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We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based
on different technology platforms. One is a publicly accessible superconducting transmon device [1]
with limited connectivity, and the other is a fully connected trapped-ion system [2]. Even though the
two systems have different native quantum interactions, both can be programmed in a way that is
blind to the underlying hardware, thus allowing the first comparison of identical quantum algorithms
between different physical systems. We show that quantum algorithms and circuits that employ more
connectivity clearly benefit from a better connected system of qubits. While the quantum systems
here are not yet large enough to eclipse classical computers, this experiment exposes critical factors
of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the
results suggest that co-designing particular quantum applications with the hardware itself will be
paramount in successfully using quantum computers in the future.

Inspired by the vast computing power a universal quan-
tum computer could offer, several candidate systems
are being explored. They have allowed experimental
demonstrations of quantum gates, operations, and algo-
rithms of ever increasing sophistication. Recently, two ar-
chitectures, superconducting transmon qubits [3–7] and
trapped ions [2, 8], have reached a new level of matu-
rity. They have become fully programmable multi-qubit
machines that provide the user with the flexibility to im-
plement arbitrary quantum circuits from a high-level in-
terface. This makes it possible for the first time to test
quantum computers irrespective of their particular phys-
ical implementation.

While the quantum computers considered here are still
small scale and their capabilities do not currently reach
beyond small demonstration algorithms, this line of in-
quiry can still provide useful insights into the perfor-
mance of existing systems and the role of architecture
in quantum computer design. These will be crucial for
the realization of more advanced future incarnations of
the present technologies.

The standard abstract model of quantum computa-
tion assumes that interactions between arbitrary pairs
of qubits are available. However, physical architectures
will in general have certain constraints on qubit connec-
tivity, such as nearest-neighbor couplings only. These re-
strictions do not in principle limit the ability to perform
arbitrary computations, since SWAP operations may be
used to effect gates between arbitrary qubits using the
connections available. For a general circuit, reducing a
fully-connected system to the more sparse star-shaped or
linear nearest-neighbor connectivity requires an increase
in the number of gates of O(n), where n is the number

(a) (b)4

5

3

2

1

2

34

5

1

FIG. 1. Graphic representations of the two systems: (a) the
superconducting qubits connected by microwave resonators
(Credit: IBM Research), and (b) the linear chain of trapped
ions connected by laser-mediated interactions. Insets: Qubit
connectivity graphs, (a) star-shaped and (b) fully connected.

of qubits [9]. How much overhead is incurred in practice
depends on the connections used in a particular circuit
and how efficiently they can be matched to the physical
qubit-to-qubit interaction graph.

In this article, we make use of the public access re-
cently granted by IBM to a 5-qubit superconducting de-
vice (illustrated in fig.1(a)) via their “Quantum Experi-
ence” cloud service [1]. This allows us to repeat algo-
rithms that we perform in our own ion trap experiment
on an independent quantum computer of identical size
and comparable capability but with a different physical
implementation at its core.
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PHYSICAL SYSTEMS

The ion trap system consists of five 171Yb+ ions which
are confined in a linear Paul trap and laser-cooled close
to their motional ground state (see fig.1(b)) [2]. The
qubits are magnetic field-insensitive pairs of states in the
hyperfine-split 2S1/2 ground-level of each atom, which
gives a qubit frequency of 12.642821 GHz. All control
and measurement is performed optically. State prepara-
tion and readout are accomplished by optical pumping
and state-dependent fluorescence detection [10]. Qubit
operations are realized via pairs of Raman beams, de-
rived from a single 355 nm mode-locked laser. These op-
tical controllers consist of an array of individual address-
ing beams and a counter-propagating global beam that
illuminates the entire chain [2]. Single-qubit rotations
are driven by a Raman beat-note of defined amplitude,
phase, and duration resonant with the qubit frequency.
Two-qubit operations are produced by applying Raman
beams to a pair of ions, with beat-note frequencies near
the motional sidebands. This creates an effective XX-
Ising interaction between the spins mediated by all modes
of motion [11–13]. We use a pulse-shaping scheme to
ensure spin and motion are disentangled at the end of
the operation [14, 15]. Since all ions partake in the col-
lective motion of the chain, gates between any pair can
be invoked in this way (see inset of fig.1(b)). The ad-
dressing during operations and the distinction between
qubits during readout are both achieved by spatially re-
solving the ions. The fidelities for single- and two-qubit
gates are typically 99.1(5)% and 97(1)%, respectively.
The single-qubit readout fidelity is 99.7(1)% for state |0〉,
and 99.1(1)% for state |1〉. The latter is lower since off-
resonant excitation during readout predominantly causes
|1〉 → |0〉 pumping. The average readout fidelity for an
entire 5-qubit state is 95.7(1)%. This is lower than one
would expect from the average single-qubit readout fi-
delity, since there is crosstalk that leads to |0〉 → |1〉
errors on adjacent channels. Typical gate times are 20µs
for single- and 250 µs for two-qubit gates. Spin depo-
larization is negligible for hyperfine ground level qubits
(T1 ∼ ∞). The spin-dephasing time (T ∗

