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For successful usage of mobile robots in human working areas several navigation problems have to be
solved. One of the navigational problems is the creation and update of the model or map of a mobile robot
working environment. This article describes most used types of the occupancy grid maps based sonar range
readings. These maps are: (i) Bayesian map, (ii) Dempster-Shafer map, (iii) Fuzzy map, (iv) Borenstein map,
(v) MURIEL map, and (vi) TBF map. Besides the maps description, a memory consumption and computation
time comparison is done. Simulation validation is done using the AMORsim mobile robot simulator for
Matlab and experimental validation is done using a Pioneer 3DX mobile robot. Obtained results are present-
ed and compared regarding resulting map quality.
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1 INTRODUCTION

In recent years usage of mobile robots in indus-
trial and public areas is increasing and this field of
robotics witnesses an increasing amount of research
in both low- and high-level mobile robot control
functions. Low-level control functions include tasks
like localization, path planning, mapping and ob-
stacle avoidance. They can be referred as naviga-
tional functions. High-level control functions in-
clude tasks like human-machine interaction, action
list creation needed to perform the main mobile
robot duty, interactions with a higher level control
system if the mobile robot is a part of an intelli-
gent space, etc. Those functions are related to mo-
bile robot cognitive abilities. This paper addresses
the low-level mobile robot control functions part,
i.e., the problems of mobile robot indoor environ-
ment mapping. Mapping is one of the important
navigation modules, which obtains information
about the surroundings of the mobile robot. It also
includes changes that occur in the surroundings
during the mobile robot motion.

Generally speaking, we can divide environment
maps into three groups: metric maps, topological
maps, and hybrid maps. Metric maps contain met-
ric information about the environment and are good
for localization tasks. Metric information about the
modeled environment can be represented by a grid

or by features (lines, corners, points). Grid maps
are referred to as occupancy grid maps and repre-
sent the environment as cells of equal or unequal
size, where each cell contains information if the
respective environment part is occupied or empty
[1]. Advantage of such a representation is that sur-
rounding cells can be modeled as nodes in a graph
and their occupancy values as costs for traversing
from one environment part to another. So occupan-
cy grid maps contain in its form also topological
information about the environment and can be also
effectively used for path planning. Topological
maps are based on a graph like structure and con-
tain only topological information about the envi-
ronment. Such maps are good for path planning
tasks but mobile robot pose can be determined only
approximately. Hybrid maps consist of a topologi-
cal part and metric part [15]. A typical example is
that each node in a graph like representation con-
tains a local metric map. Such maps can be suc-
cessfully used for localization and path planning in
high buildings, where each floor is modeled as a
node, and elevator connections between floors as
lines.

The mapping problem can be explained as a
process of acquiring/generating spatial models of
physical environments through collection of local
perception sensor data. Perception sensors mostly
used for the mapping process are sonars, laser
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bots pose information, being so independent from
the mapping and localization process. So to build
an environment map three processes are needed
[6]: (i) mapping, (ii) localization, and (iii) path-
-planning. In this paper we will concentrate on map-
ping methods and for the other two processes al-
ready implemented standard solution will be used.

Organization of this paper is as follows. Second
chapter gives an overview of occupancy grid maps
and a description of the basic sonar model. Third
chapter describes implemented mapping algorithms
and fourth chapter presents obtained simulation and
experimental results. Paper ends with an explana-
tion of obtained results and conclusion.

2 OCCUPANCY GRID MAPS

In mobile robotics, an occupancy grid is a two
dimensional tessellation of the environment map
into a grid of equal or unequal cells. Each cell rep-
resents a modeled environment part and holds in-
formation about the occupancy status of the repre-
sented environment part. Occupancy information
can be of probabilistic or evidential nature and is
often in the numeric range from 0 to 1. Occupancy
values closer to 0 mean that this environment part
is free, and occupancy values closer to 1 mean that
an obstacle occupies this environment part. Values
close to 0.5 mean that this particular environment
part is not yet modeled and so its occupancy value
is unknown. When an exploration algorithm is
used, this value is also an indication that the mo-
bile robot has not yet visited such environment
parts. Some mapping methods use this value as ini-
tial value. Figure 1 presents an example of ideal
occupancy grid map obtained from a small envi-
ronment. Left part of Fig. 1 presents outer walls
of the environment and cells belonging to an empty
occupancy grid map (occupancy value of all cells
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range finders, and stereo-cameras [2]. Sonars or ul-
trasonic range finders are often used in mobile ro-
botics (many mobile robots have them as a part of
their standard equipment) due to their simplicity of
operation, robustness, low price, and pretty good
measurement accuracy (typically relative error is 1
[%] from the true distance) [3]. So this sensor will
be used in this article for map building.

Beside the mentioned sonar advantages, there
exist some drawbacks that have to be taken into
account when using sonars for map building. Some
of the drawbacks are wide main measurement lobe,
specular reflections, outliers and crosstalk when
more than one sensor is used. To alleviate the in-
fluence of these problems the occupancy grid map
is mostly build with different mapping methods
based on a similar probabilistic sonar sensor model
[1, 5]. Other map types like feature based maps are
also used but with an increase of mapping method
complexity [4]. Different sonar models were also
examined in [3] including enhanced filtering of ob-
tained sonar range measurement [9, 16]. Because
of higher measurement uncertainty of sonar range
readings originating from larger distances, every
mapping method uses threshold filtering of ob-
tained sonar range measurements. Such basic fil-
tering is also used in this article, where all range
measurements greater than 3 [m] are discarded.

