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We formally link the concept of steering (a concept created by Schrédinger but only recently
formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett. 98, 140402 (2007)] and the criteria
for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev.
A 40, 913 (1989)]. We develop a general theory of experimental EPR-steering criteria, derive a
number of criteria applicable to discrete as well as continuous-variables observables, and study their
efficacy in detecting that form of nonlocality in some classes of quantum states. We show that
previous versions of EPR-type criteria can be rederived within this formalism, thus unifying these
efforts from a modern quantum-information perspective and clarifying their conceptual and formal
origin. The theory follows in close analogy with criteria for other forms of quantum nonlocality
(Bell-nonlocality and entanglement), and because it is a hybrid of those two, it may lead to insights
into the relationship between the different forms of nonlocality and the criteria that are able to

detect them.
I. INTRODUCTION

In their seminal 1935 paper [1], Einstein, Podolsky and
Rosen (EPR) presented an argument which demonstrates
the incompatibility between the concepts of local causal-
ity 1 and the completeness of quantum mechanics. Apart
from the foundational importance of that work, it had
long-reaching consequences [3]: it was the first time that
physicists clearly noticed the strange phenomena associ-
ated with entanglement — the resource at the basis of
modern quantum information science.

The situation depicted by EPR is often referred to as
the “EPR, paradox”. The authors themselves did not in-
tend to point out a true paradox; instead they argued
that quantum mechanics was an incomplete theory, that
is, that it did not give a complete description of reality.
Schrodinger E] seems to have been the first to name the
situation a ‘paradox’; as he could not believe with EPR
that quantum mechanics was indeed incomplete but nei-
ther could he see a flaw in the argument. In hindsight,
we now know (since Bell [7]) that, while the argument is
sound, one of the premises — local causality — is false.
However, we will retain the historically prevalent term
‘paradox’, if only because we still do not have a fully sat-
isfactory understanding of the nature of quantum nonlo-
cality.

The original EPR paradox involved an example of an
idealized bipartite entangled state of continuous variables
measured at the two subsystems. Later, Bohm B] ex-
tended the EPR paradox to a scenario involving discrete
(spin) observables. The essence of both of these argu-

L This is Bell’s terminology ﬂﬂ] It is also commonly called local
realism B], which is arguably closer to EPR’s terminology. See
however Ref. [4] for a discussion of Einstein’s later writings on
locality and realism.

ments involved perfect correlations, and therefore neither
the original EPR paradox nor Bohm’s version could be
directly tested in the laboratory without additional as-
sumptions. Criteria for the experimental demonstration
of the EPR paradox, which can be used in situations with
non-ideal states, have been derived for the continuous-
variables scenario by Reid in 1989 [3] and more recently
for discrete systems by Cavalcanti and Reid [9] and Cav-
alcanti et al. [10].

In another recent development, Wiseman, Jones and
Doherty M] have introduced a new classification of quan-
tum nonlocality, a formalisation of the concept of steering
introduced by Schridinger in 1935 [12] in a response to
the EPR paper. In that Letter, the authors claimed that
any demonstration of the EPR paradox, as proposed by
Reid, is also a demonstration of steering. While that
claim was essentially correct, the proof proposed there
was incomplete, as we will see later in this paper. We will
provide the missing proof and further show that the con-
verse is also true: any demonstration of steering is also
a demonstration of the EPR paradox. In other words,
the EPR paradox and steering are equivalent notions of
nonlocality.

In Ref. M] Wiseman, Jones and Doherty showed that
EPR-steering constitutes a different class of nonlocal-
ity intermediate between the classes of quantum non-
separability and Bell-nonlocality, with the distinction be-
tween these being explainable as a matter of trust be-
tween different parties. Therefore, besides its founda-
tional interest, this classification could prove important
in the context of quantum communication and informa-
tion. It would be thus desirable to devise criteria to de-
termine to which classes a given state (or a set of observed
correlations) belongs. For that purpose we will formulate
and develop the theory of EPR-steering criteria, defined
as any criteria which are sufficient to demonstrate EPR-
steering experimentally. The theory will proceed in close
analogy to the theories of entanglement criteria m, |1__4|,
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|E, [16] and of Bell inequalities (or Bell-nonlocality crite-
o) [ .15, 19,20 31 23, 2. 2 23, 26, 23,

The structure of the paper is as follows: In Sec. [l we
will review some of the history and concepts surrounding
the EPR paradox and steering. The main purposes of this
section are to review the conceptual motivation for the
new formulation and to put the steering criteria proposed
here in context with the relevant literature. In Sec. [II]
we will review the three classes of nonlocality, including
Wiseman and coworkers’ [11] steering, and argue in more
detail than in previous papers [28] as to why it provides
the correct formalization of Schrédinger’s concept. In
Sec. [V] we will introduce the formalism for derivation
of general EPR-steering criteria. We develop two broad
classes of EPR-steering criteria: the multiplicative vari-
ance criteria, and the additive convez criteria (which in-
cludes linear EPR-steering inequalities as a special case).
We show how the criteria in the existing literature can
be rederived as special cases within this modern unifying
approach. In Sec. [Vl we will apply the criteria derived
in Sec. [[V] to some classes of quantum states, comparing
their effectiveness in experimentally demonstrating EPR-
steering. We consider both continuous variables (as in
the original EPR paradox) and spin-half systems (as in
Bohm’s version).

II. HISTORY AND CONCEPTS
A. The Einstein-Podolsky-Rosen argument

The EPR argument has been exhaustively commented
in the literature. However, since in this paper we will
discuss a new mathematical formulation of it, it will be
important to review it in detail.

The essence of Einstein and coworkers’ [1] 1935 argu-
ment is a demonstration of the incompatibility between
the premises of local causality and the completeness of
quantum mechanics. EPR started the paper by mak-
ing a distinction between reality and the concepts of a
theory, followed by a critique of the operationalist po-
sition, clearly aimed at the views advocated by Bohr,
Heisenberg and the other proponents of the Copenhagen
interpretation.

“Any serious consideration of a physical the-
ory must take into account the distinction be-
tween the objective reality, which is indepen-
dent of any theory, and the physical concepts
with which the theory operates. These con-
cepts are intended to correspond with the ob-
jective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the success of a phys-
ical theory, we may ask ourselves two ques-
tions: (1) ‘Is the theory correct?’ and (2)
‘Is the description given by the theory com-
plete?’ It is only in the case in which positive

answers may be given to both of these ques-
tions, that the concepts of the theory may be
said to be satisfactory.” [1]

Any theory will have some concepts which will be used
to aid in the description and prediction of the phenom-
ena which are their subject matter. In quantum theory,
Schrodinger introduced the concept of the wave function
and Heisenberg described the same phenomena with the
more abstract matrix mechanics. EPR argued that we
must distinguish those concepts from the reality they at-
tempt to describe. One can see the physical concepts of
the theory as mere calculational tools if one wishes, but
it was those authors’ opinion that one must be careful
to avoid falling back into a pure operationalist position;
the theory must strive to furnish a complete picture of
reality.