2 ) is ∼ 0.5s in the
current setup, and can be easily extended by suppressing
magnetic field noise.

In analogy to atoms given by nature, the man-made
superconducting circuits in the IBM quantum computer
can be thought of as “artificial atoms” [17]. They are
transmon qubits [18], or superconducting islands con-
nected by Josephson junctions and shunt capacitors that
provide superpositions of charge states which are insen-
sitive to charge fluctuations. The device used here has a
range of qubit frequencies between 5 and 5.4 GHz [19].
The qubits are connected to each other and the classical
control system by microwave resonators. State prepa-
ration [20] and readout, as well as single- [21] and two-
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FIG. 2. High level circuits of the implemented example com-
putations (gates defined in [16]): Margolus gate (a), Tof-
foli gate (b), Bernstein-Vazirani (c), and hidden shift (d).
The Bernstein-Vazirani algorithm is shown for the oracle
c = (1111), where all CNOTs are present. The hidden shift
diagram represents the shift pattern s = (1011), where X-
operations are present on qubits 1, 3 and 4.

qubit gates [22], are achieved by applying tailored mi-
crowave signals to this network and measuring the re-
sponse. Qubits are resolved in the frequency domain
during addressing and readout. In the Quantum Ex-
perience hardware, the qubits are connected in a star-
shaped pattern that provides four two-qubit interactions
(see inset fig.1(a)), which are CNOT gates targeting the
central qubit. Single-qubit readout fidelities are typically
∼ 96% [1], and the average readout fidelity for an arbi-
trary 5-qubit state is ∼ 80% [19]. Typical gate fidelities
are 99.7% and 96.5% for single- and two-qubit gates, re-
spectively. Typical gate times are 130 ns for single- and
250 − 450 ns for two-qubit gates, while coherence times
are ∼ 60 µs for both depolarization (T1) and spin de-
phasing (T2). The publicly accessible system runs au-
tonomously, not requiring any human intervention over
many weeks [19]. This level of reliability may come at a
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TABLE I. Single- and two-qubit gate counts for the circuits
on the superconducting (star-shaped) and the ion trap (fully
connected) system after mapping to the respective hardware
using the respective gate libraries. For comparison, the gate
counts for a linear nearest-neighbor (LNN) architecture as
implemented in [3] are included. We also note the gate count
for the Quantum Fourier Transfrom (QFT) for 3 and 5 qubits.
The latter was implemented in [2] using a sequence of modular
gates that was not optimized for gate count. The QFT-5
cannot be implemented exactly using the current IBM gate
library. If we assume Za operations are possible, the counts
shown as ∗ are 47 for single- and 29 for two-qubit gates.

connectivity star-shaped LNN fully conn.
hardware supercond. ion trap

gate library Clifford+T Clifford+Za R/XX
gate type single two single two single two

Margolus 20 3 20 3 11 3
Toffoli 17 10 9 10 9 5

Bernstein-Vazirani 10 0-4 10 0-10 14-26 0-4
Hidden Shift 28-34 10 20-26 4 42-50 4

QFT-3 42 19 11 7 8 3
QFT-5 ∗ ∗ 35 28 22 10

cost due to drifts between periodic calibrations. Higher
connectivity can in general be achieved by coupling 3-4
transmons to one resonator, limited by spectral resolu-
tion. The present layout could be modified to provide
connections from qubit 1 to 5, and 2 to 4 [19]. Fur-
thermore, other superconducting architectures involving
multi-mode resonators [5] can offer higher connectivity.

