriori indicators of the quality of the considered in-

neighbor as perceived by p.

Both add and drop filtering functions are probabilistic to

avoid deadlocks and guarantee a sufficient degree of random-

ness. Considering any metric, we assign a selection probability

wq to every candidate q as

wq =
mq∑

s∈NS(p) ms

(3)

where mq is the metric of q and NS is either NI for drop, or

the set of candidate in-neighbors for add.

B. Add Filters

We consider the following four criteria to add new in-

neighbors:

RND: Neighbors are chosen uniformly at random: ∀q,mq = 1;

BW: Neighbors are weighted according to their upload band-

width Cq: ∀q,mq = Cq;

RTT: Neighbors are weighted according to the inverse of the

RTT between p and q: ∀q,mq = 1/RTTq(p); if RTTq(p) is

still unknown, RTTq(p) = 1 s7;

OFF: Neighbors are weighted according to the rate they send

offer messages Rq: ∀q,mq = Rq; Rq are advertized by peers.

6HRC adapt the peer offer rate to peer upload capacity. It can thus be seen
as an indirect measure of its available upload bandwidth.

7RTTq(p) are locally cached at p so that they may be available a priori.
Active measurements could also be used to quickly estimate the RTT.

Table I
NUMBER OF PCS PER SUBNET.

Subnet 1 2 3 4

Number of PCs 43 63 60 38

Table II
RTTS IN ms BETWEEN SUBNETS OF PEERS.

1 2 3 4

1 20 ± 10% 80 ± 10% 120 ± 10% 160 ± 10%
2 80 ± 10% 20 ± 10% 140 ± 10% 240 ± 10%
3 120 ± 10% 170 ± 10% 20 ± 10% 200 ± 10%
4 160 ± 10% 240 ± 10% 200 ± 10% 20 ± 10%

C. Drop Filters

For what concerns the criteria to select neighbors to be

dropped, we consider:

RND: Neighbors are dropped randomly: ∀q,mq = 1;

RTT: Neighbors are dropped with a probability directly pro-

portional to the RTT between p and q: ∀q,mq = RTTq(p);
RXC: Neighbors are dropped with a probability proportional

to the inverse of the rate at which it transferred chunks

to p: ∀q,mq = 1/RXCq(p); this metric assigns a quality

index related to the in-neighbor ability to successfully transfer

chunks to p; RXCq(p) are evaluated on a window of 3 s.

D. Blacklisting Policies

Finally a peer in NI(p) is blacklisted if one of the following

criterion is met:

CMR: the ratio of corrupted/late chunks among the last 100

chunks received by p from q exceeds a threshold of 5%;

PLOSS: the packet loss rate from q to p exceed a threshold

of 3%; measured over the last 300 packets received;

RTT: RTTq(p) is greater than 1 s.

Observe that this blacklist-based filter can be easily adapted

to fight known problems of P2P systems such as free-riding

and content pollution. However, we do not include these

matters in our evaluation since they are out of the scope of this

paper, i.e. the study of strategies for the overlay costruction.

Combining add and drop criteria we define 12 different

overlay construction and maintenance filters. In the following,

we name them stating the “ADD”-“DROP” policies, e.g., BW-

RTT for add BW and drop RTT. Sect. V reports results for

different resulting combinations. Blacklisting can be super-

posed (or not) to all of them, and its impact will be studied

selectively. We tested also other metrics and combinations,

whose results are less interesting. RND-RND is used as a

baseline benchmark, as it is a policy based on pure random

sampling of the swarm.

IV. TEST-BED CONFIGURATION

We need to benchmark the different algorithms in a known

and reproducible scenario. To this aim, we run experiments

in a possibly complex but fully controlled network to avoid

fluctuations and randomness due to external impairments. The

test-bed is built in labs available at Politecnico di Torino, with

204 PCs divided in four different subnets. Table I shows the

number of PCs in each subnet. We used tc, the standard

Linux Traffic Controller tool, together with the netem op-

tion to enforce delay and packet dropping probability when

Table III
CHARACTERISTICS OF PEER CLASSES.

Class Bandwidth Percentage of Peers

1 5 Mb/s ± 10% 10 %
2 1.6 Mb/s ± 10% 35 %
3 0.64 Mb/s ± 10% 35 %
4 0.2 Mb/s, ± 10% 20 %

needed. The chosen RTT distribution is described in Table II.

The upload bandwidth is limited by the application itself,

exploiting the feature of a simple leaky bucket (its memory

being 10MB) to limit the application data rate to a given

desired value. Peer upload capacities Cp are shown in Table III.

Configurations in Tables II and III have been designed to

resemble a world-wide geographic scenario, where peers are

distributed over continents (clusters), and they rely on different

kinds of access technologies, i.e., ADSL or FTTH interfaces,

that provide different up-link capacity. Those configurations

are not meant to be representative of any actual case, but rather

they are instrumental to create benchmarking scenarios with

different properties. Each PC runs 5 independent instances of

PeerStreamer simultaneously, thus, a swarm of 1020 peers is

built in every experiment, if not otherwise stated. The source

peer runs at an independent server (not belonging to any of

the subnets). It injects in the swarm 5 copies of each newly

generated chunk, corresponding to roughly 6 Mbit/s.

The well known Pink of the Aerosmith video sequence

has been used as benchmark. The nominal sequence length

corresponds to 200s, with a time resolution equal to 25

frame/s. The sequence is looped for a total stream duration

of about 20min. After the initial 12min of experiment, each

peer starts saving on local disk a 3min long video that we use

to compute QoE metrics.

We selected the H.264/AVC codec to encode the video

sequence. A hierarchical type-B frames prediction scheme has

been used, obtaining 4 different kinds of frames that, in order

of importance, are: IDR, P, B and b. The GOP structure is

IDR×8 {P,B,b,b}. The nominal video rate of the encoder rs
is 1.2Mb/s if not otherwise specified. This corresponds to

a system load ρ = 0.9 – defined as ρ = rs/E[Cp] where

E[Cp] = 1.32Mbit/s is the average upload bandwidth of peers.