Nature of the mapping problem is dual. To ac-
curately model an environment, exact mobile robot
pose has to be known, and to accurately localize
the mobile robot environment model has to be
known. This relationship defines a whole field in
mobile robotics named simultaneous localization
and mapping (SLAM) or concurrent mapping and
localization (CML). Whence the mobile robot has
to move through the mapped environment a path-
-planning algorithm is also needed. Path-planning
algorithms use the so far build map and mobile ro-

Fig. 1 Example of occupancy grid map environment
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set to 0 and filled with white color). Cells that
overlap with environment walls should be filled
with information that this environment part is oc-
cupied (occupancy value set to 1 and filled with
black color as it can be seen in the right part of
Fig. 1). Result of such operation can be seen in the
right part of Fig. 1. It can be noticed that cells
make a discretization of the environment so small-
er cells are better for a more accurate map.
Drawback of smaller cell usage is increased mem-
ory consumption and decreased mapping speed be-
cause occupancy information in more cells has to
be updated during the mapping process. A reason-
able tradeoff between memory consumption, map-
ping speed, and map accuracy can be made with
cell size of 10 [cm] × 10 [cm]. Such a cell size is
very common when occupancy grid maps are used
and will be used in this article also.

Obtained occupancy grid map given in right part
of Fig. 1 does not contain any unknown space. A
map generated using real sonar range measurement
will contain some unknown space, meaning that
the whole environment was not explored or that
during exploration no sonar range measurement de-
fined the occupancy status of some environment
part. An interpretation of sonar range overlapped
with corresponding grid cells is given in Fig. 2. It
can be seen that in 2D a sonar range measurement
can be presented as a part of a circle arc. Size of
circle part is defined by the angle of the main sonar
lobe and is typical for of the shelf sonar’s between
20 and 30 degrees. Therefore, the detected obsta-
cle is somewhere on the arc defined by measured
range and main sonar’s lobe angle. Usually a one
to two cells wide area around the measured range
is defined as the occupied space. Space between
the sonar sensor and measured range is empty
space. Everything else is unaffected with a particu-
lar sonar range measurement and presents unknown
space. Thus, each sonar range measurement gener-
ates a local occupancy grid map that has to be in-
tegrated into a global map. When such a local oc-
cupancy grid map is created, features of the sonar
range sensor have to be considered. The sonar is a
time of flight sensor, which means it sends a wave
(acoustic in this case) and measures the time need-
ed for returning the wave reflected from an obsta-
cle back to the sonar. Generated acoustic wave has
its most intensity along its axis, as denoted in Fig.
2, therefore resulting a more accurate distance
measurement of obstacles that are inline and per-
pendicular to the sonar axis. Whence wave intensi-
ty decreases with traversed distance, absolute range
measurement accuracy also decreases with wave-
-traversed distance. This is related with the require-

ment of the big range measurement which is a
longer open time window to accept the reflected
wave and therefore enable more specular reflec-
tions and outliers. Specular reflections and outliers
present in this case false readings, which decrease
the quality of the obtained map. To take this sonar
range measurement features into account a stronger
emphasis is given to the range measurements clos-
er to the sonar sensor and environment parts closer
to the main sonar axis. Mathematically this can be
expressed with following equations [3]:

(1)

(2)

where α(Θ ) presents angular modulation function
i.e., main lobe pattern of the used sonar sensor, Θ
angle between sonar axis and currently updated
cell, Θ0 is one half of the sonar main lobe angle,
ρ distance from the sonar sensor and currently up-
dated cell, Δ(ρ) presents radial modulation func-
tion and ρv presents visibility radius where less em-
phasis is given to the sonar range measurement.
Parameter Θ0 value depends from the used sonar
sensor and for our Polaroid 6500 sonar sensor it is
12.5 [°]. Parameter ρv decreases influences of out-
lier readings and recommended value for an indoor
environment is 1.2 [m].
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Fig. 2 Interpretation of a sonar range measurement



Described sonar sensor features are taken into
account in mapping methods described in this
paper. Only the Borenstein occupancy grid map
uses a simplified sonar model, which considers
only main sonar axis to achieve greater mapping
speed sacrifying mapping accuracy [7]. The way
in which empty space and occupied space mem-
bership values are computed for each cell in sonar
main lobe area depends on the used mapping
method and will be explained in more detail later.

3 IMPLEMENTED ALGORITHMS

In this section implemented mapping methods
will be described including a required memory and
computation resources allocation analysis. Also
adapted sonar model for each method will be
given. Implemented methods that will be described
in this chapter are: Bayesian approach, Dempster-
Shafer rule, Fuzzy logic map, Borenstein map,
MURIEL map, and TBF map. All methods share
the same specific steps in the mapping process as
presented in Fig. 3.