On these two machines, we compare a selection of com-
posite gates and algorithms that represent a variety of
circuit connectivities. In each case, we map the algo-
rithms to the device by breaking them down into circuits
made up of gates native to the specific hardware. We rely
on an optimization protocol [23] to accomplish this task
for the trapped ions, and CNOT+T/Za algebra [24] with
further manual optimization to compose the experiments
for the IBM machine. The available gate set for the ion
trap system consists of the two-qubit XX gate, as well
as arbitrary single-qubit Rθ

α gate rotations by an angle θ

about any axis (given by α) on the equator of the Bloch
sphere. We call this the R/XX library. The IBM system
makes available the family of gates (X, Y, Z, H, S, CNOT
and T [16]), known as the Clifford+T library. Since each
gate is subject to errors, the circuits are optimized to
minimize the number of operations used. The resulting
gate numbers are optimal for two-qubit gates, and either
optimal or close to optimal for single-qubit gates. The
total number of single- and two-qubit gates for each al-
gorithm is shown in table I. The R/XX library offers a
better overall expressive power. However, we note that
the Clifford+T library was likely chosen for didactic rea-
sons and is not native to superconducting systems, which
do in principle offer continuous parameters for single- and
two-qubit gates.

In addition to the two systems considered here, the ta-
ble also gives the numbers for a linear nearest-neighbor
(LNN) connectivity architecture as used, e.g., in super-
conducting qubits [3] as well as semiconductor gated
quantum dots [25]. The numbers in table I show that
the two-qubit gate count strongly depends on the match-
ing between the circuit and the qubit connectivity graph.
The LNN architecture is as efficient as the fully connected
system for the hidden shift algorithm, while the star-
shaped system incurs overheads; the reverse is true for
the Bernstein-Vazirani algorithm (see fig.2).

ALGORITHMS

Margolus and Toffoli Gate

The Toffoli gate is a 3-qubit controlled-controlled-NOT
gate that requires 6 CNOT gates [26, 27]. It is possible to
implement a Toffoli with 5 entangling gates if the square-
root of the CNOT operation is available [16], which is the
case with the trapped ion XX gate. The Margolus gate is
a simplified version of the Toffoli operation, which intro-
duces an additional phase on the state corresponding to
|100〉. It can be realized with just 3 CNOT gates [28, 29].
The circuits are shown in figure 2(a,b). Note that for
the Margolus gate, all entangling operations connect to
the same qubit, which means that this circuit can be
realized efficiently with star-shaped qubit connectivity.
The systems perform this circuit at success probability
74.1(7)% for superconductors and 90.1(2)% for ions (see
figure 3(a1,b1)).

The full Toffoli circuit uses the same three qubits as the
Margolus implementation so that preparation and mea-
surement errors remain the same. The optimized circuit
for the fully connected ion trap system contains 5 two-
qubit gates and the additional operations lower the fi-
delity to 85.0(2)% (see figure 3(b2)). For the star-shaped
system, an additional 7 two-qubit gates are needed to
effect the SWAP operations necessary to go from the
Margolus to the full Toffoli gate. This leads to a re-
duced success rate of 52.6(8)% for the superconducting
system (3(a2)). Note that the transformation |a, b, c〉 →
|c ⊕ ab, b, a〉 may be obtained with the Clifford+T li-
brary on a star-shaped graph with the provably mini-
mal number of 7 CNOT gates. We do not consider such
input-to-output mappings of the composite gates in this
work. However, we always choose the most favorable
input-to-output mapping for the IBM star and LNN ar-
chitectures when executing entire quantum algorithms,
which is merely a classical swap between physically mea-
sured signals.
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(a1) Margolus: Supercond. (b1) Margolus: Ion Trap
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(a2) Toffoli: Supercond. (b2) Toffoli: Ion Trap
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FIG. 3. Margolus gate results from the star-shaped super-
conductor (a1) and the fully connected ion trap system (b1).
The fidelities are 74.1(7)% and 90.1(2)%, respectively. The
full Toffoli gate results give success probabilities of 52.6(8)%
for the superconducting (a2) and 85.0(2)% for the ion trap
(b2) system. The axes represent states as 3-bit binary num-
bers. For each input state, the probabilities of detecting each
state are shown.