The source node generates a new chunk at regular time, i.e.,

every new frame. The chunk size is instead highly variable due

to the encoded video characteristics. Each peer implements a

chunk buffer of 150 chunks. Given the one-frame⇔one-chunk

mapping, and 25 fps of the video, this corresponds to a buffer

of 6s, i.e., the play-out deadline is only 6 s.

A. Network Scenarios

The generic setup described above is used as a base for three

different scenarios to evaluate significant situations. The first

scenario, G Homo hereafter, is geographically homogeneous:

the distribution of the peers of different Cp classes is the

same in any area, so that there is the same distribution of

bandwidth everywhere. This scenario is useful to understand

the fundamental behavior of different neighborhood filtering

strategies.

 0

 1

 2

 3

Add RND Add BW Add OFF Add RTT

L
o

s
t

C
h

u
n

k
s
 %

Drop RND
Drop RXC
Drop RTT

 0

 2

 4

 6

 8

 10

Add RND Add BW Add OFF Add RTT

P
e

e
rs

 o
v
e

r
1

%
 L

o
s
s
e

s
 % Drop RND

Drop RXC
Drop RTT

 0

 1

 2

 3

Add RND Add BW Add OFF Add RTT

P
e

e
rs

 o
v
e

r
3

%
 L

o
s
s
e

s
 % Drop RND

Drop RXC
Drop RTT

Figure 2. Frame loss for different strategies in G Homo scenario: Floss (average) (left), percentage of peers whose Floss(p) > 0.01 (center), percentage
of peers whose Floss(p) > 0.03 (right).

The second scenario, G Bias hereafter, assumes that band-

width rich peers (Class 1) are all concentrated in a single

subnet. This situation is particularly challenging for a topology

management system that tries to localize traffic to reduce the

network footprint of the application.

The third and final scenario, G Lossy hereafter, is again

geographically homogeneous, but the long-haul connections

between the subnets 1–3, 1–4, 2–3, 2–4 are subject to packet

loss with probability p = 0.05, while the intra-subnet links and

the links between 1–2 and 3–4 are lossless. This situation is

particularly useful to understand if black-listing can really help

in building better topologies, or if its use should be limited to

isolate misbehaving and malicious nodes.

Finally, churning of peers is modeled: a fraction Pno−ch

of peers never leaves the system, while Pch = 1 − Pno−ch

churning peers have a permanence time uniformly distributed

between 4 and 12 min. To keep the number of peers constant,

once a churning peer has left the system, it will be off for

an average time equal to 30 sec before re-joining the swarm

(with a different ID, i.e., as a new peer).

B. Performance Indices

As performance indices to assess the QoE, for each peer

p, we consider the frame loss probability, Floss(p), and the

SSIM (Structural Similarity Index), Sssim(p), a well-known

method for measuring the similarity between two images in the

multimedia field [16]. Given the highly structured organization

of the video streams, the degradation of the received video

quality becomes typically noticeable for values of Floss(p)
higher than 1%, while loss probability of a few percent

(3-4%) significantly impair the QoE. In the following, we

report both average frame loss, Floss = Ep[Floss(p)], and the

percentage of peers that suffer Floss(p) larger than 1% and

3%, respectively.

Performance however should also take into account the cost

for the network to support the application. As network cost ζ
we consider the average of the distance traveled by information

units. Formally, let bq(p) the number of bits peer p received

from peer q; the peer p network cost ζ(p) is computed as

ζ(p) =

∑
q RTTq(p)bq(p)∑

q bq(p)
(4)

while the average network cost is ζ = Ep[ζ(p)].

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

O
u

t
D

e
g

re
e

Peer

Class 4 Class 3 Class 2 Class 1

BW - RXC
BW - RND

RND - RXC
RND - RND

Figure 3. Out-degree distribution of peers, G Homo scenario.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
D

F

Network Cost [ms]

RTT - RTT
RND - RTT
RTT - RXC
RND - RXC
BW - RND

RND - RND

Figure 4. CDF of the distance traveled by information units, G Homo

scenario.

V. CONTROLLED ENVIRONMENT EXPERIMENTS

A. G Homo Scenario

We start considering the case in which the distribution of

Cp is geographically homogeneous.

The left-hand plot in Fig. 2 shows the average frame loss

probability experienced by different policies, while center and

right-hand plots report the percentages of peers that experi-

enced Floss(p) > 0.01 and Floss(p) > 0.03, respectively.

RND-RND is the reference, and we immediately observe

that the other algorithms modify the loss distribution, i.e.,

they can have a different impact on different percentiles. For

instance BW-RTT improves the average loss rate and the

percentage of peers with Floss(p) > 0.01, but at the expense

of the percentage of peers with bad quality (Floss(p) > 0.03),

while RTT-RTT improves the number of peers with Floss(p) >
0.01, but both the average and the percentage of peers with

bad quality (Floss(p) > 0.03) are worse.

In general adding policies sensitive to peers bandwidth (BW

and OFF for adding and RXC for dropping) appear to be the

more effective in reducing the losses. However the behavior of

BW-RXC for which Floss tops at 2.5% indicates that using a

single metric for selecting the neighborhood can be dangerous.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Add RND Add BW Add OFF Add RTT

L
o

s
t

C
h

u
n

k
s
 %

Drop RND
Drop RXC
Drop RTT

 0

 2

 4

 6

 8

 10

Add RND Add BW Add OFF Add RTT

P
e

e
rs

 o
v
e

r
1

%
 L

o
s
s
e

s
 % Drop RND

Drop RXC
Drop RTT

 0

 2

 4

 6

 8

 10

Add RND Add BW Add OFF Add RTT

P
e

e
rs

 o
v
e

r
3

%
 L

o
s
s
e

s
 % Drop RND

Drop RXC
Drop RTT

Figure 5. Frame loss for different strategies in G Homo scenario with NI = 20: Floss (average) (left), percentage of peers whose Floss(p) > 0.01 (center),
percentage of peers whose Floss(p) > 0.03 (right).