3.1 Bayesian map

The Bayesian approach of building an occupan-
cy grid G [1, 5] relies on Bayes rule:

(4)

To each cell Cij in the Bayesian grid map a state
probability pij is so associated and is initialized as
follows (usually the state probability value of 0.5
means that the cell occupancy value is unknown,
for values bigger than 0.5 the cell is occupied, and
for values smaller than 0.5 the cell is empty):

(5)

When the Bayesian grid map is updated using
new sensor measurements, for each cell Cij, which
lies within the main sensor lobe of the reading R,
the state probability value pij is updated according
to:

(6)

where P(R|Sij = 0) represents the sensor model. As
mentioned before sensor model consists of an an-
gular and radial part. Part that computes empty and
occupancy membership values is in this case aug-
mented with the following equations:
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Fig. 3 Occupancy grid mapping process steps
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where in our case the event Ai plays the role of
cell being occupied or not, and event B is the ex-
amined sonar range measurement. Each cell Cij of
the grid map G is therefore associated with a bina-
ry random variable Sij with states (O)cupied or
(E)mpty for which the following equation is true:

P A B
P A B

P Bi
i( ) = ∩( )
( )

with
(8)

(9)

(10)f R
R

r3

2
1Θ Θ Δ

Δ
, ,ρ α ρ

ρ( ) = ( ) ( ) − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f R
R

r2

2
1 2Θ Θ Δ

Δ
, ,ρ α ρ

ρ( ) = ( ) ( ) − + −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f1 Θ Θ Δ, ρ α ρ( ) = ( ) ( )



AUTOMATIKA 50(2009) 1—2, 65—79 69

E. Ivanjko, et al. Experimental Comparison of Sonar Based Occupancy Grid Mapping Methods

where parameters pE and pO set the lower and
upper bounds of P (R|Sij = 0), α(Θ) and Δ(ρ) are
the angular and radial modulation functions ex-
plained in chapter 2, and parameter Δr defines the
area in which the sonar range measurement is con-
sidered proximal. Used value of parameter pE was
0.3, and for parameter pO value 0.7 was used.
Parameter Δr value was 10 [cm]. The same value
will also be used for other methods that use this
parameter.

It has to be noticed here that in adjustment of
the Bayesian rule to the occupancy grid mapping
problem two assumptions are being made. First one
is related to the independence of any two cell state
variables Sij and Skl which is not fulfilled for adja-
cent cells. For cells that are far apart there is no
problem with this assumption. Such an assumption
is made to reduce the needed computation re-
sources because conditional probabilities between
cells have not to be computed. Number of such
conditional probabilities for a square occupancy
grid map of n × n cells is 2n2 and they have to be
taken into account during every particular cell oc-
cupancy value update without such assumption.
Second assumption is that subsequent sonar range
measurements are also independent. This assump-
tion is not fulfilled when measurements are taken
from a similar mobile robot pose. To justify this
assumption a sonar range measurement is only
taken into account for a map update if the mobile
robot pose change is greater than a certain thresh-
old i.e., the pose change has to be greater than the
used cell diagonal size.

Now we can examine the needed computational
and memory resources for this type of map.
Computational cost can be approximated with the
function O (n×m) where n stands for number of
collected sonar range measurements and m stands
for number of cells updated by a particular sonar

to be saved per cell, we can denote this basic
amount of memory as OG. In this way we can al-
leviate comparison of memory consumption and nu-
merical complexity for different mapping methods.

3.2 Dempster-Shafer map

In the Dempster-Shafer theory of evidence, a
frame of discernment (FOD), denoted Θ is defined
to be a finite set of mutually exclusive and exhaus-
tive propositions. In the grid map case, each cell
Cij in the grid map G is characterized by two states
(E)mpty or (O)ccupied, and hence the FOD of grid
cell Cij is given by:

(11)

Furthermore the Dempster-Shafer theory relies
on a basic probability assignment (bpa) function:

(12)

where 2Θij is the power set of Θij, or in our case:

(13)

The Dempster-Shafer grid map is initialized as
follows:

(14)

When the Dempster-Shafer grid map is updated
using new sensor measurements, for each cell Cij
which lies within the main lobe of the sensor read-
ing R, the bpa function values mij
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range measurement. Memory consumption is relat-
ed to the number of cells needed to represent the
modeled environment. Whence only one value has
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R(E) represent the sensor
model [3]. It can be noticed that two sensor mod-
els are used. One model is used for the occupied
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space part and another is used for the empty space
part. They can be expressed with following equa-
tions:

(17)

(18)

where evidence functions fO(ρ, R) and fE(ρ, R) are
given by:
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The Fuzzy grid map is initialized with no mem-
bership to occupied cells fuzzy set O and empty
cells fuzzy set E according to the following equa-
tions:

(22)

When the Fuzzy grid map is updated using new
sensor measurements, for each cell Cij which lies
within the main lobe of the sensor reading R, the

μ μO
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where variables Δr and ρ have the same meaning
as explained above in the Bayesian algorithm de-
scription. Parameters kO and kE specify maximum
evidence support that particular cell is occupied or
empty. The value used for parameter kO was 0.45
and for parameter kE it was 0.25.

Since this type of map stores two values for a
cell (evidence that a cell is being occupied and ev-
idence that a cell is being empty) the memory con-
sumption and computation cost is doubled com-
pared to the Bayesian map approach, which can be
denoted with 2OG for memory consumption and
2⋅O (n×m) for computational complexity.