Bernstein-Vazirani and Hidden Shift Algorithms

In the Bernstein-Vazirani algorithm, an oracle imple-
ments the function fc(x) = x ·c. The algorithm finds the
unknown bit string c in a single shot. In the oracle, c is
encoded in a pattern of CNOT gates, all of which target
the ancilla qubit [30]. As can be seen from the circuit in
figure 2(c), the entire algorithm maps well onto a star-
shaped architecture. This algorithm is very similar to a
parity check circuit used in error correction applications,
and indeed the IBM system was laid out with this appli-
cation in mind [7]. The single-shot success probabilities
are 72.8(5)% for the star-shaped superconducting system
and 85.1(1)% for the fully connected ion trap system (fig-
ure 4(a1,b1)).

To compare this to a similar algorithm with differ-
ent connectivity requirements, we implement the hid-
den shift algorithm [31] for a black box bent function
[32, 33]. An oracle implements the shifted version f(x+s)
of the known Boolean function f . We want to determine
the n-bit string s that constitutes the “hidden shift”.
For a subset of Boolean functions, there exists a quan-
tum algorithm that can solve this problem in a single
oracle query, while classical algorithms require Ω(

√
2n)

queries. This subset contains functions which have a flat
Fourier spectrum and whose dual f∼ can be calculated
efficiently, i.e. so-called bent functions of the Maiorana-

McFarland class [33]. Here we choose the 4-bit function
f(x) = x1x2 ⊕ x3x4 for which f = f∼. We implement
all possible 4-bit shift patterns s using the circuit shown
in figure 2(d). The algorithm output state directly cor-
responds to the hidden shift s. The circuit involves gates
between two disconnected pairs of qubits, which creates
an overhead of 6 two-qubit gates for a star-shaped archi-
tecture. The results are shown in figure 4(a2,b2). The
fidelity of the fully connected ion trap implementation is
77.1(2)%, compared to 35.1(6)% for the superconducting
device. The numerical values of the data plotted in figure
3 and 4 are reproduced as tables in the Appendix.
The errors in both devices appear concentrated in cer-

tain sets of states, leading to patterns in the off-diagonal
elements of the result plots (see figure 4). These highly
structured signatures suggest that systematic errors dom-
inate, especially readout errors. The grouped patterns
such as in figure 4(a1) indicate flips of the least-significant
bits, while parallel lines correspond to the most signifi-
cant bits changing their state. In the trapped ion re-
sults, these lines can be modulated in height due to
read-out crosstalk and are more pronounced on the lower-
numbered state side due to 1 → 0 being the dominant
detection error channel. Finally, we stress that compar-
ing quantum computations across systems depends on
the specifics of error propagation, which will vary be-
tween different hardware implementations, through their
particular connectivity and physical errors. We summa-
rize the success probabilities for the implemented cir-
cuits on both machines in Table II. We also show the
expected values for two simple error propagation mod-
els based on the errors of the individual gates ǫg and of
M -qubit single-shot readout ǫM for both systems. The
first model assumes random error propagation per oper-

ation with overall error (1 − ǫM )M (1 − ǫg)
√
N , where N

is the number of gates. Since the errors for each step
are independent and comparable to a random walk, the
overall error involves

√
N factors. The second model is

based on systematic (coherent) over- or under-rotations
with overall error (1−ǫM )M (1−ǫg)

N , which accumulates
with N factors. We see that the numbers are broadly
consistent, with systematic errors better predicting the
superconducting system while the ion trap performance
falls in between the two. The superconducting Hidden
Shift algorithm is the only example with a significantly
lower experimental result, perhaps from inhomogeneous
errors in the device.