EPR follow the previous considerations with a neces-
sary condition for completeness:

EPR’s necessary condition for com-
pleteness: “Whatever the meaning assigned
to the term complete, the following require-
ment for a complete theory seems to be a
necessary one: every element of the physical
reality must have a counterpart in the physical

theory.” [1]

Soon afterward they note that this condition only makes
sense if one is able to decide what are the elements of
the physical reality. They did not attempt to define ‘el-
ement of physical reality’, saying “The elements of the
physical reality cannot be determined by a priori philo-
sophical considerations, but must be found by an appeal
to results of experiments and measurements. A compre-
hensive definition of reality is, however, unnecessary for
our purpose”. Instead they provide a sufficient condition:

EPR’s sufficient condition for reality:
We shall be satisfied with the following cri-
terion, which we regard as reasonable. If,
without in any way disturbing a system, we
can predict with certainty (i.e., with proba-
bility equal to wunity) the value of a physi-
cal quantity, then there ewxists an element of
physical reality corresponding to this physical
quantity.” 1]

Later in the same paragraph it is made explicit that this
criterion is “regarded not as a necessary, but merely as
a sufficient, condition of reality”. This is followed by a
discussion to the effect that, in quantum mechanics, if a
system is in an eigenstate of an operator A with eigen-
value a, by this criterion, there must be an element of
physical reality corresponding to the physical quantity
A. “On the other hand”, they continue, if the state of the
system is a superposition of eigenstates of A, “we can no
longer speak of the physical quantity A having a partic-
ular value”. After a few more considerations, they state
that “the usual conclusion from this in quantum mechan-
ics is that when the momentum of a particle is known, its



coordinate has no physical reality”. We are left therefore,
according to EPR, with two alternatives:

EPR’s dilemma: “From this follows that
either (1) the gquantum-mechanical descrip-
tion of reality given by the wave function is
not complete or (2) when the operators cor-
responding to two physical quantities do not
commute the two quantities cannot have si-
multaneous reality.” |1

They justify this by reasoning that “if both of them had
simultaneous reality — and thus definite values — these
values would enter into the complete description, accord-
ing to the condition for completeness”. And in the crucial
step of the reasoning: “If then the wave function provided
such a complete description of reality it would contain
these values; these would then be predictable [our em-
phasis]. This not being the case, we are left with the al-
ternatives stated”. Brassard and Meéthot [29] (correctly)
pointed out that strictly speaking EPR, should conclude
that (1) or (2), instead of either (1) or (2), since they
could not exclude the possibility that (1) and (2) could
be both correct. However, this does not affect EPR’s
conclusion. It was enough for them to show that (1) and
(2) could not both be wrong, and therefore if one can
find a reason for (2) to be false, (1) must be true 2.

The next section in EPR’s paper intends to find a rea-
son for (2) to be false, that is, to find a circumstance in
which one can say that there are simultaneous elements of
reality associated to two non-commuting operators. They
consider a composite system composed of two spatially
separated subsystems S4 and Sp which is prepared, by
way of a suitable initial interaction, in an entangled state
of the type

|¥) = Z cnltn)a @ [un) B, (1)

where the |1,,) 4 denote a basis of eigenstates of an opera-
tor, say Oy, of subsystem S4 and |u,) 5 denote some (nor-
malised but not necessarily orthogonal) states of Sp. If
one measures the quantity 01 at S4, and obtains an out-
come corresponding to eigenstate |¢;)a the global state
is reduced to )4 @ |ug)p. If, on the other hand, one

2 Brassard and Meéthot’s further conclusion that the EPR argu-
ment is logically unsound is not based on this mistake, which they
acknowledge as irrelevant. Their conclusion is, in the present
authors’ opinion, based on a misinterpretation of EPR’s paper.
They read the quote “In quantum mechanics it is usually assumed
that the wave function does contain a complete description of the
physical reality [...]. We shall show however, that this assump-
tion, together with the criterion of reality given above, leads to
a contradiction”, as stating that —(1) A (2) — false. If that was
the correct formalisation of the argument we would agree with
their conclusion. However, by “criterion of reality given above”
EPR clearly mean their "sufficient condition for reality", not
statement (2).

3

chooses to measure a non-commuting observable Oz, with
eigenstates |@s)a, one should instead use the expansion

|\I]> = Z C{s|¢s>A ® |Us>37 (2)

S

where |vs) g represent, in general, another set of states of
Sp. Now if the outcome of this measurement is, say, the
one corresponding to |¢,)4, the global state is thereby
reduced to |¢,)a ® |v.)p. Therefore, “as a consequence
of two different measurements performed upon the first
system, the second system may be left in states with two
different wave functions”. This is just what Schrodinger
later termed steering, and we will return to that later.
Now enters the crucial assumption of locality, justified
by the fact that the systems are spatially separated and
thus no longer interacting.

EPR’s necessary condition for locality:
“No real change can take place in the second
system in consequence of anything that may
be done to the first system.” [1]

Einstein et al. never explicitly used the term ‘locality’,
but took this assumption for granted. Because of this
we call this a “necessary condition for locality”, as this
is the most conservative reading of EPR’s reasoning: if
they had explicitly defined some assumption of locality,
this would certainly be an implication of it, but there is
no reason (and no need) to take it as a definition.

“Thus”, conclude EPR, “it is possible to assign two dif-
ferent wave functions to the same reality”. EPR could
have now simply concluded by noting that two differ-
ent (pure) states can in general assign unit probability
(and thus an element of reality, according to the local-
ity assumption and the sufficient condition for reality)
to each of two non-commuting quantities, in contradic-
tion of statement (2); this would imply, by way of EPR’s
dilemma, that quantum mechanics is incomplete. In-
stead, they consider a specific example, depicted in Fig.[I]
where those different wave functions are respective eigen-
states of position and momentum. Because they are
canonically conjugate, this guarantees that |u,) is dif-
ferent from |vs) for every possible outcome n or s. The
paradox is thus guaranteed to be realised — one cannot
attempt to hide behind statistics. If the initial state was
of type

V(wa,0p) = / eap/hoimsp/ig, ()

then if one measures momentum p* at S, and finds out-
come p, the reduced state of subsystem Sp will be the
one associated with outcome —p of p®. On the other
hand, if one measures position #4 and finds outcome z,
the reduced state of Sp will be the one corresponding to
outcome z of 2. By measuring position or momentum
at Sy, one can predict with certainty the outcome of the
same measurement on Sg. But pP¥ and &7 correspond to
non-commuting operators. EPR conclude from this that
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Figure 1: The EPR scenario. Alice and Bob are two spatially
separated observers who can perform one of two (position or
momentum) measurements available to each of them.