3.3 Fuzzy map

When applying fuzzy set theory to grid map
building, two fuzzy sets (O)ccupied and (E)mpty
are defined [8]. The defined fuzzy sets are com-
plementary, i.e., for a given grid cell Cij, partial
membership to occupied cells fuzzy set O and
empty cells fuzzy set E is possible. The degree of
belonging to occupied cells fuzzy set O, and empty
cells fuzzy set E, for each grid cell is measured by
two membership functions:
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membership functions μO
G(Cij) and μE

G(Cij) are up-
dated using the following algebraic sums:

(23)
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where μO
R(Cij) and μE

R(Cij) represent the appropri-
ate sensor models [3, 8]. Just like the Dempster-
-Shafer method, two sensor models are needed and
the same equations are used to represent the need-
ed models. Only values of the parameters kO and
kE are different and were in this case 0.55 and 0.55,
respectively. To track safe areas for the mobile
robot to operate in, a refined fuzzy set S is formed.
The membership function μS

G(Cij) of the safe fuzzy
set can be defined in two ways. Original approach
computes the safe set by subtracting the occupied,
ambiguous and intermediate cells from the very
empty cells. Ambiguous cells are obtained as an
intersection of the occupied (O) and empty (E)
cells. Intermediate cells are obtained as an inter-
section of cells that are neither empty (E) nor oc-
cupied (O). It’s a more conservative approach
where an additional factor, μC

G(Cij), weights down
membership function μS

G(Cij) if contradicting infor-
mation between μO

G(Cij) and μE
G(Cij) is present.
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When smaller number of sonar range measure-
ments is available from the mobile robot, the con-
servative approach can result in a slow map con-
vergence to sufficient environment representation
quality. For this reason a less conservative ap-
proach can be used for resulting safe set computa-
tion. It can be mathematically expressed as follows:

(27)

It has to be noticed that cells in the safe set S
containing higher numerical values have also a
higher probability to be empty. This is opposite to
other described maps notations, so before it can be
used as an occupancy grid map, the obtained safe
set has to be complemented. So the final resulting
occupancy grid map is in this case the complement-
ed safe set.

This type of map requires two values per cell,
and with the computation of the safe fuzzy set
μS

G(Cij) one more value is needed. This makes this
type of map more computationally complex and
more memory consuming than the Dempster-Shafer
map. In terms of the above used notation, compu-
tational complexity can be expressed as 3⋅O (n×m)
and memory consumption can be expressed as
3OG.

3.4 Borenstein map

The Borenstein occupancy grid map is intended
for fast mapping with a less emphasis on mapping
accuracy [7]. Original development was done for
real time fast obstacle avoidance. In this method
each cell Cij in the occupancy grid G holds an in-
teger value from the interval [0, 15]. Higher nu-
meric values imply a higher occupancy probability.
Map initialization is as follows:

(28)

where gij denotes numeric value that each cell Cij
holds.
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With every acquired sonar range measurement
R, only cells that lie along the center sonar beam
axes are being updated. So when an object is de-
tected, only the cell closest to the midpoint of the
sonar range measurement arc becomes a new high-
er occupancy value. In all other methods all cells
that lie on the sonar range arc get a higher occu-
pancy value. An object is so detected by the Boren-
stein method and can be avoided by path-planning
algorithm but obstacle representation in the ob-
tained map can be sparse. Occupancy grid map up-
date is in this case done using the following rules:

(29)

where L denotes the center line of the sonar range
reading R main lobe, and Cij

mid denotes the grid cell
closest to the midpoint position of the arc formed
by the sonar range reading R.

Whence only one map with one integer type in-
formation per cell is created, memory consumption
corresponds to the Bayesian map, and is equal to
OG. Computational complexity can be presented
with the function O (n×m) but it has to be noticed
that the number of updated cells m is in this case
significantly smaller then for all other methods.
Taking this feature into account, this method has
the smallest computational complexity.

3.5 MURIEL map

The MURIEL (MUltiple Representation, Inde-
pendent Evidence Log) method is designed to deal
with outliers in sonar range measurements [9]. Cell
occupancy value is determined using a diffuse/
/specular sonar model and a log of all sonar range
readings that affect occupancy value of a particu-
lar cell. Each sonar range reading defines so an
area that has a strong freespace hypothesis and an
area that has a strong surface hypothesis. Surface
area denotes occupied environment parts. Sonar
range readings logs are saved in the so called pose
buckets, which consist of a set of angles and dis-
tances to the sonar sensor. Used sensor model is
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based on the following assumptions: (i) occupancy
probability distribution function is Gaussian with
maximum at the measured distance R, (ii) meas-
urement error increases with measured distance,
(iii) obstacle detection probability decreases with
distance ρ, and (iv) inside the sonar measurement
cone more than one obstacle can be located. Occu-
pancy values are in this model computed using a
set of linear beams traversed from the sonar sensor
origin that cover the whole sonar range sensor
cone. Sensor model can be expressed using follow-
ing equations:

(30)

(31)

(32)

(33)

where σ denotes angular sonar lobe width, Θ is the
angle between the sonar sensor direction and the
cell Ci direction, function δ(ρ) describes with dis-
tance growing measurement error, and α(ρ) pres-
ents sonar sensor detection attenuation, F is a small
constant that has to be added to indicate existence
of more than one obstacle in the sonar range meas-
urement cone. Equations (30) and (31) can be ap-
proximated using a lookup table to speed up the
mapping process.