OUTLOOK

Comparing quantum computing architectures involves
many interrelated factors. Quantum gate operation fi-
delities, qubit numbers, primitive gate speeds, and co-
herence times are obviously important low-level metrics
in a large scale quantum computer. The results pre-
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(a2) Hidden shift: Superconductor (b2) Hidden shift: Ion Trap
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(a1) Bernstein-Vazirani: Superconductor
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(b1) Bernstein-Vazirani: Ion Trap
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FIG. 4. Results from the Bernstein-Vazirani algorithm implementing the oracle function fc(x) = x0c0⊕c1x1⊕c2x2⊕c3x3 for all
possible 4-bit oracles c performed on the star-shaped (a1) and the fully connected (b1) systems. The average success probabilities
are 72.8(5)% for the superconductor and 85.1(1)% for the ion trap system. Hidden shift algorithm for f(x) = x0x1 ⊕ x2x3. All
possible 4-bit shifted oracle functions are implemented on the superconducting system (a2) as well as the ion trap (b2). The
average success probabilities are 35.1(6)% and 77.1(2)%, respectively. The axes represent states and oracle parameters as 4-bit
binary numbers.

sented here show higher absolute fidelities and coher-
ence times in the trapped ion system, with higher clock
speeds for the superconducting system. However, these
metrics are moving targets: while these systems are the
most advanced and versatile quantum computing plat-
forms built to date, both technologies are currently ad-
vancing rapidly.

In any case, such metrics should not be considered in
isolation. Our comparison points to important higher
level considerations in scaling a quantum computer. The
overall performance of a quantum circuit and the “time
to solution” will depend critically on architectural re-
strictions, qubit connectivity, gate reconfigurability, and
gate expressivity, and these attributes will become ever
more important as the system is scaled up. Even with 5-

qubit systems, we find that the qubit connectivity graph
is best co-designed to mirror the structure of the par-
ticular quantum circuit and that the choice of a more
expressive gate library affects the efficiency of the com-
putations.

The physical scaling of each of these leading technolo-
gies has many challenges, and how they will be connected
and reconfigured at large scales is an open question. One
of the biggest challenges is the management of the con-
trol complexity in larger systems and potential cross-talk
from overlapping qubit interactions or control buses. In
most superconducting designs, there are many current-
carrying wires necessary for control and biasing the indi-
vidual qubits, and this may be difficult to route through
a large superconducting chip [3–7]. It will likely become
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TABLE II. Summary of the achieved success probabilities for
the implemented circuits, in percent. The observed probabil-
ities (“obs”) are tabulated alongside two simple error prop-
agation models given the gate number N and the individ-
ual gate and readout errors of the two systems encapsulated
in the parameters ǫg and ǫM , respectively (see main text).
The first estimate assumes random (“rand”) error propaga-

tion with overall error (1 − ǫg)
√

N while the second is based
on systematic (“sys”) coherent over- or under-rotations with
overall error (1− ǫg)

N , where N is the number of gates. The
readout error for M qubits is (1− ǫM )M in both cases.

connectivity star-shaped fully conn.
hardware supercond. ion trap

success prob/% obs rand sys obs rand sys

Margolus 74.1(7) 82 75 90.1(2) 91 81
Toffoli 52.6(8) 78 59 85.0(2) 89 78

Bernstein-Vazirani 72.8(5) 80 74 85.1(1) 90 77
Hidden Shift 35.1(6) 75 52 77.1(2) 86 57

a great challenge to manage the dilution refrigerator heat
budget with such circuitry. Alternative modular super-
conducting architectures improve connectivity by inte-
grating qubits with microwave cavity modes, at the ex-
pense of significant added volume per qubit [34]. Ion trap
designs will hinge upon the stable and accurate delivery
of laser beams (or near-field microwave sources) to ad-
dress each qubit individually in a vacuum chamber. The
fully connected nature of the ion trap architecture may
not scale to arbitrarily large numbers of qubits, owing
to the spectral overlap of collective normal modes of mo-
tion. However, full connectivity between 20−100 trapped
ion qubits appears possible [2] and a modular approach
for scaling to much larger systems with high connectiv-
ity and distance-independent operations seems promising
[35, 36]. In any hardware, an automated calibration pro-
cedure and powerful user interface will likely provide a
higher level of integration. Such system-level attributes
will become even more important as quantum circuits
grow in complexity, regardless of physical platform.
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APPENDIX

The detailed results from the algorithms presented in
Figs. 3-4 are shown below as tables containing numeric
probabilities. The target populations, with nominal unit
probabilities, are highlighted in yellow. The others, rep-
resenting errors, show a bar graph scaled from 0 to 0.1
to emphasize the systematic error patterns.
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Margolus