“In accordance with our criterion of reality,
in the first case we must consider the quan-
tity [p?] as being an element of reality, in the
second case the quantity [£7] is an element
of reality. But, as we have seen, both wave
functions [corresponding to —p and z| belong
to the same reality.” [1]

In other words, by using the sufficient condition for re-
ality, the necessary condition for locality and the predic-
tions for the entangled state under consideration, EPR
conclude that there must be elements of reality associ-
ated to a pair of non-commuting operators. So horn (2)
of EPR’s dilemma is closed, leaving as the only alter-
native option (1), namely, that the quantum mechanical
description of physical reality is incomplete.

In more modern terminology, the conclusion of EPR
was to infer the existence of a set of local hidden vari-
ables (LHVs) underlying quantum systems which should
be able to reproduce the statistics. It is trivial to repro-
duce the statistics of EPR’s example with LHVs, even
though that is not possible with some entangled states,
as later proved by Bell [7]. Schrédinger arrived at a dif-
ferent conclusion from an analysis of the paradox raised
by EPR, as we will see in the next section.

In hindsight, as we now know that the premise of lo-
cality is not justified, we can read EPR’s argument as
demonstrating the incompatibility between the premises
of locality, the completeness of quantum mechanics and
some of its predictions.

B. Schrédinger’s response: The concept of steering

EPR’s argument prompted an interesting response
from Schrodinger 6, [12]). He also considered nonfactor-
izable pure states describable by the wave function given
by Eq. (). Schrédinger, however, had of course devel-
oped the wave function for atoms and believed that it
gave a complete description of a quantum system. So
while he was not prepared to accept EPR’s conclusion
that quantum mechanics was incomplete, neither could
he see a flaw with their argument. For this reason he
termed the situation described by EPR a paradoz.

Clearly Schrodinger was also interested in implications
arising from composite quantum systems described by
nonfactorizable pure states. He described this situation,
coining a famous term, as follows: “If two separated bod-

ies, each by itself known maximally, enter a situation
in which they influence each other, and separate again,
then there occurs regularly ... [an] entanglement of our
knowledge of the two bodies.” [6]

Having defined entanglement, Schrodinger then de-
fined the process of disentanglement which occurs when
a non-degenerate observable is measured on one body:
“After establishing one representative by observation, the
other one can be inferred simultaneously ... this proce-
dure will be called the disentanglement”. This leads us
directly to the EPR paradox, as Schrodinger describes
it:

“[EPR called attention] to the obvious but
very disconcerting fact that even though we
restrict the disentangling measurements to
one system, the representative obtained for
the other system is by no means independent
of the particular choice of observations which
we select for that purpose and which by the
way are entirely arbitrary.” E]

Schrodinger describes this ability to affect the state of
the remote subsystem as steering:

“It is rather discomforting that the theory
should allow a system to be steered or piloted
into one or the other type of state at the ex-
perimenter’s mercy in spite of his having no
access to it.” 6]

EPR’s example concerning position and momentum was
recast in the context of steering as

“Since I can predict either x1 or p; without in-
terfering with system No. 1 and since system
No. 1, like a scholar in examination, cannot
possibly know which of the two questions I
am going to ask it first: it so seems that our
scholar is prepared to give the right answer
to the first question he is asked anyhow. He
must know both answers; which is an amaz-
ing knowledge.” [d]

The remainder of Schrodinger’s paper is a generalisation
of steering to more than two measurements:

“[System No. 1] does not only know these two
answers but a vast number of others, and that
with no mnemotechnical help whatsoever, at
least none that we know of.” 6]

By “mnemotechnical help” Schrodinger presumably
means a cheat-sheet (to use his scholar analogy). That
is, a set of local hidden variables (LHVs) that determine
the measurement results. Thus, unlike EPR, Schrédinger
explicitly rejected LHVs as an explanation of steering.
Perhaps because he had performed explicit calculations
generalizing EPR’s example (which can be explained
trivially using LHVs), he recognized steering as “a nec-
essary and indispensable feature” [30] of quantum me-
chanics. We now know, thanks to Bell’s theorem, that



Schrédinger’s intuition was correct: there is no possi-
ble local hidden variable model (or local mnemotechnical
help) to explain the correlations between measurement
outcomes for certain entangled states M]

Like EPR, Schrodinger was troubled by the implica-
tions of steerability of entangled states for quantum the-
ory. Unlike EPR, however, he saw the resolution of the
paradox lying in the incorrectness of the predictions of
quantum mechanics. That is, he was “not satisfied about
there being sufficient experimental evidence for” steering
in nature M] This raises the obvious question: what
evidence would have convinced Schrodinger? The pure
entangled states he discussed are an idealization, so we
cannot expect ever to observe precisely the phenomenon
he introduced. On the other hand, Schrodinger was quite
explicit that a separable but classically correlated state
which allows “determining the state of the first system b
suitable measurement of the second or vice versa” [3(]
could never exhibit steering. For this situation, he says
that “it would utterly eliminate the experimenter’s influ-
ence on the state of that system which he does not touch.”
@] Thus it is apparent that by steering Schrédinger
meant something that could not be explained by Alice
simply finding out which state Bob’s system is in, out of
some predefined ensemble of states. Following this rea-
soning leads to the general definition of steering as pre-
sented in Ref. [11]. We return to this concept in Sec. [TIL

C. Bohm'’s version

Although making reference to a general entangled
state, the original EPR argument used the specific case of
a continuous-variable state for its final (and crucial) part.
In his 1951 textbook E], Bohm presented a discussion of
the EPR paradox in a modified scenario involving two en-
tangled spin-1/2 particles. Although trivial in hindsight,
this extension had a fundamental importance. It was the
scenario used by Bell in the proof of his now famous the-
orem [7] and for most of the subsequent discussions of
Bell inequalities (a Bell-type inequality directly applica-
ble to continuous-variables has only recently been derived
M]), and was instrumental for our present understand-
ing of entanglement, and particularly for its applications
in quantum information processing.

In Bohm'’s version the system of interest is a molecule
containing two spin-1/2 atoms in a singlet state, in which
the total spin is zero:

Ws) =lz)a@lz-)p = |z-)a®|z24)B. (4)

Here |z4) represent the 4+-1/2 eigenstate of the spin pro-
jection operator along the z direction, S,. Compare this
state with Eq. () used in the EPR argument. If S, is
measured on system A, and the outcome corresponding
to |24)4 (or|z_)4) is obtained, the state of subsystem B
is projected into |z_)p (or |z+)p). Thus, one predicts an
element of reality for the z component of the spin of the

second atom. But the same state can be written, in the
basis of eigenstates of another spin projection, say S,

Ws) =lzp)a®@lz)p =z )a@lei)p. (5)

Similarly, the  component of the spin of the first atom
could be measured instead, allowing inference of an ele-
ment of reality associated with the  component of spin
for the second atom. With this mapping, the rest of the
argument follows in analogy with EPR’s.