MURIEL algorithm can be summarized into fol-
lowing steps [9]:

1. Collection of sonar range readings where each
new reading is checked if it duplicates a previ-
ous reading. This is done with the use of pose
buckets, i.e. if a range reading is done from a
same angle and from a same distance as a pre-
vious reading it is discarded.

2. A log likelihood ratio for all surface hypothesis
readings is computed.

3. A specularity probability is computed for an as-
sumed occupied cell using all freespace readings
for that particular cell.

4. A freespace log likelihood ratio is computed for
each freespace reading.
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5. Final odds value of particular cell occupancy is
computed and cell occupancy value is updated.

In this method, for each cell occupancy value,
freespace hypothesis value and surface hypothesis
value has to be saved. Memory consumption is so
equal to 3OG. In addition for each cell pose buck-
ets for freespace and surface range readings have
to be saved. Number of pose buckets for each cell
depends on the range (variable Cr) and angle (vari-
able Ca) classes’ number. This part can so be de-
noted as 2⋅Cr⋅Ca⋅OG. Summating this two part
follows that this method has the biggest memory
consumption. Regarding the computational com-
plexity for this method it is also bigger than the
other methods complexity. Here sonar range read-
ings have to be checked for duplicates and logged,
then appropriate log likelihood ratios and specular-
ity values have to be computed before the final cell
occupancy value update is done, so that computa-
tional complexity can be approximated as
4⋅O (n×m). In an implementation without approxi-
mations in the sonar models, computational com-
plexity is even bigger.

3.6 TBF map

The TBF occupancy grid map is developed using
the triangulation based fusion (TBF) algorithm
[14]. To understand the basic triangulation princi-
ple, one needs to consider two sonar readings orig-
inating from the same point in the environment.
Due to bad angular resolution, after receiving a sin-
gle sonar reading we can only assume there is an
object somewhere along the beam arc defined by
sensor direction, its main lobe angle and the range
reading. However, by combining two readings that
have hit a mutual target we can obtain more pre-
cise information about the target’s position by find-
ing the intersection point of their associated beam
arcs. The beam arc intersection point is the first
triangulation point estimate. As the mobile robot
moves along its path, triangulation points are found
and further refined by combining subsequent meas-
urements originating from the same target. The al-
gorithm can be implemented as a sliding time win-
dow, where each column represents a complete
scan of readings from all sonars [3]. Used sliding
time window size was 25 sonar range readings
samples. Each time a new scan is inserted at the
beginning of the window, the oldest scan is dis-
carded and the window is then swept backwards
searching among all past readings for triangulation
partners for every reading from the most recent
scan. The output of the algorithm is a set of trian-
gulation points nt, defined by their position and
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number of triangulations performed in order to ob-
tain them. Triangulation points supported by a high
number of triangulations are highly likely to origi-
nate from solid objects in the environment, while
sonar readings without triangulation partners are
discarded as outliers.

A fairly simple stochastic model, previously pre-
sented in [3], was used during the course of this
work. This model assumes the axial and radial
component of a sonar reading to be independent of
each other. It then models the axial component with
a Gaussian distribution around the returned range
reading r—:

(34)

and the radial component with a uniform distribu-
tion within the main lobe angle:

r N r r∼ , . .0 01 0 01+( )m

we consider an ellipse E, three standard deviations
around the triangulation point and a line L, con-
necting the triangulation point with the last read-
ing that supports it. The described map-updating
algorithm is formally expressed as [3]: ∀T̂ , such
that

,

update all the cells

according to the formulas:
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(35)

The given model gives a fairly accurate qualita-
tive description of sonar range readings and has the
big advantage that it requires absolutely no model-
ing of the environment. As shown in [3], it can be
successfully used for modeling uncertainty when
building occupancy grid maps.

By applying the sonar reading probability model,
described by equations (34) and (35) to triangula-
tion point computation, we can obtain the uncer-
tainty associated with each triangulation point [3].
Such a refined triangulation point T, defined by its
position (xT, yT), triangulation number nt and co-
variance matrix PT is suitable for creating an oc-
cupancy grid model of the mobile robot’s environ-
ment.

When creating the map, we start off with a grid
G, consisting of cells Cij ∈ G (i, j =1, 2,…), and as-
sign a variable gij ≥ 0 to each cell. Initially, all cells
are assumed to be unoccupied:

(36)

When updating the map with triangulation point T:

(37)n x yt T T
T, , ,T T= ( ){ }Pˆ ˆˆ

g C Gij ij: ,= ∀ ∈0

θ ∼U − ° °( )12 5 12 5. , . where ρ(PT) is the spectral radius of the covari-
ance matrix and A is a scaling factor that keeps
grid values within the desired interval.

Since a relatively small number of cells need to
be updated for every triangulation point, the com-
putation cost of the algorithm is very reasonable.
It can be denoted as O [nc

2(nt —1)] where nc denotes
number of occupancy grid cells that have to be up-
dated during a particular sonar range reading eval-
uation and nt denotes number of triangulation
points used for a particular cell occupancy value
update. Regarding the memory consumption one
occupancy grid map has to be maintained and ad-
ditionally triangulation points and past sonar read-
ings in the sliding time window have to be saved.
So the memory consumption can be denoted as
OG + TP + PS where TP denotes memory needed
for saving of extracted triangulation points and PS
denoted memory for saving of past sonar readings
in the sliding time window.