Superconductor 000 001 010 011 100 101 110 111

000 0.8252 0.0859 0.0713 0.0107 0.1230 0.0186 0.0059 0.0293

001 0.0791 0.8086 0.0146 0.0801 0.0156 0.1006 0.0254 0.0029

010 0.0322 0.0039 0.7725 0.0947 0.0156 0.0078 0.0215 0.0771

011 0.0029 0.0420 0.0576 0.7148 0.0010 0.0205 0.0752 0.0225

100 0.0459 0.0088 0.0127 0.0039 0.6953 0.0850 0.0117 0.0771

101 0.0039 0.0352 0.0020 0.0254 0.0762 0.7031 0.0605 0.0039

110 0.0098 0.0020 0.0576 0.0176 0.0605 0.0088 0.1113 0.7197

111 0.0010 0.0137 0.0117 0.0527 0.0127 0.0557 0.6885 0.0674

Margolus

Ion Trap 000 001 010 011 100 101 110 111

000 0.9180 0.0406 0.0219 0.0110 0.0292 0.0018 0.0010 0.0010

001 0.0318 0.9156 0.0067 0.0245 0.0016 0.0288 0.0000 0.0012

010 0.0146 0.0052 0.9151 0.0421 0.0004 0.0012 0.0124 0.0192

011 0.0066 0.0150 0.0333 0.8954 0.0002 0.0016 0.0228 0.0112

100 0.0278 0.0014 0.0007 0.0009 0.9274 0.0274 0.0090 0.0218

101 0.0006 0.0210 0.0004 0.0009 0.0192 0.9158 0.0166 0.0124

110 0.0006 0.0006 0.0120 0.0119 0.0114 0.0098 0.0376 0.9050

111 0.0000 0.0006 0.0099 0.0134 0.0106 0.0136 0.9006 0.0282

Toffoli

Superconductor 000 001 010 011 100 101 110 111

000 0.5107 0.2832 0.0830 0.0215 0.1172 0.0693 0.0430 0.0381

001 0.2490 0.4316 0.0156 0.0635 0.1475 0.1182 0.0322 0.0352

010 0.0420 0.0264 0.5996 0.1250 0.0127 0.0146 0.0889 0.0654

011 0.0234 0.0303 0.1162 0.5996 0.0205 0.0205 0.0762 0.0732

100 0.0723 0.1084 0.0469 0.0264 0.4912 0.1152 0.0303 0.0381

101 0.0693 0.0674 0.0156 0.0420 0.1260 0.5947 0.0283 0.0322

110 0.0176 0.0166 0.0820 0.0625 0.0537 0.0176 0.2197 0.4990

111 0.0156 0.0361 0.0410 0.0596 0.0313 0.0498 0.4814 0.2188

Toffoli

Ion Trap 000 001 010 011 100 101 110 111

000 0.8878 0.0298 0.0497 0.0111 0.0395 0.0089 0.0035 0.0110

001 0.0224 0.8762 0.0101 0.0525 0.0091 0.0358 0.0133 0.0029

010 0.0370 0.0090 0.8571 0.0385 0.0152 0.0014 0.0265 0.0224

011 0.0075 0.0373 0.0374 0.8521 0.0015 0.0149 0.0206 0.0259

100 0.0210 0.0082 0.0117 0.0019 0.8486 0.0332 0.0420 0.0436

101 0.0083 0.0229 0.0017 0.0126 0.0237 0.8460 0.0350 0.0374

110 0.0149 0.0008 0.0154 0.0171 0.0334 0.0247 0.0377 0.8101

111 0.0013 0.0158 0.0169 0.0142 0.0290 0.0351 0.8214 0.0467

input state

detected state

input state

detected state

input state

detected state

input state

detected state

FIG. 5. Numerical quantum computer 3-qubit input/output matrix for the Margolis gate (top two panels) and Toffoli gate
(bottom two panels), corresponding to Fig. 3 of the main text. For each gate, the results from both superconductor and ion
trap quantum computers are displayed.
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FIG. 6. Numerical quantum computer 4-qubit input/output matrix for the Berstein-Vazirani algorithm for the superconductor
system (top) and ion trap system (bottom), corresponding to Figs. 4(a1) and 4(b1) of the main text.
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FIG. 7. Numerical quantum computer 4-qubit input/output matrix for the Hidden Shift algorithm for the superconductor
system (top) and ion trap system (bottom), corresponding to Figs. 4(a2) and 4(b3) of the main text.
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