Bohm'’s version of the EPR paradox is conceptually
appealing, but (in his 1951 textbook at least) he did
not present it as an argument for the incompleteness of
quantum theory (as did EPR). Instead, he used it to
argue that a complete description of nature need not
contain a one-to-one correspondence between elements
of reality and the mathematical description provided by
the theory. Bohm defended, in 1951, the interpretation
that the quantum state represents only “potentialities” of
measurement results, which actually occur only when a
system interacts with an appropriate apparatus. It is cu-
rious to find that already in 1952 Bohm must have found
this interpretation wanting, since he then developed his
famous non-local hidden-variable interpretation of quan-
tum mechanics m, @], where there s such a one-to-one
correspondence.

As the original continuous-variable example remained
unrealizable for decades, several early experiments fol-
lowed Bohm’s proposal, such as Bleuler and Bradt (1948)
[34], Wu and Shaknov (1950) [35] and Kocher and Com-
mins (1967) [36]. All of these suffered from low detection
efficiencies and had no concern with causal separation,
however, making their interpretation debatable.

D. The EPR-Reid criterion

While the EPR argument was logically sound, one
could block its conclusion by rejecting those statistical
predictions required to formulate it. As we have dis-
cussed in Sec. [IB] Schrodinger seems to have found this
an appealing solution. This move is particularly easy to
make since the necessary predictions are of perfect cor-
relations, unobtainable in practice due to unavoidable
inefficiency in preparation and detection of real physi-
cal systems. This problem was considered by Furry al-
ready in 1936 M] but experimentally useful criteria for
the EPR paradox were only proposed in 1989 by Reid
3], which we will discuss in detail later in this section.
The notation and terminology will closely follow that of
a recent review on the EPR paradox @] The essential
difference in the derivation of the EPR-Reid criteria and
the original EPR argument is in a modification of the
sufficient condition for reality . This could be stated as

3 Reid’s original paper did not explicitly include this assumption,
which was implicit in the logic.



the following;:

Reid’s extension of EPR’s sufficient
condition of reality: If, without in any
way disturbing a system, we can predict
with some specified uncertainty the value of a
physical quantity, then there exists a stochas-
tic element of physical reality which deter-
mines this physical quantity with at most
that specific uncertainty.

The scenario considered is the same as the one for the
EPR paradox above, as depicted in Fig. [l but one does
not need a state which predicts the perfect correlations
considered by EPR. Instead, the two experimenters, Al-
ice and Bob, can measure the conditional probabilities of
Bob finding outcome zp in a measurement of Zp given
that Alice finds outcome x4 in a measurement of 4, i.e.,
P(zp|ra). Similarly they can measure the conditional
probabilities P(pp|pa) and the unconditional probabili-
ties P(w4), P(pa). We denote by A?(zg|z4), A%(pp|pa)
the variances of the conditional distributions P(xg|za),
P(pg|pa), respectively. Based on a result x4, Alice can
make an estimate of the result for Bob’s outcome x 5. De-
note this estimate 25*(z4). The average inference vari-
ance of zp given estimate x5 (z4) is defined as

Afrs = ((wp — 25" (24))?)

:t/}mmdePca%xB>@»—xﬁwanz. (6)

Note that this average inference variance is minimized
when the estimate is just the expectation value of xp
given z 4, i.e., the mean of the distribution P(zg|z.) [34].
Therefore the optimal (or minimum) inference variance
of zp (pp) given a measurement T4 (Pa) is given by

Arznin‘rB = minmegt{AianfB}

_ /dxAdep(xA)A2(xB|xA); 1)
Ar2nian = minp%“{A?npr}

— [ dpadonP )2 lps). (9

Reid showed, by use of the sufficient condition of reality
above, that since Alice can, by measuring either posi-
tion a4 or momentum pp, infer with some uncertainty
Ainf:EB = \/AiznffEB or Ainpr = \/Aiznpr the outcomes
of the corresponding experiments performed by Bob, and
since by the locality condition of EPR her choice cannot
affect the elements of reality of Bob, then there must be
simultaneous stochastic elements of reality which deter-
mine Zp and pp with at most those uncertainties. Now
by Heisenberg’s Uncertainty Principle (HUP), quantum
mechanics imposes a limit to the precision with which
one can assign values to observables corresponding to
non-commuting operators such as & and p. In appropri-
ately rescaled units the relevant HUP reads AzAp > 1.

Therefore, if quantum mechanics is complete and the lo-
cality condition holds, by use of the extended sufficient
condition of reality and EPR’s necessary condition for
completeness, the limit with which one could determine
the average inference variances above is

AinfrAintpp > 1. 9)

This is the EPR-Reid criterion. Violation of that crite-
rion signifies the EPR paradox, and has been experimen-
tally demonstrated in continuous-variables quantum op-
tics experiments with quadratures @, @, 41 @, @] and
actual position-momentum measurements @] While
these were performed with high detection efficiency, none
of these experimental demonstrations have been able
to achieve causal separation between the measurements.
For a detailed review see [38].

E. Recent developments

Cavalcanti and Reid [9] recently showed that a larger
class of quantum uncertainty relations can be used to de-
rive EPR inequalities. For example, from the uncertainty
relation A%z + A%p > 2, which follows from AzAp > 1,
one can derive, in analogy with the previous section, the
EPR criterion

A?anB + Ai2npr > 2. (10)

Using instead the spin uncertainty relation AJ,AJ, >
1(J.)|, one can obtain the EPR criterion

1
Aint Y Dint Sy > 3 S PUNIE) Al (1)
JA

useful for demonstration of Bohm’s version of the EPR
paradox. Here <J5>JZA is the mean of the conditional

probability distribution P(JZ|J4). A weaker version of

Eq. @D,
1
Aine JF Aine J) > §|<JzB>|7 (12)

was used by Bowen et al. [43] to demonstrate an EPR
paradox in the continuum limit for optical systems, with
Stokes operators playing the role of spin operators, in
states where (JB) # 0.

An inequality for demonstration of an EPR-Bohm
paradox has also been derived using an uncertainty re-
lation based on sums of observables. The uncertainty
relation A?J, + A%J, + A%J, > (j), where (j) is the av-
erage total spin, has been used in [15] for derivation of
separability criteria, and recently by [10] to derive the
following EPR criterion *

4 More precisely, inequality (57) was presented in that work. The
following follows with the substitution explained below (&1)).



inf inf inf

AL P+ AL TP + AL TP > (7). (13)

All of the above EPR criteria will be rederived from
an unifying perspective in Section [Vl and shown to be
special cases of broader classes of EPR-steering criteria.

III. LOCALITY MODELS; EPR-STEERING

In [11], a distinction was made between three locality
models, the failure of each corresponding to three strictly
distinct forms of nonlocality. To define those we will first
establish some notation.