4 EXPERIMENTAL RESULTS

In order to test implemented mapping algo-
rithms, simulation and real world experiments were
done. A Matlab based mobile robot simulator was
used for simulations and a Pioneer 3DX mobile
robot was used for experiments. Simulation evalu-
ation was done primarily for implementation as-

ˆ ˆ



pects testing of mapping algorithms, whence the
simulator enables creation of various scenarios to
thoroughly verify implemented program code but
doesn’t model all sonar sensor features, such as
outliers and specular reflections. Real world exper-
iments were done in a corridor environment that
generates a larger number of outliers. Corridor en-
vironment also includes a few door niches where
for good mapping results it is essential to distin-
guish regular sonar range measurements from out-
liers. It has to be noticed that some outliers are fil-
tered out by rejecting sonar range measurements
greater than 3 [m]. Locations traversed by the mo-
bile robot during the mapping procedure are denot-
ed as pure empty space, i.e. occupancy value is set
to zero. So experimentally obtained maps contain
a wide empty space in the middle of the corridor.

4.1 Simulation and experimental setups

Before testing the implemented mapping algo-
rithms on a real mobile robot, the AMORsim mo-
bile robot simulator in Matlab was used for simu-
lation testing [10]. This simulator was developed
for research and educational purpose enabling mod-
eling various mobile robot types, environment con-
figurations, and fast implementing of algorithms in
the Matlab script programming language. Its graph-
ical interface is shown in Fig. 4. Graphical inter-
face gives a view on the simulated mobile robot in
the left »Mobile Robot Section« and a teleoperator
view in the right »Control Section«. Under each
section relevant mobile robot data are given like
mobile robot pose, velocities and proprioceptive

sensor measurements during the simulation. Mobile
robot control buttons and simulation control but-
tons are placed in the middle. For simulation pur-
poses a Pioneer 3DX model was made and com-
bined with a navigational algorithm that included
path planning and a mapping method. This mobile
robot model has also sonar sensors irregularly
placed on its body like the real one, where the
sonars are condensed on front and rear side of the
robot to obtain good forward and backward per-
ception, but on the left and right side of the robot
there are parts without any sonar sensor. The goal
of the simulated mobile robot was to go around the
whole simulated environment and to build a map
using collected sonar range measurement. Whence
this simulator doesn’t model any dynamics, in
every simulation step new measurements from
every sonar sensor are available. In our case, there
are 16 new sonar range measurements in every
simulation step. To ensure independence between
two subsequent sonar range measurements, new
sonar range measurements are taken into account
only if the mobile robot displacement was greater
that one cell’s diagonal or orientation change
greater than 10 degrees. Of course such a check is
not necessary in case of the MURIEL mapping
method. A localization algorithm was not used, be-
cause the simulator gives access to the true mobile
robot pose. Used simulation world model can be
seen in Fig. 5. Whence used simulator does not
simulate outliers in sonar range readings a detailed
algorithm comparison cannot be done. Therefore,
only implementations check and related complexi-
ty and memory consumption analysis were done.
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Fig. 4 AMORsim simulator graphical interface



Simulation environment was so chosen to enable a
more complex mobile robot mapping trajectory to
thoroughly verify implemented mapping framework
(measurement data collection, its processing, and
final map generation).

After successful simulation in the AMORsim
mobile robot simulator all above mapping methods
where implemented on a Pioneer 3DX mobile robot
(presented in Fig. 6) and tested experimentally in
a corridor like environment (presented in Fig. 7).
Navigational algorithm is consisted from a path
planning, obstacle avoidance, localization and map-
ping part. Localization was done using the LRF

sensor measurements and a Monte Carlo algorithm
[11]. For path planning and obstacle avoidance a
gradient algorithm was used [12]. All examined
mapping algorithms where implemented in the
ARIA environment obtained from the mobile robot
manufacturer MobileRobots Inc. [13]. Implementa-
tion was made so that all navigational algorithms
worked parallel and after the mobile robot finished
traversing from one corridor end to the other, gen-
erated map was saved for Matlab evaluation.
Mapping part used the estimated mobile robot pose
and sonar range measurements. An adjustment in
the mapping algorithms implementation is needed
to be done because all sonar range measurements
are not available in every time sample. New meas-
urements are available every 100 [ms] and that for
2 or 3 sonars only. To ensure subsequent sonar
range measurement independence a pose change
check was performed like in the simulation case.
Also only sonar range readings smaller than 3 [m]
were used in the mapping process. Size of the ex-
perimental environment was about 6 [m] × 27 [m].

4.2 Simulation results

Obtained results using the AMORsim mobile
robot simulator are given in Fig. 8. Resulting maps
are presented with the corresponding grid. Influ-
ence of the wide sonar lobe can be observed in
walls modeled with a width of more than one cell.
Methods that best deal with that are the Borenstein
and MURIEL approaches thereby the Borenstein
method has a lower mapping quality of environ-
ment areas that were positioned at a greater dis-
tance from the mobile robot in the moment of so-
nar range readings collection. This can be explain-
ed with the used sonar model in the Borenstein
method, which uses only center beam axis of the
main sonar lobe. Best results are here achieved
using the MURIEL method. TBF method did not
manage to map all walls of the environment and
some walls are segmented.