BW-RXC biases too much the choices toward high bandwidth

peers, which become congested and are not able to sustain the

system demand. To better grasp these effects, Fig. 3 reports the

smoothed8 histogram of the out-degree NO(p). Observe that

NO(p) of peers belonging to different classes is significantly

different as long as bandwidth aware policies are adopted; out-

degrees are instead independent for RND-RND as expected. In

principle it would be desirable to have an out-degree of a peer

proportional to its up-link bandwidth. This is roughly achieved

by adopting BW-RND policy. Under BW-RXC, instead, the

degree distribution depends too much on Cp. As a result, high

bandwidth peers tends to be oversubscribed while medium and

low bandwidth peers may be underutilized.

Policies sensitive to RTT perform well in the considered

scenario, with the exception of RTT-RTT, which is too ag-

gressive in strictly selecting the closest in-neighbors. Indeed,

as observed in [5], policies that force a too strict localization

of traffic induce performance degradations due to poor topo-

logical properties of the swarm. To complement previous in-

formation Fig. 4 reports the Cumulative Distribution Function

(CDF) of network cost ζ(p). As expected, RTT aware policies

significantly reduce this index thanks to their ability to select

in-neighbors within the same area.

Remark A - As a first consideration, we can say that:

i) bandwidth aware policies improve the application per-

formance; ii) RTT aware policies reduce the network cost

without endangering significantly the video quality if applied

to add peers; when used to drop peers, however, RTT poses

significant bias impairing QoE; iii) the preference toward high

bandwidth peers/nearby peers must be tempered to achieve

good performance. The policy RTT-RXC improves quality

and reduces the network cost at the same time, offering the

best trade-off in this scenario. Interestingly, this policy is also

easy to be implemented, since it requires to measure simple

and straightforward metrics. Bandwidth aware schemes offers

better QoE performance, at the cost of more cumbersome

available capacity estimation.

B. G Homo with Smaller NI

We consider the same network scenario but we set NI = 20.

This is a more critical situation where choosing the good in-

neighbors is more important. The value of NI is related with

8The distribution of NO(p) inside classes is binomial as expected from
theory. This distribution results in a large noisiness of the plot, so we apply
a smoothing window of length 30 in plotting, basically showing the average
NO in each class.

the signaling overhead which increases with NI , so having

small neighborhood is desirable. However, a too small NI

would impair the availability of chunks.

Results are plotted in Fig. 5 (the y-scales in Figs. 2 and 5 are

different for readability reasons, and this is the reason why at

first sight some policies seem to perform better with a smaller

NI). The performance of RND-RND significantly degrades in

this case. The reason is that the out degree of Class 1 peers

under RND-RND is often not enough to fully exploit their

bandwidth. Bandwidth aware strategies, instead, successfully

adapt NO(p) to Cp maintaining high performance. Also RTT-

RND and RTT-RTT, which are bandwidth unaware, perform

better than RND-RND, since RTT-aware selection policies

reduce the latency between an offer and the actual chunk

transmission that follows it, helping in exploiting the peer’s

bandwidth. Results for network cost are similar to those in

Fig. 4 and are not reported for the sake of brevity.

Remark B - Random selection policies, which are widely

employed by the community as baseline and in the wild [17],

are robust, but perform poorly if the number of peers in the

neighborhood is small: all peers suffer 8% of frame loss, i.e.,

practically making it impossible to decode the video. As al-

ready seen with NI = 30, the policy that combines bandwidth

and RTT awarenesses (RTT-RXC) definitely improves both

performance and network costs. Similarly, wisely selecting

high-capacity in-neighbors is vital, as testified by the excellent

performance of add BW policies.

C. G Bias Scenario

Maintaining unchanged the Cp distribution, we localize all

high bandwidth peers in geographical area 1. This scenario,

in principle, constitutes a challenge for the policies that try

to localize traffic. Indeed as side effect of the localization we

can potentially have a “riches with riches”, “poors with poors”

clusterization effect that may endanger the video quality

perceived by peers in geographical regions other than 1.

Fig. 6 reports the CDF of Floss(p) for the strategies per-

forming better in the G Homo scenario, plus the benchmark

RND-RND. In this case if RTT is the only metric used

as in RTT-RTT, the performance degrades unacceptably, and

peers in area 1 are in practice the only one receiving a

good service. In general, any policies based on drop RTT

perform poorly. Strategies RTT-RXC, RND-RXC and BW-

RND perform similarly; however, the only policy that can also

reduce the network cost is RTT-RXC, as shown in Fig. 7 that

reports the CDF of ζ(p).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Chunk Loss Probability

BW - RND
RND - RXC
RTT - RXC
RND - RND

BW - RTT
RND - RTT
RTT - RTT

Figure 6. CDF of the frame loss probability for four different strategies,
G Bias scenario.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
D

F

Network Cost [s]

RTT - RTT
RND - RTT
BW - RTT

RTT - RXC
RND - RXC
RND - RND
BW - RND

Figure 7. CDF of distance traveled by information units, G Bias scenario.

Remark C - This result essentially proves that also in

G Bias scenario it is possible to partially localize the traffic

without endangering the video quality perceived by the user, as

long as RTT awareness is tempered with some light bandwidth

awareness, as in RTT-RXC. Interestingly, the RTT driven

policies perform much better if the RTT is used to add

peers rather than to drop peers. Indeed, in this latter case,

aggressively dropping far away, but high capacity, in-neighbors

penalizes peers which are located in areas where little high

capacity peers can be found.