Let a € M, and b € My represent possible choices
of measurements for two spatially separated observers
Alice and Bob, with respective outcomes denoted by the
upper-case variables A € O, and B € 9y, respectively.
Here we follow the case convention introduced by Bell [7].
Alice and Bob perform measurements on pairs of systems
prepared by a reproducible preparation procedure c. We
denote the set of ordered pairs M = {(a,b) : a € M,,b €
Mp} a measurement strategy. The joint probability of
obtaining outcomes A and B upon measuring a and b
after preparation c is denoted by

P(A, Bla,b,c). (14)

The preparation procedure c¢ represents all those vari-
ables which are explicitly known in the experimental situ-
ation. The joint probabilities for all outcomes of all pairs
of observables in a measurement strategy given a prepa-
ration procedure define a phenomenon. Following Bell
[437], we represent by A € A any variables associated with
events in the union of the past light cones of a, A, b, B
which are relevant to the experimental situation but are
not explicitly known, and therefore not included in c. In
this sense they may be deemed hidden variables, but our
usage will not imply that they are necessarily hidden in
principle (although in particular theories they may be).

A. Bell-nonlocality

Given that notation, it is said that a phenomenon
has a local hidden variable (LHV or Bell-local or lo-
cally causal) model if and only if for all a € M,, A €
g, b € Mg, B € Oy, there exist (i) a probability dis-
tribution P(\|c) over the hidden variables, conditional
on the information about the preparation procedure c
> and (ii) arbitrary probability distributions P(A4|a,c, \)

5 In general one could have a continuum of hidden variables, and
Eq. (I8 can be modified in the obvious way. No generality is
gained with that procedure, though, so we use the sum notation
for simplicity.

and P(B|b, ¢, \), which reproduce the phenomenon in the
form:

P(A,Bla,b,c) = Y P(Nc)P(Ala,c, \)P(B|b,c, \).
A

(15)
Any constraint on the set of possible phenomena that
can be derived from (I3) is called a Bell inequality. A
state for which all phenomena can be given a LHV model,
when the sets 91, and Mg include all observables on the
Hilbert spaces of each corresponding subsystems, is called
a Bell-local state. If a state is not Bell-local it is called
Bell-nonlocal.

B. Entanglement

Similarly, it is said that a phenomenon has a quan-
tum separable model, or separable model for simplicity,
if and only if for all a € My, A € Oq, b € My, B € Oy,
there exist P(\|c) as above and probability distributions
Py (Ala, e, \) and Pg(B|b, ¢, \) such that

P(A,Bla,b,c) =Y P(Ae)Po(Ala, ¢, \)Po(Blb, ¢, \),
A

(16)
where now Pg(Ala,c, \) represent probability distribu-
tions for outcomes A which are compatible with a quan-
tum state. That is, given a projector ITZ associated to
outcome A of measurement a, and given a quantum den-
sity operator p,(c, A) for Alice’s subsystem (as a function
of ¢ and \), these probabilities are determined by

PQ(A|a7 ¢ A) = Tr{H:qua(Ca A}

Similar definitions apply for Bob’s subsystem.

Any constraint on the set of possible phenomena that
can be derived from assumption (I8) is called a sepa-
rability criterion or entanglement criterion. A state for
which all phenomena can be given a separable model,
when the sets 9, and Mg include all observables on
the Hilbert spaces of each corresponding subsystems, is
called a separable state. A state which is not separa-
ble is called non-separable or entangled. This definition
is of course equivalent to the usual definition involving
product states, since if there is a separable model for all
possible measurement settings, then the joint state can
be given as a convex combination of product states

p=2_ Pc)pale,)) @ pplc. V). (17)
A

Conversely, if the state is given as a convex combination
of product states of form (7)), the joint probabilities for
each pair of measurements are given straightforwardly by

Eq. (I6).



C. EPR-steering

Strictly intermediate between the LHV and separable
models is the local hidden-state (LHS) model for Bob.
This was argued in M] to be the correct formalisation
of non-steering correlations. That is, violation of a LHS
model for Bob is a demonstration of EPR-steering, the
concept introduced by Schrodinger to refer to the situ-
ation depicted in the EPR paradox. Following the pre-
vious notations, we say that a phenomenon has a no-
Bob-steering model or a LHS model for Bob (or LHS
model for short) ¢ if and only if for all a € M,, A €
Oq, be Mg, B € Oy, there exist P(\|c), P(Ala,c, \) and
Pg(BJb, ¢, \) defined as before such that

P(A, Bla,b,c)

ZP Ae)

P(Ala,c,\)Pg(Blb,c, \).

(18)
In other words, in a LHS model Bob’s outcomes are
described by some quantum state, but Alice’s outcomes
are free to be arbitrarily determined by the variables .
We call any constraint on the set of possible phenomena
that can be derived from (I8) an EPR-steering criterion
or EPR-steering inequality. A state for which all phe-
nomena can be given a LHS model, when the sets 9,
and Mgz include all observables on the Hilbert spaces
of each corresponding subsystems, is called an EPR-
steerable state. A state which is not steerable is called
non-EPR-steerable.

D. Foundational relevance of EPR-steering

As we have seen in Section ([IBl), Schrodinger was
“discomforted” with the possibility of Alice being able
to “steer” Bob’s system “in spite of [her] having no access
to it”. In other words, the strange phenomenon revealed
by the EPR paradox which he termed “steering” was the
possibility that Alice could prepare, simply by different
choices of measurement on her own system, different en-
sembles of states for Bob which are incompatible with a
LHS model, that is, which cannot be explained as aris-
ing from a coarse-graining from a pre-existing ensemble
of local quantum states for Bob. This is an inherently
asymmetric concept, thus the asymmetry in the formal-
ization given by Eq. ([I8).

For each choice of measurement a, Alice will prepare
for Bob one state out of an ensemble E* = {52 : A €
Da}- If the state of the global system is W, the (unnor-

6 1t would perhaps be more logical to use the term LHV/LHS
model to denote no-steering, and the other types of nonlocality
by LHV and LHS models respectively, but we will use the simpler
terminology introduced in Ref.[L1], as we believe there is no risk
of confusion.

malized) reduced state for Bob’s subsystem correspond-
ing to outcome A will be

A = T, [W. (T4 @ T)]. (19)

Evidently, the reduced density matrix for Bob is inde-
pendent of Alice’s choice: pg = Tro[W.] =3 4 2 for all
a — otherwise Alice could send faster-than-light signals
to Bob.

In Ref. [11] it was shown that for pure states W, en-
tangled states, steerable states and Bell-nonlocal states
are all equivalent classes. The difficulty (and interest)
comes when talking about mixed states. In this case,
one certainly does not want to consider it as an exam-
ple of steering when the ensembles prepared by Alice are
just different coarse-grainings of some underlying ensem-
ble of states. After all, these ensembles can be repro-
duced if Bob’s local state is simply classically correlated
with some variables available to Alice. These correlations
would hardly constitute a puzzle for Schrodinger, as we
have argued in Section ([IB]).