4.3 Experimental results with real robot

Results obtained using the Pioneer 3DX mobile
robot are presented in Fig. 9. Each figure contains
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Fig. 5 Used simulation world model

Fig. 6 Pioneer 3DX indoor mobile robot

Fig. 7 Model of the experimental environment



obtained occupancy grid model and CAD drawing
of the experimental environment. Experimental en-
vironment is given to alleviate evaluation of ob-
tained occupancy grid map and its color is adapted
to each presented mapping algorithm. In all maps
the influence of a much smaller number of taken
sonar range readings and the sonar sensor irregular
placement on the mobile robot body can be seen.
Some areas inside the corridor are not properly
modeled as free space. This is especially notable
in the case of the Fuzzy map conservative approach
(a part of the empty space is not modeled as empty
space) and the Borenstein map (gives only a rough

contour of the mobile robot environment). These
maps are good enough for obstacle avoidance but
for a detailed environment map additional data pro-
cessing is required, like region growing or similar
algorithms. Bayes map is of inferior quality in door
niches mapping, which is especially notable in the
door niches at the bottom of the map. The
Dempster-Shafer map gives a good contour of the
environment with a few artifacts in the middle of
the corridor. The MURIEL map gives also a good
contour of the environment, with a few artifacts
more in the middle of the corridor. Therefore,
Dempster-Shafer and MURIEL maps can be taken
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Fig. 8 Simulation results: a) Bayesian map, b) Dempster-Shafer map, c) Fuzzy map original approach, d) Borenstein map, e)
MURIEL map, and f) TBF map

e) f)

c) d)

b)a)
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Fig. 9 Experimental results with real robot: a) Bayesian map, b) Dempster-Shafer map, c) Fuzzy map with original conserva-
tive approach, d) Fuzzy map with less conservative approach, e) Borenstein map, f) MURIEL map, and g) TBF map



out as the best two approaches. The Dempster-
-Shafer method has a lower memory consumption
and computational complexity but it creates a map
of inferior quality when a greater number of out-
lier measurements are present. This can be ob-
served at the corridor ends. MURIEL method gives
good results also at the corridor ends where outlier
and contradicting readings influence is the
strongest. In the map obtained using this method,
a strong influence of the outlier readings can be
observed. Around several occupied areas a narrow
free space area is presented. That indicates that a
false readings firstly marked this area as free space,
but measurement from other poses indicated an oc-
cupied area. MURIEL mapping algorithm success-
fully added this new information into the map with-
out creating significant artifacts of occupied space
behind the detected walls like in the case of other
mapping methods. If a usable map with minimum
memory consumption and numerical complexity is
needed, then the Bayesian map would be the
choice. Fuzzy maps are conservative in integrating
new sonar range measurements and are better for
mobile robots with more perceptive sensors that
can make faster measurements than in the case of
the mobile robot used in our experiments. In fuzzy
map, environment contour is visible, but around
the mapped walls significant number of artifacts
that do not correspond to real world environment
can be seen. TBF map produced segmented
mapped walls like in the simulation case. Also the
corridor ends are poorly mapped which can be ex-
plained by insufficient sonar readings.

Table 1 summarizes typical average map update
time for obtained new sonar range readings set and
memory consumption for every implemented map-
ping method. As expected, the Borenstein method
is the fastest and MURIEL method is the slowest.
MURIEL method has also the largest memory con-
sumption. Data are taken from the real world ex-
periments. A 2.4 [GHz] Pentium IV computer with
512 [MB] RAM memory running under a RedHat
Linux operating system was used. The maximum
average update time of the mapping process is 1
[ms], so there is enough computational time left
for other algorithms, i.e. robot navigation system.
In the case of the used mobile robot, maximum up-
date time for the whole navigational system is 100

[ms]. Regarding the memory consumption, also the
types of the variables have to be considered. A
floating point variable type was used for the occu-
pancy grid map and an integer variable type for
flag notations in the pose buckets and for past
sonar range saving in the sliding time window. It’s
assumed that floating point variable type uses 4
bytes in memory and the integer variable type 2
bytes.

5 CONCLUSION

This article presents a comparison of most com-
mon mapping methods for creating occupancy grid
maps. Each method was implemented and tested in
the AMORsim mobile robot simulator for Matlab.
After successful simulation verification of the im-
plemented code in a more complex environment
model, the algorithms were experimentally tested
using a Pioneer 3DX mobile robot. The experimen-
tal environment was a corridor with several door
niches. In the case of a sonar sensor, such environ-
ment can generate several false readings and out-
liers. Discarding readings greater than a threshold,
some of these readings can be filtered out, but the
used mapping algorithm must handle the rest.

Regarding accurate empty and occupied space
modeling, two methods can be separated, Demsp-
ter-Shafer and MURIEL algorithm. Thereby MUR-
IEL method automatically sorts out redundant read-
ings, but on the cost of a higher memory consump-
tion and numerical complexity. It is also better in
filtering outlier measurements. Demspter-Shafer
method gives good results in applications where
sonar crosstalk measurements are filtered out be-
fore the mapping process. If the mobile robot has
to fulfill very strict safety demands regarding safe
obstacle avoidance, fuzzy logic is the adequate
modeling algorithm. Its conservative nature creates
good free space model with adequate expansion of
obstacles for increasing safety distance.

6 REFERENCES

[1] A. Elfes, Sonar-Based Real-World Mapping and
Navigation, IEEE Journal of Robotics and Automat-
ion, Vol. 3, No. 3, pp. 249—265, 1987.