D. G Lossy Scenario

We consider another scenario in which large bandwidth

peers are uniformly distributed over the four subnets, but

packet losses are present in some long haul connections.

Fig 8 plots the CDF of frame losses (top) and the CDF

of chunks delivery delays (bottom) for the selected policies.

Blacklisting improves the performance of every policy. RTT-

RXC emerges again as the most performing policy and with

blacklisting practically all peers are able to receive all chunks.

This is an excellent result, since the system is facing a very

challenging scenario while working with a load of 0.9.

Benefits of the blacklisting mechanism are confirmed by

Table IV that reports the normalized volume of incoming

Table IV
AVERAGE FRACTIONS OF INCOMING TRAFFIC FOR CLUSTER 2.

1 - good 2 - local 3 - bad 4 - bad + far

RND - RND w/o BL 0.23 0.32 0.28 0.15
RND - RND w BL 0.28 0.34 0.24 0.12

BW - RND w/o BL 0.22 0.35 0.27 0.14
BW - RND w BL 0.23 0.36 0.24 0.13

RTT - RXC w/o BL 0.12 0.68 0.11 0.07
RTT - RXC w BL 0.13 0.70 0.09 0.05

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Chunk Loss Probability

RTT - RXC w BL
RTT - RXC w/o BL

BW - RND w BL
BW - RND w/o BL
RND - RND w BL

RND - RND w/o BL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Chunk Delivery Delay [s]

RTT - RXC w BL
RTT - RXC w/o BL

BW - RND w BL
BW - RND w/o BL
RND - RND w BL

RND - RND w/o BL

Figure 8. CDF of chunk loss probability (top) and CDF of chunk delivery
delays (bottom) for six different strategies with and without adopting blacklist
mechanism in G Lossy scenario.

traffic for peers in cluster 2 from peers in all clusters. Keeping

in mind that in G Lossy scenario peers belonging to cluster

2 experience lossy paths from/towards peers in cluster 3 and

4 (as explained in Sec. IV), it is easy to see that volumes of

incoming traffic from cluster 3 and 4 are nicely reduced thanks

to blacklisting mechanism.

Remark D - Blacklisting can play a significant role to

avoid selecting lossy paths. Indeed, exploiting the blacklist

mechanism every peer should identify and abandon poorly

performing peers, biasing the neighborhood toward good

performing in-neighbors. This effect reinforces policies that

naturally bias the selection of neighbor peers employing peer

quality. RND-RND, BW-RND and RTT-RXC have emerged

as the most promising criteria (RND-RND being the baseline

benchmark). RTT-RXC with blacklisting is shown to guar-

antee excellent performance to all peers even in this almost

adversarial scenario.

VI. VIDEO PERFORMANCE EVALUATION

A. Video performance versus load

In the previous sections we have benchmarked the system

versus increasingly difficult scenarios, showing the benefits

and drawbacks of overlay topology filtering strategies. Now

we summarize the results by depicting the actual average

QoE by reporting Sssim for different policies and different

system loads. We consider the final G Lossy scenario, and

we increase rs from 0.6 Mb/s to 1.4 Mb/s. Recall that

E[Cp] = 1.324 Mb/s.

Fig. 9 shows average Sssim considering RND-RND, BW-

RND and RTT-RXC with and without blacklisting. SSIM is

a measure of the distortion of the received image compared

against the original source (before encoding and chunkization).

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

S
S

IM

rs [Mbps]

ρ=1.0

EVQ
RTT - RXC w BL

RTT - RXC w/o BL
BW - RND w BL

BW - RND w/o BL
RND - RND w BL

RND - RND w/o BL

Figure 9. Sssim (average) index when varying video rate rs in G Lossy
scenario.

Table V
AVERAGE Sssim WHEN INCREASING THE NUMBER OF INVOLVED PEERS

N . G Homo SCENARIO, rs = 1.2 MB/S.

N 204 612 1040 1428 1836 2080

RND - RND 0.858 0.812 0.829 0.783 0.799 0.799
RTT - RXC 0.984 0.981 0.988 0.979 0.988 0.991

It is a highly non linear metric in decimal values between

−1 and 1. Negative values correspond to negative images,

so are not normally considered at all. Values above 0.985

are typically considered of excellent quality. SSIM has been

computed considering the video between min. 12 and 13

(60x25 frames) received by 200 peers (50 for each class), and

then averaging among all of them.

The EVQ (Encoded Video Quality) curve in the plot is the

reference value for the encoding rate and it obviously increases

steadily as rs increases. In general, when the system load

is small ρ << 1, average Sssim increases for increasing rs
thanks to the higher quality of the encoded video. However,

as ρ approaches 1, different topologies behave differently:

Sssim rapidly drops due to missing chunks which impair the

quality of the received video, but the degradation is highly

influenced by the topology. Notice how RTT-RXC scheme

outperforms RND-RND and BW-RND for every value of rs.

Fig. 9 also shows the benefits of the blacklist mechanism for

every scheme.

Remark E - RTT-RXC with blacklisting guarantees optimal

QoE for ρ < 1 whereas RND-RND policies is not able to

guarantee good QoE for ρ > 0.75.