Thus, Wiseman and co-workers M] considered EPR-
steering to occur iff it is not the case that there ex-
ists a decomposition of Bob’s reduced state, pg =
Yy P(Ae)ps(c, A) such that for all a € My, A € O,
there exists a stochastic map P(Aa,c, A) which allows
all states in the ensembles E® to be reproduced as

= " P(Ala,c, ) P(Alc)pg(c, \). (20)
A

This definition leads directly to the formulation of a
no-steering model, Eq. ({I8). According to the reduced
state (20), the probability for outcome B of Bob’s mea-
surement b, given an outcome A of Alice’s measurement
a, is given by P(B|A,a,b,c) = Tr[lIZ 2]/ P(Ala,b,c),
where the denominator is introduced for normalization.
Therefore the joint probability becomes

P(A7B|aab7 C) Tr[Hb pa]

- Z P(Ala, ¢, ) P(Al) Tr[TT2 ps(c, V)]

—ZPM

P(Ala,c,\)Pg(Blb, ¢, \),
(21)

as in Eq. (I8). The converse can also be trivially shown.

One could propose that the definition of EPR-steering
should take into account the fact that Alice’s state is
also describable by quantum mechanics. It can indeed
be argued @] that the conjunction of the assumptions of
local causality and the completeness of quantum mechan-
ics (for both Alice and Bob) leads directly to a quantum
separable model, and in that sense EPR’s conclusion that
quantum mechanics is incomplete (assuming local causal-
ity) could have been reached by simply pointing out the
predictions from any entangled state. However, we are
interested in capturing the phenomenon which is central



to EPR’s actual argument, and in Schrodinger’s general-
ization of this phenomenon, and hence we are led to the
asymmetry in the definition. This is the phenomenon
that Einstein famously described as "spooky action at a
distance" [47].

As we will see, this formalization also leads precisely
to existing EPR criteria, putting in a modern context
the phenomena that have already been discussed in the
literature as generalizations of the EPR paradox. Fol-
lowing Einstein’s informal turn of phrase, we could even
call them tests of spooky action at a distance.

E. EPR-steering as a quantum information task

Wiseman and co-workers [L1, 28] showed that the dis-
tinction between the three forms of nonlocality above can
be formulated in a modern quantum information perspec-
tive, as a task. Suppose a third party, Charlie, wants
proof that Alice and Bob share an entangled state. Al-
ice and Bob are not allowed to communicate, but they
can share any amount of classical randomness. If Charlie
trusts both Alice and Bob, he would be convinced iff Alice
and Bob are able to demonstrate entanglement, via viola-
tion of a separable model, Eq. (I6). If Charlie trusts Bob
but not Alice, he would be convinced they share entan-
glement iff they are able to demonstrate EPR-steering by
violating the local hidden state model for Bob, Eq. ([I8]).
If, on the other hand, Charlie trusts neither of them, Al-
ice and Bob would have to demonstrate Bell-nonlocality,
violating a local hidden variable model, Eq. ([I3). The
reason is that, in the absence of trust, it is possible for
the weaker forms of nonlocality to be reproduced with
the use of classical resources.

IV. EXPERIMENTAL CRITERIA FOR
EPR-STEERING

The above definition of EPR-steering invites the ques-
tion: what are the analogues for EPR-steering of Bell
inequalities or entanglement criteria, i.e., how can one de-
rive what we have termed EPR-steering criteria above?
In Refs. [11] and [2§] the emphasis was on the EPR-
steering capabilities as a property of states, and an anal-
ysis was made of how the steerability of some families
of quantum states depends on parameters which spec-
ify the states within those families. This was necessary
and useful for proving the strict distinction between en-
tangled, EPR-steerable and Bell-nonlocal states. In an
experimental situation, however, this kind of analysis is
insufficient. Quantum state tomography could be used
to determine those parameters, but what if the prepared
state is only approximately a member of the studied fam-
ily? What about states which are not even approximately
members of any useful class? An experimental EPR-
steering criterion should not depend on any assumption
about the type of state being prepared, but only on the

measured data. Compare this situation with that of Bell
inequalities, where a violation represents failure of a LHV
model, independently of any assumption about the state
being measured.

Another important issue is the relation between the
EPR-type criteria existing in the literature and the above
formalization of EPR-steering. In [11] the authors pro-
vided a partial answer by showing that for a class of
Gaussian states the EPR-Reid criterion is violated if and
only if the state is steerable by Gaussian measurements.
However, the EPR-Reid criterion is valid for arbitrary
states, and therefore their conclusion that it is merely
a special case of EPR-steering was not entirely justified.
Furthermore, the relation between this formalization of
EPR-steering and the other existing EPR-type criteria
cited in Sec. [[TE] was not discussed. Here we will show
that not only the EPR-Reid criterion but other exist-
ing EPR-type criteria are indeed special cases of EPR-
steering. We will rederive those inequalities within this
modern approach, and also derive a number of new cri-
teria for EPR-steering.

There is an important difference between Bell inequal-
ities and EPR-steering criteria. Since the LHV model
(@) does not depend on the Hilbert space structure of
quantum mechanics, Bell inequalities are independent of
the actual measurements being performed. To be clear,
the wviolation of the inequality will certainly depend on
which measurements are performed (as well as the state
being prepared), but the derivation of the inequality it-
self is independent of that information. In a Bell in-
equality the measurements are treated as “black boxes”,
where the only important feature is (usually, but see [27])
their number of outcomes. In a LHS model, on the other
hand, Bob’s subsytem is treated as a quantum state, and
therefore it is important in general to specify the actual
quantum operators corresponding to Bob’s measurement
choices, just as in an entanglement criterion this infor-
mation is in general required for both Alice and Bob 7.

The fact that in a no-steering model Bob’s probabilities
are constrained to be compatible with a quantum state
suggests the use of quantum uncertainty relations as in-
gredients in the derivation of criteria for EPR-steering. A
connection between uncertainty relations and EPR, crite-
ria has been pointed out by two of the present authors in
[9] (although using the logic of the EPR-Reid criteria, not
the present formalization of EPR-steering), and that be-
tween uncertainty relations and separability criteria has
been shown by [15], among others.

We identify two main types of EPR-steering criteria:
the multiplicative variance criteria, which include the
EPR-Reid criteria and are based on product uncertainty

7 The qualification ’in general’ here is needed because a Bell in-
equality ¢s an EPR-steering and an entanglement criterion. The
failure of a LHV model implies the failure of a LHS model and
of a separable model. However, in general a Bell inequality is
inefficient as a criterion for these weaker forms of nonlocality.



relations involving variances of observables; and the addi-
tive convez criteria, based on uncertainty relations which
are sums of convex functions.

A. Existence of linear EPR-Steering criteria

An interesting special case of additive convex criteria
will be the linear criteria, based on linear functions of ex-
pectation values of observables, and which can therefore
be written as the expectation value of a single Hermitian
EPR-steering operator S.