78 AUTOMATIKA 50(2009) 1—2, 65—79

Experimental Comparison of Sonar Based Occupancy Grid Mapping Methods E. Ivanjko, et al.

Table 1 Comparison of occupancy grid methods resource requirements

Method Bayes Dampster-Shafer Fuzzy Borenstein MURIEL TBF

Update time [ms] 0.43 0.6 0.65 0.04 1.0 0.6

Memory consumption [kb] 63.3 126.6 189.9 63.3 24000 82.6



[2] Sv. Noykov, Ch. Roumenin, Occupancy grids build-
ing by sonar and mobile robot, Robotics and Auto-
nomous Systems 55, pp. 162—175, 2007.

[3] O. Wijk, Triangulation Based Fusion of Sonar Dana
with Application in Mobile Robot Mapping and
Localization, PhD Thesis TRITA-S3-REG-0101,
2001.

[4] J. D. Tardos, J. Neira, P. M. Newman, J. J. Leonard,
Robust Mapping and Localization in Indoor Envir-
onments using Sonar Data, International Journal of
Robotics Research, Volume 21, number 4, pp.
311—330, April, 2002.

[5] M. Ribo, A. Pinz, A comparison of three uncertain-
ty calculi for building sonar-based occupancy grids,
Robotics and Autonomous Systems (35), pp. 201—209,
2001.

[6] J.-A. Meyer, D. Filliat, Map-based navigation in
Mobile robots — II. A review of map-learning and
path-planning strategies, Journal of Cognitive
Systems Research, Vol. 4, No. 4, pp. 283—317, 2003.

[7] J. Borenstein, Y. Koren, Histogramic In-motion
Mapping for Mobile Robot Obstacle Avoidance.
IEEE Journal of Robotics and Automation, Vol. 7, No.
4, pp. 535—539, 1991.

[8] G. Oriolo, G. Ulivi, M. Vendittelli, Fuzzy maps: A
new tool for mobile robot perception and planning,
Journal of Robotic Systems, vol. 14, no. 3, pp.
179—197, 1997.

[9] K. Konolige, Improved Occupancy Grids for Map
Building, Autonomous Robots 4 (4), pp. 351—367,
1997.

[10] T. Petrini}, E. Ivanjko, I. Petrovi}, AMORsim — A
Mobile Robot Simulator for Matlab, Proceedings of
15th International Workshop on Robotics in Alpe-
-Adria-Danube Region, Balatonfüred, Hungary, June
15—17, 2006.

[11] K. Konolige, K. Chou, Markov Localization using
Correlation, International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, July 1999.

[12] K. Konolige, A Gradient Method for Realtime
Robot Control, SRI International, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS 2000), Kagawa University, Takamatsu, Japan,
October 30 — November 5, 2000.

[13] ***, ARIA Reference manual, ActivMedia Robotics,
LLC., 2000.

[14] O. Wijk, P. Jensfelt, H.I. Christensen, Triangulation
based fusion of ultrasonic sensor data, Proceedings
of 1998 IEEE International Conference on Robotics
and Automation, Leuven, Belgium, pp. 3419—3424,
1998.

[15] Nicola Tomatis, Hybrid, Metric-Topological, Mobile
Robot Navigation, PhD Thesis No. 2444, Ecole
Polytechnique Federale de Lausanne, 2001.

[16] Kyoungmin Lee, Il Hong Suh, Sang-Rok Oh, Wan
Kyun Chung, Conflict Evaluation Method for Grid
Maps using Sonar Sensors, Proceedings of 2008
IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nice, France, pp. 2908—2914,
September, 2008.

AUTOMATIKA 50(2009) 1—2, 65—79 79

E. Ivanjko, et al. Experimental Comparison of Sonar Based Occupancy Grid Mapping Methods

Eksperimentalna usporedba metoda izgradnje mre`astih karata prostora kori{tenjem ultrazvu~nih
senzora. Za uspje{nu primjenu mobilnih robota u radnim prostorima s ljudima potrebno je rije{iti razli~ite
probleme navigacije. Jedan od problema navigacije jest kreiranje modela i uklju~ivanje novih informacija o
radnoj okolini mobilnog robota u model radne okoline ili kartu. ^lanak opisuje ~esto kori{tene tipove mre-
`astih karata prostora zasnovanih na o~itanjima ultrazvu~nih osjetila udaljenosti. Obra|eni modeli prostora su:
(i) Bayesova karta, (ii) Dempster-Shaferova karta, (iii) neizrazita karta, (iv) Borensteinova karta, (v) MURIEL
karta i (vi) TBF karta. Osim opisa, u ~lanku je dana i usporedba implementiranih algoritama prema memorij-
skim i ra~unskim zahtjevima. Simulacijska provjera napravljena je kori{tenjem AMORsim simulatora mobil-
nog robota za programski paket Matlab, a eksperimentalna provjera napravljena je kori{tenjem Pioneer 3DX
mobilnog robota. Tako|er su prikazani dobiveni rezultati uz usporedbu njihove kakvo}e.

Klju~ne rije~i: izgradnja mre`astih karata okoline, mobilni robot, Bayesova karta, Demspter-Shaferova kar-
ta, neizrazita karta, Borensteinova karta, MURIEL karta, TBF karta, sonar
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