B. Scaling with swarm size

Considering again G Homo scenario, we study how the

system scales when increasing the size of the swarm N from

200 to 2000 peers. Due to the lack of space, we only report

in Table V the average Sssim for three different values of

N . RND-RND and RTT-RXC schemes have been adopted as

benchmark. Transmitted video was encoded at rs = 1.2 Mb/s,

i.e. system load ρ = 0.9. The simple bandwidth-aware scheme,

RTT-RXC, always ensures better performance with respect

to RND-RND, i.e. the average Sssim improves from 0.8 to

0.99, a remarkable gain. Increasing N has a negligible impact

on performance, especially when the smart RTT-RXC policy

is adopted. Indeed, in RND-RND case, the topology overlay

evolution causes more random results due to the totally random

nature of the scheme.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.125 0.25 0.5 1 2 4

S
S

IM

Rup

Pchurn=0.0
Pchurn=0.25
Pchurn=0.50
Pchurn=0.75

Figure 10. Average Sssim vs Rup for different fractions of churning peers
Pchurn. Scheme RTT-RXC in G Homo scenario with 1000 peers and rs =
0.8 Mb/s.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900

O
u

t-
N

e
ig

h
b

o
ro

o
d

 s
iz

e

Time [s]

Rup=2 peer/s
Rup=1 peer/s

Rup=0.5 peer/s
Rup=0.2 peer/s

Figure 11. The evolution during time of the average outgoing neighborhood
size setting different Rup values. Scheme RTT-RXC in G Homo scenario
with rs = 1.0 Mb/s.

C. Sensitivity to Update Rate with Churning

We investigate what are the best trade-off values for the fre-

quency to update the incoming neighborhood, Rup as defined

in (2).

Consider a G Homo scenario with Pchurn fraction of peers

that join and leave the swarm. In Fig. 10 we report the

Sssim (computed and averaged over peers that never leave

the system) when varying Rup. In particular, we fix NI = 30,

Fup = 0.3 and change Tup ∈ [2, 100] s accordingly. For this

case we adopted scheme RTT-RXC and rs = 0.8 Mb/s. The

plot shows that the system is very robust to different Rup val-

ues. Only under stressed scenarios, such as for Pchurn >= 0.5,

Rup becomes critical: too high Rup does not let the swarm

achieve a stable state, impairing performance. On the other

hand, too low Rup induces peers to react slowly to sudden

changes brought by churning peers.

We considered the G Homo scenario again, but forcing all

high-bandwidth peers to experience an abrupt up-link band-

width reduction from 5 Mb/s to 0.64 Mb/s (on average) at time

480 s from the beginning of the video transmission. While this

scenario is rather artificial, it allows to gauge the reactiveness

of the topology to such abrupt changes. We consider the RTT-

RXC scheme. Fig. 11 reports the evolution over time of the

average size of the outgoing neighborhood NO of class 1

peers. Different values of in-neighborhood update rate Rup

are considered. Two observation holds: first, smaller values

of Rup slow down system reactiveness. However, too large

values, e.g., Rup = 2 peer/s, impair the performance as well:

in this case, peers have not enough time to collect significant

measurements about the in-neighbor “quality” (amount of re-

ceived chunks), and thus find it difficult to distinguish “good”

from “bad” in-neighbors. Also in this case Rup = 1 peer/s

setup represents a good trade off.

Remark F - Fast topology updates allow the overlay

topology to react quickly i) to changes in the network scenario

and ii) to prune quickly peers which left the system in, e.g.,

heavy churning conditions. However, too fast updates intro-

duce instability in the overlay construction process, driving

peers to never achieve a stable incoming neighborhood, and

thus leading to bad system performance. The best trade-off

Rup value is Rup = 1 peer/s, i.e., Tup = 10 s.

VII. PLANETLAB EXPERIMENTS

We now present similar experiments on PlanetLab. We

selected 449 nodes scattered worldwide. No artificial latency

or packet loss are imposed, so that they reflect the natural

Internet conditions. Peer upload capacity has been limited by

PeerStreamer embedded rate limiter; two classes are present:

half of peers have 2 Mbit/s at their up-link, and 0.64 Mbit/s

the other half. Average upload capacity results to 1.32 Mbit/s.

Observe that this is an upper-bound to the actual available peer

upload bandwidth which may be reduced due to competing

experiments running on the same PlanetLab node or due to

other bottlenecks on the access links of the node. Thus, in

general, the actual upload capacity of a peer is C′
p ≤ Cp.

Fig. 12 reports each peer’s individual SSIM performance,

Sssim(p), for rs = 0.8 Mbit/s (top) and rs = 1.0 Mbit/s

(bottom). Sssim(p) has been sorted in decreasing values to

ease visualization and each curve represents the average of

5 different runs. Observe that when the amount of system

resources is large enough with respect to the video-rate,

i.e, when rs = 0.8 Mbit/s (top plot), different schemes

for topology management perform rather similarly. Observe,

however, that there is always a certain fraction of nodes that

cannot receive the video due to congestion at local resources.

Increasing system load, i.e. rs = 1.0 Mbit/s (bottom plot),

highlights differences among schemes and confirms results

obtained in the controlled environment: random-based poli-

cies (RND-RND) perform badly in general; same holds for

schemes based on pure proximity that can lead to disconnected

topologies and, then, to bad QoE performance (RTT-RND).

However, if combined with bandwidth-awareness, proximity-

based schemes achieve the goal of localizing traffic without

impairing performance (RTT-RXC).

VIII. RELATED WORK

Many popular commercial applications such as PPLive,

SopCast, Octoshape were proposed in recent years, but no

information about their internal implementation has been made

available, making any statement about their overlay topology

design strategies impossible. Only a recent study suggests that

simple random based policies are adopted by SopCast [17].

Focusing on available literature on purely mesh-based P2P-TV

systems, many solutions can be found, but also in this case, to

the best of our knowledge, none of them provides general and

detailed guidelines for the overlay topology design process.

 0.8

 0.85

 0.9

 0.95

 0 0.2 0.4 0.6 0.8 1

S
S

IM

Rank

rs = 0.8

RND - RND w BL
RTT - RND w BL
RTT - RXC w BL

 0.8

 0.85

 0.9

 0.95

 0 0.2 0.4 0.6 0.8 1

S
S

IM

Rank

rs = 1.0

RND - RND w BL
RTT - RND w BL
RTT - RXC w BL

Figure 12. Sssim(p) for rs = 0.8 Mb/s and rs = 1.0 Mb/s on PlanetLab
experiments.