In general, for any (finite-dimensional) quantum state
W, if the state in question is steerable, then there exists
a linear criterion that would demonstrate EPR-steering
for that phenomenon.

The proof is as follows. If the state is steerable, then
by definition there exists a measurement strategy which
can demonstrate steering with that state. Let 991 be that
measurement strategy. Consider the set B (9) of all pos-
sible phenomena for 91, i.e., the set of all possible sets
of joint probabilities P(A, Bla,b) for all pair of outcomes
(A, B) of each pair of measurements (a,b) € M. Let M
be the number of possible settings for the pair of mea-
surements performed by Alice and Bob (i.e., the number
of elements in M) and let O be the number of possible
pairs of outcomes (A, B) for each pair of measurements.

A phenomenon is defined by specifying the MO prob-
abilities for all possible outcomes of all measurements
in the measurement strategy. We represent those prob-
abilities as an ordered set, and thus an element P of
P(M) is associated to a point in RMP | where the joint
probability for each (A, B,a,b) is associated to a co-
ordinate azg‘bB of RMO_ For example, in a phenomenon
with 2 measurements per site with 2 outcomes each,
M = O = 4, and the number of probabilities to be
specified is MO = 16. Denoting those measurements
by a € {ai,as} and the outcomes of each measure-
ment by A € {0,1} (and similarly for Bob), these
probabilities would be represented by the vector P =
(P(0,0la1,b1), P(0,1]a, br), ..., P(1, 1]az, ba)).

Now consider two phenomena associated to P; and P,
and take a convex combination of the two vectors, i.e.,

P3 =pP; + (1 — p)Py, (22)

where 0 < p < 1. If P; and Py have a no-steering
model, then Pj3 also does. The proof is simple: by as-
sumption we can write the joint probabilities given by
P; and P, in form (I8). Simple manipulation shows
that Eq. (22) can also be written in form (&), with
P5(\) = pP1(A) 4+ (1—p)P2()). In other words, the set of
phenomena NS (M) C P(M) which do not demonstrate
EPR-steering is a convex set. (The same is also true, of
course, for the other forms of nonlocality.)

Now consider a phenomenon Py € PB(9) which does
demonstrate EPR-steering. By definition it is not in
NS(M). Since, as shown above, that is a convex set,
we can invoke a well known result from convex analysis:
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there exists a plane in RM© separating P, from points
in 9M1G(M). Denote by 7 an unit vector normal to this
plane pointing away from S (M) and by Py an arbi-
trary point on the plane. Then all points Pz € S (M)
satisfy

it (Ps — Pg) < 0. (23)

Inequality (23) is an EPR-steering criterion. If for an
arbitrary point P. € (M), n- (P, —Py) > 0, then P, ¢
NS and so this phenomenon demonstrates EPR-steering.

We can decompose P = Y, 5 (A1) €47, where

(IATIP). = P(A,Bla,b,c) = Te[W, (I} @ IIF)] and
{eAP} is an orthonormal basis of RMY. Decomposing
D=3 45 nABeAB and denoting d = —n - Py, (23)
becomes Y 4 g, i (ML) e + d < 0. Defining a Her-
mitian operator S = Y, p ., nal AP + dl we can
rewrite the EPR-steering criterion (23) as

Tr[W.S] <0, (24)

which completes the proof.

However, this is merely an existence proof. It is quite
a different matter to produce the EPR-steering opera-
tor S which will demonstrate EPR-steering for a given
state W,.. This is analogous to the situation with Bell
inequalities and entanglement, where one can prove the
existence of a Bell operator or entanglement witness for
states which can demonstrate the corresponding form of
nonlocality, but cannot easily produce such operators be-
yond some simple cases.

Furthermore, in the case of EPR-steering (and also
of entanglement) the matter is even more complicated:
there is an infinite (and continuous) number of extreme
points in the convex set of phenomena which allow a LHS
model (or a separable model) — the set is not a polytope.
Therefore even for a finite measurement strategy, an in-
finite number of linear inequalities are needed to fully
specify the set. So in general nonlinear criteria may be
more useful, and we will consider that general case in this
paper.

In the following subsections we will first derive the
class of multiplicative variance criteria, which will reduce
to the well-known EPR-Reid criterion as a special case.
Then we will introduce the quite general class of additive
convex criteria, a special case of which will be the linear
criteria.

B. Multiplicative variance criteria

Following [3], we consider a situation where Alice tries
to infer the outcomes of Bob’s measurements through
measurements on her subsystem. We denote by Begst(A)
Alice’s estimate of the value of Bob’s measurement b as
a function of the outcomes of her measurement a. As in
Section [[ID] the average inference variance of B given
estimate Begst(A) is defined by

A2,B = (B — Bex(A))?). (25)

inf



Here the average is over all outcomes B, A. Since for a
given A, the estimate that minimizes ((B — Best(A))?)
is just the mean (B)4 of the conditional probabil-
ity P(B|A), the optimal estimate for each A is just
Besi(A) = (B)a. We denote thus the optimal inference
variance of B by measurement of a as

AI2nm = ZP(A5B)(B - <B>A)2
= ZP(A) ZP(BIA)(B —(B)a)?
= ZP A2 (B|A) (26)

where A?(BJA) is the variance of B calculated from
the conditional probability distribution P(B|A). As ex-
plained above,

AZ:B>A2. B (27)

for all choices of Best(A). This minimum is optimal,
but not always experimentally accessible, in EPR ex-
periments, since it requires one to be able to measure
conditional probability distributions.

We assume that the statistics of Alice’s and Bob’s ex-
perimental outcomes can be described by a LHS model,
i.e., by a model of form (I8) [omitting henceforth, for
notational simplicity, the preparation ¢ and the mea-
surement choices a, b from the conditional probabilities
P(A, Bla,b,c), etc.],

ZP

Assuming this model, the conditional probability of B
given A is

P(A|X)Po(BIA). (28)

P(B|A4) Po(BIA)

_ - PPN

- 7%

= > P\ A)P(BI). (29)
A

As in Section [l Pg(B|\) = Tr[lIZp,] represents the
probability for B predicted by a quantum state pj.
It is a general result that if a probability distribu-
tion has a convex decomposition of the type P(x) =
>, P(y)P(z|y), then the variance A2z over the distri-
bution P(x) cannot be smaller than the average of the
variances over the component distributions P(z|y), i.e

Az > 37 P(y)A*(z|y). Therefore, by 29), the variance

A?%(B|A) satisfies
A*(B|A) > ) P(AA)AL(BIN), (30)
A

where A2 (B|)) is the variance of Pg(B|)). Using this
result, we can derive a bound for Eq. ([20),

A%B > P(ANAY(BIN) = ZP A)AG(BIN).
AN

(31)
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Suppose Bob’s set of measurements consists of
Mps = {b1, b, bs}, with respective outcomes labeled by
By, By, Bs. Alice measures M, = {a1,a2,a3}. Sup-
pose the corresponding quantum observables for Bob,
{I;l, bo, 133}, obey the commutation relation [131, l;z] = ibs.
The outcomes must then satisfy the product uncertainty
relation

No(Bilp)Aa(Balp) > 31(Bs),. (32)
where Ag(B;|p) and (B;), are respectively the standard
deviation and the average of B; in the quantum state p.