An early solution called GnuStream was presented in [18].

Based on Gnutella overlay, GnuStream implemented a load

distribution mechanism where peers were expected to con-

tribute to chunks dissemination in a way proportional to their

current capabilities. A more refined solution called PROMISE

was introduced in [19]. Authors proposed an improved seeder

choice based on network tomography techniques; peers were

interconnected through Pastry overlay topology which im-

plements —as many others P2P substrates like Chord [20]

or CAN— some location awareness based on number of IP

hops. DONet (or Coolstreaming) [2] is a successful P2P-TV

system implementation. This design employs a scheduling

policy based on chunk rarity and available bandwidth of

peers, but its data-driven overlay topology does not exploit

any information from underlying network levels. Many new

features were introduced in [21] to improve the streaming

service and, in particular, authors proposed a new neighbor

re-selection heuristic based only on peers up-link bandwidth.

In [22], authors showed the design aspects of their application

called AnySee. Even if partially based on multicast, this hybrid

mesh-based system relies on an overlay topology that aims at

matching the underlying physical network while pruning slow

logical connections. However, no deep investigation about

performance of their overlay design strategy is provided. In

[23] authors presented a study about some key design issues

related to mesh-based P2P-TV systems. They focused on

understanding the real limitations of this kind of applications

and presented a system based on a directed and randomly

generated overlay. Some fundamental improvements were in-

troduced: e.g., the degree of peers’ connectivity proportional

to their available bandwidth.

Turning our attention on more theoretical studies about the

overlay topology formation, in [3] the problem of building an

efficient overlay topology, taking into account both latency and

bandwidth, has been formulated as an optimization problem;

however, the interactions between overlay topology structure

and the chunk distribution process are ignored.

In [24] a theoretical investigation on optimal topologies is

formulated, considering latency and peer bandwidth hetero-

geneity; scaling laws are thus discussed. In [4], a distributed

and adaptive algorithm for the optimization of the overlay

topology in heterogeneous environments has been proposed,

but network latencies are still ignored. Authors of [25] propose

a mechanism to build a tree structure on which information

is pushed. They show that good topological properties are

guaranteed by location awareness schemes. Similar in spirit,

but in unstructured systems, we propose in this paper an

overlay topology design strategy that, taking into account

latency and peer heterogeneity, aims at creating an overlay

with good properties and low chunk delivery delays. In highly

idealized scenarios, [26] shows with simple stochastic models

that overlay topologies with small-world properties are partic-

ularly suitable for chunk distribution in P2P-TV systems.

Finally, in [9], authors experimentally compare unstructured

systems with multiple-tree based ones, showing that former

systems perform better in highly dynamic scenarios as well as

in scenarios with bandwidth limitations. This strengthen our

choice of exploring topology management policies for mesh-

based streaming systems.

IX. CONCLUSIONS

The impact of P2P-TV overlay topologies have been studied

mainly using analysis or simulation. Few proposals undergo

implementation, and almost none have been extensively bench-

marked in large scale test-beds.

This work aims at filling this gap. Leveraging the Peer-

Streamer application developed within the framework of the

NAPA-WINE project, we developed a P2P-TV system where it

is possible to change the strategies for building neighborhoods

of peers, and hence the overall topology, without changing

other algorithms of the application, thus isolating the impact

of topology management from other effects.

In a fully controlled networking environment, we have run

a large campaign of experiments measuring the impact of

different filtering functions applied to the management of peer

neighborhoods. Results show that proper management, based

on simple RTT measurements to add peers, coupled with an

estimation of the quality of the peer-to-peer relation to drop

them, leads to a win-win situation where the performance of

the application is improved while the network usage is reduced

compared to a classical benchmark with random peer selection.

PeerStreamer is released as Open-Source to make results

reproducible and allow further research.

REFERENCES

[1] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in IPTPS, Ithaca,
NY, US, February 2005.

[2] X. Zhang, J. Liu, and T. Yum, “Coolstreaming/donet: A data-driven over-
lay network for peer-to-peer live media streaming,” in IEEE INFOCOM,
Miami, FL, US, March 2005.

[3] D. Ren, Y. T. H. Li, and S. H. G. Chan, “On Reducing Mesh Delay for
Peer-to-Peer Live Streaming,” in IEEE INFOCOM, Phoenix, AZ, US,
April 2008.

[4] R. Lobb, A. P. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo,
“Adaptive Overlay Topology for Mesh-Based P2P-TV Systems,” in ACM
NOSSDAV, Williamsburg, VA, US, June 2009.

[5] A. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo, “Chunk
Distribution in Mesh-Based Large Scale P2P Streaming Systems: a Fluid
Approach,” IEEE Trans. on Parallel and Distributed Systems, vol. 22,
no. 3, pp. 451–463, March 2011.

[6] X. Jin and Y.-K. Kwok, “Network aware P2P multimedia streaming:
Capacity or locality?” in IEEE P2P, Kyoto, JP, August 2011.

[7] Y. Liu, “On the minimum delay peer-to-peer video streaming: how
realtime can it be?” in ACM Multimedia, Augsburg, DE, September
2007.

[8] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg, “Epi-
demic live streaming: optimal performance trade-offs.” in SIGMETRICS,
Annapolis, MD, US, June 2008.

[9] J. Seibert, D. Zage, F. S., Nita-rotaru, and C., “Experimental comparison
of peer-to-peer streaming overlays: An application perspective,” in IEEE

LCN, Montreal, QC, CA, October 2008.
[10] F. Picconi and L. Massoulié, “Is there a future for mesh-based live video

streaming?” in IEEE P2P, Aachen, DE, September 2008.
[11] R. Birke, E. Leonardi, M. Mellia, A. Bakay, T. Szemethy, C. Kiraly,

R. Lo Cigno, F. Mathieu, L. Muscariello, S. Niccolini, J. Seedorf, and
G. Tropea, “Architecture of a Network-Aware P2P-TV Application: the
NAPA-WINE Approach,” IEEE Comm. Magazine, vol. 49, June 2011.

[12] L. Abeni, C. Kiraly, A. Russo, M. Biazzini, and R. Lo Cigno, “Design
and implementation of a generic library for P2P streaming,” in Workshop

on Advanced Video Streaming Techniques for Peer-to-Peer Networks and
Social Networking, Florence, IT, October 2010.

[13] L. Abeni, C. Kiraly, and R. Lo Cigno, “On the Optimal Scheduling of
Streaming Applications in Unstructured Meshes,” in IFIP Networking,
Aachen, DE, May 2009.

[14] R. Birke, C. Kiraly, E. Leonardi, M. Mellia, M. Meo, and S. Traverso,
“Hose Rate Control for P2P Streaming Systems,” in IEEE P2P, Kyoto,
JP, August 2011.

[15] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with newscast,” in
Proc. of the 15th International Euro-Par Conf. on Parallel Processing.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 523–534.

[16] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE

Trans. on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.
[17] I. Bermudez, M. Mellia, and M. Meo, “Passive characterization of

SopCast usage in residential isps,” in IEEE P2P, Kyoto, JP, August
2011.

[18] X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “Gnustream: a P2P media
streaming system prototype,” in IEEE ICME, Washington, DC, US,
2003.

[19] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “Promise:
peer-to-peer media streaming using collectcast,” in ACM Multimedia,
New York, NY, US, 2003.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, pp. 149–160, August 2001.

[21] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang, “In-
side the new coolstreaming: Principles, measurements and performance
implications,” in IEEE INFOCOM, Phoenix, AZ, US, April 2008.

[22] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Anysee: Peer-to-peer
live streaming,” in IEEE INFOCOM, Barcelona, ES, April 2006.

[23] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,” in IEEE INFOCOM, Anchorage , AK, US, May 2007.

[24] T. Small, B. Liang, and B. Li, “Scaling laws and tradeoffs in Peer-to-
Peer live multimedia streaming,” in ACM Multimedia, Santa Barbara,
CA, US, October 2006.

[25] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Push-to-Pull Peer-
to-Peer Live Streaming,” in Distributed Computing, ser. Lecture Notes
in Computer Science, A. Pelc, Ed. Springer Berlin / Heidelberg, 2007,
vol. 4731, pp. 388–402.

[26] J. Chakareski, “Topology construction and resource allocation in p2p
live streaming,” in Intelligent Multimedia Communication: Techniques

and Applications, ser. Studies in Computational Intelligence, C. Chen,
Z. Li, and S. Lian, Eds. Springer Berlin / Heidelberg, 2010, vol. 280,
pp. 217–251.

Summary Review Documentation for

“Experimental comparison of neighborhood filtering
strategies in unstructured P2P-TV systems”

Authors: S. Traverso, L. Abeni, R. Birke, C. Kiraly, E. Leonardi, R. Lo Cigno, M. Mellia

REVIEWER #1

The paper presents the results of an empirical measurement

study for understanding the performance impact of design

decisions in a P2P live-streaming P2P. The authors consider a

significant chunk of the parameter space and highlight several

interactions between optimization criteria that significantly

hurt (or improve) performance. In addition, the authors have

made their video streaming testbed software open source so

others can potentially test other scenarios.

Strengths: The paper strengths include: (i) there is a quite

extensive empirical study of the P2P streaming design space;

(ii) the authors are making their software open source, which

should facilitate future research in this area; (iii) rhe scale of

the experiments is fairly large for a deployment that has not

yet been adopted by end users.

Weaknesses: The weaknesses include: (i) it was hard for

me to see the connection between these empirical results and

what was predicted by theory. Was it the same? Where was it

different? (ii) I would have liked to see the authors take a posi-

tion on whether they think RTT-RXC is the optimal solution in

practice, or whether they think there is an alternative approach

that might to better; (iii) the ACME-Streamer software makes

a set of assumptions about system design that may make it

difficult to try more advanced strategies to build the overlay

topology (not using one-hop neighbors).

REVIEWER #2

The authors have implemented and will make available

an open-source mesh-based P2P streaming video service.

They propose several similar techniques to select neighbors

to add, and to replace. Combinations of these methods are

investigated experimentally, in a small scale campus testbed,

and in PlanetLab. The results indicate that policies based on

upload bandwidth (aggregate, and per peer) are consistently

high quality. This is ambitious, outstanding work with main

contributions of (a) the software, and (b) the method of

evaluation. The actual findings on topology construction, while

reasonable, are not the major contribution.

Strengths: The paper strengths include: (i) the paper is

well written and easy to understand both the proposal and

the results; (ii) the implementation is outstanding and will be

particularly beneficial if made available to the community, as

indicated; (iii) the evaluation is very thorough and can serve

as a model for other researchers on how to investigate their

ideas and demonstrate their benefits. Sensitivity to parameter

choices was also measured; (iv) the results showing RTT-RXC

is a good overall choice are interesting and useful, since this

is easy to implement, but probably can be improved upon. (v)

the implementation in Planetlab was also useful.

Weaknesses: The weaknesses include: (i) there is no

attempt to address free-riding or content pollution, which have

turned out to be actual problems in P2P; (ii) in the graphs it is

difficult to tell the differences between the lines, since stipple

patterns and symbols are quite small.

REVIEWER #3

The paper experimentally analyzes different peer selection

strategies for maintaining an unstructured P2P-TV system.

A wide variety of strategies are considered, with RTT-RXC

(peers with low RTT more likely to be added, peers with

low transfer rate to us more likely to be dropped) along with

blacklisting emerging as a winning combination. The paper

gives detailed evaluation on both a controlled network with

200 PCs and also within the PlanetLab testbed.

Strengths: The paper strengths include: (i) the paper is

very well written, provides an accessible reference for related

work and distills take-away messages from the evaluation in

a clear and lucid manner; (ii) the evaluation is done in the

context of a fully functioning video streaming system, allow-

ing metrics such as the SSIM to be used; (iii) the controlled

evaluation on 200 PCs are supplemented with actual PlanetLab

experiments, lending further credibility to the findings.

Weaknesses: First, the RTT-RXC policy emerges as a

clear-cut winner throughout your evaluation. However, given

that a majority of the evaluation in the paper is based

on experiments on the test-bed configuration, I worry that

tc/netem settings (such as the RTT in Table II) are too generous

for the RTT approach to show any drawbacks compared to

other strategies, and that the PlanetLab evaluation does not

happen to display it. Also, the blacklisting time-out of 50s

feels arbitrary. Why should the time-out even be a constant?

Last, the paper does not convincingly address the concern that

certain add/drop strategies can lead to a system partition (akin

to Chord splitting into two separate rings) or provide any

theoretical justification (e.g., by using game theory) for the

preferable properties of the strategy it found to work best.

REVIEWER #4

The paper is an experimental study of different strategies

to choose neighbours in a P2P-TV system, on a cluster and

on Planetlab. The paper shows that performance is better with

bandwidth-aware strategies, but at a higher network cost, while

RTT-based strategies are almost always performing well, at a

lower network cost.

Strengths: The paper strengths include: (i) the study is

based on a real implementation, although the test-beds are not

(neither the cluster nor Planetlab can be considered as realistic

peer-to-peer settings for P2P-TV); (ii) different variants are

studied, and most of the pros and cons of each variant are

presented; (iii) for each part, conclusions are written outside

of the details, helping for fast reading.

Weaknesses: The paper gives too many details about

the implemention itself (and it is not clear for the non-

specialist which details matter in this context), but fails to

provide a formal specification of the protocols. In addtion,

as in many experimental studies like this one, it is hard

to generalize these results to other settings, with different

parameters (upstream/downstream bandwidth, RTTs, NATs,

video properties, etc.), although it is still interesting to have a

comparison of the different variants in this setting. Last, the

different variants are not all studied in the different settings.

Sometimes, it looks like the authors have a preference from the

beginning, and focus mostly on their preferred variant (RTT-

RXC).

REVIEWER #5

This paper presents experimental results gained from an

open source P2P live streaming system. The focus is on a

systematic comparison of the influence of different selection

strategies for peers which are used as parents of a stream. The

paper shows that adding peers based on their RTT, coupled

with removing peers providing low bandwidth, outperforms

random selection strategies.

Strengths: First, the paper provides a large set of results

gained from experiments in a real testbed, even though the

selected testbed parameters (RTT, ..) appear a bit specific. The

results are also complemented with experiments in Planetlab.

Also, the results have been gained with an open source P2P-

TV implemenation which allows to reproduce the experiments,

even though the implementation is not accessible at this time

due to the double blind review process. Finally, the paper

analyses different selection strategies in a systematic manner,

covering a quite broad range of possible strategies and showing

their trade-offs. The paper also provides relevant conclusions

for each of the evaluated scenarios.

Weaknesses: Some of the results seem to be a bit specific

to the considered scenario and testbed environment. The

paper should discuss more to what extent the results can be

generalized. Also the results do not have confidence intervals

which suggests that only one run has been conducted for each

experiment. Moreover, the campus scenarios do not assume

any cross traffic which is not very realistic. Finally, the authors

claim negligible overhead, but this is not revealed in the paper.

The paper seems to ignore more incentive-compatible se-

lection strategies e.g. tit-for-tat. Thus, it is questionable if the

proposed strategy would provide good performance in case of

free riders. To that end the paper also completely leaves out

selection strategies for children rather than parents. Finally,

the comparison to Random selection strategies cannot be

considered state of the art, since more sophisticated strategies

have been proposed.

The QoE part is weak and the applied QoE metric appears

questionable. More justification is required as to how the

considered metrics relate to real QoE. To that end the overall

performance criteria appears unclear. It would be useful to

provide results for the performance of the entire swarm, as

the goal was to maximize that.

RESPONSE FROM THE AUTHORS

We would like to thank the Reviewers for their suggestions

that helped us to improve our work.

All reviewers appreciated the experimental results, and the

extensive evaluation conducted on synthetic test bed and

Planetlab scenario. Our goal was to provide a fair and unbiased

evaluation of intuitive overlay construction policies. To the

end, we are happy to offer the PeerStreamer implementation

as Open Source to allow further investigation and improvement

by the research community.

In preparing the final version of the paper we addressed

all the minor editorial comments. Only two questions were

addressed by some more in depth changes:

Reviewer 5 questioned the usage of active and passive

measurement. This has been addressed by specifying that in

this paper we rely only on passive measurements. Nonetheless,

active measurements could result useful in some cases, e.g.,

in case the path capacity toward a peer has to be evaluated.

Reviewer 5 questioned the choice of the testbed network-

ing emulation. This has been addressed by noting that the

configurations in Tables II and III have been designed to

resemble a world-wide geographic scenario, where peers are

distributed over different continents and rely on different up-

link capacity as given by current access technologies, i.e.

ADSL or FTTH interfaces. The resulting scenarios are not

meant to be representative of any actual case, but rather

they are instrumental to create different benchmarking cases,

each with different properties. This could artificially stress the

differences on performance. Yet, we expect that the RTT-RXC

policy results the best also in wild Internet deployment, as

confirmed by the PlanetLab experiments.