We will use the uncertainty relation above and the
Cauchy-Schwarz (C-S) inequality to obtain an EPR-
steering criterion. The C-S inequality states that, for

two vectors w and v, |ullv] > |u - v|. Define u =
(\/P()\l)AQ(BﬂAl)), \/P()\Q)AQ(BH)\Q), ) and v =
EB]])V P(A)AG(Bz|A1), VP(A2)Aq(B2[Az), -..). Then by

AminB1 = \/ArzninBl > |u|,
AminBQ =1/ AmmBQ Z |1)| (33)

We thus obtain, from (33]), the C-S inequality and the
uncertainty relation (32]),

AminBl Amin B2

> Jullo]
> Ju-v|

Y PNAQ(BIINAG(B:|A)
A

5> POIBI. (34)
A

Here we denote by (B), the expectation value of B cal-
culated from Pg(BJA). Using again Eq. (29) and the
fact that f(x) = |z| is a convex function, that is, that
> . P(x)z| > |, P(x) x|, we obtain a bound for the
last term:

S PN(Bs)al = Y P(As, N)[(Bs)a
A Az A

> P(As)
Az

= ) P(A3)[(Bs)a,|
Az

|(Bi)int (35)

Using now (27), we obtain, from (34) and (33]), the EPR-
steering criterion

Y

Y

ZP()\|A3)<33>,\
X

1
Aint B1Aint By > §|<BS>|inf- (36)
This inequality was introduced in [d], but its derivation
was based on the conceptual scheme of the EPR-Reid cri-
terion. Here we have shown that it follows directly from



the LHS model [28). Its experimental violation implies
the failure of the LHS model to represent the measure-
ment statistics, that is, it is an experimental demonstra-
tion of EPR-steering. It is important to note that the
choices of measurement a1, as, az used by Alice to infer
the values of the corresponding measurements of Bob are
arbitrary in this derivation; the specific quantum observ-
ables a; played no role in the above because in a LHS
model Alice’s probabilities are allowed to depend arbi-
trarily on the variables A\. In an experimental situation,
one should choose, of course, those which can maximise
the violation of (B).

One can also derive criteria involving collective vari-
ances such as A?(gp Ay + By), where gy is a real num-
ber. These measurements are often simpler to be re-
alised as they do not require the full conditional dis-

tributions. These are just the average inference vari-
ances AZ . By, = ([By — Best(Ay)]?) with a linear estimate
Best (Ag) = —giAg + (Bi + grAk), as shown in @] We

can therefore straightforwardly derive, from (B0)):

1
A(g1 A1 + B1)A(g2A2 + Bz) > §|<BS>|infu (37)
keeping in mind that the measurements for Alice and the
values of g; are arbitrary, and should be chosen so as to
optimize the violation of the inequality.

1. Ezamples

The first example of a multiplicative variance criterion
is the original EPR-Reid criterion [3], reviewed in Sec-
tion It was developed for continuous variables ob-
servables £ and p?, which obey an uncertainty relation
Aq(zB|p)Ag(pPlp) > 1, arising from the commutation
relation (in appropriate units) [#7,5%] = 2i. Substitut-
ing By = 28, By = p® and B = 2 in (38) we obtain the
EPR-Reid criterion (@),

Aime/'BAimpr > 1. (38)

This provides a formal proof of the incomplete conjec-
ture put forth in M], that the EPR-Reid criterion is a
special case of EPR-steering. It is a direct consequence of
the assumption of a LHS model; in particular this deriva-
tion does not require Reid’s extension of EPR’s necessary
condition for reality.

For angular momentum observables, obeying a commu-
tation relation [J7,.JP] = iJP (and its cyclical permu-
tations) the corresponding quantum uncertainty relation
is Ag(JZ|p)Aq(JE|p) = 51(JB),| (and permutations).
Substituting these in (B6l), with B; = J , By = JB and

Bz = JB, we obtain the criterion () rev1ewed in Sectlon

[TE:

Ame AmeB |<Jz >|inf7 (39)

l\D|P—‘
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and of course, its permutations. Violation of one of these
inequalities corresponds to a demonstration of the EPR-
Bohm paradox discussed in Sec. [TCl Bowen et al.’s [43)]
inequality ([I2)) is the special case in which Alice’s choice
of measurement used to infer [(JZ)|i,¢ is the identity.
We can see that it is a weaker criterion than the above
by noting that the convexity of the function f(z) = ||
implies |(JF)|ine = 3254 P(J(IF) ja| = [(JF)]. In-
equality (I2)) therefore will be violated only if ([B3]) also
is. In particular, (89) can detect EPR-steering for states
in which the expectation value of JZ is zero, such as the
symmetric state originally con51dered by Bohm IB] Ap-
plications of these criteria to specific classes of quantum
states will be given in Sec. [V

C. Additive convex criteria

We now present the derivation of the class of additive
convex criteria. Suppose one has an uncertainty relation
in the broadest sense — a general constraint which must
be obeyed by all quantum states of Bob’s subsystem —
of form

ng

where j indexes observables on Bob’s subsystem, (B;),
denotes the expectation value of observable b; on a quan-
tum state p, a; € R are parameters of the constraint
which can take any values in some set O,; (the signifi-
cance of which should be clear soon), and the functions f;
are convex on the interval containing the possible values
of the first argument (i.e., the possible expectation values
(Bj)p, which is the convex hull Heonvex{Os,} of the set
of possible outcomes of b;). This last requirement means
that for all =, y € Heonvex{Ds, }, for all z € O, and for
all p € 0,1],

filpz + (1 = p)y, —p)fily,2). (41)

Although the product uncertainty relations considered
in the previous section are not of form (0), since they
include terms like (B?)(B3), a large class of uncertainty
relations can be written in this form. The negative of the
variance of a variable B, that is, —A%B = (B)? —(B?), is
a sum of two convex functions f1((B)) + f2((B?)), [with
fi(z) = 2? and fa(x) = —z] and thus we can obtain
EPR-steering criteria from uncertainty relations that in-
volve sums of variances of observables. For example, the
relation A2B; 4+ A2B, > |(Bs)| [4€] can be rewritten as

|(Bs)| — (B}) + (Bs)” — (B}) + (Bs)* <0, (42)

which is of form ([@0), with 5 terms in the sum. All terms
are convex, since the coefficients of the square terms and
absolute-value terms are positive. Any term linear on the
expectation values (B;), is clearly also of that form. As

p7 ag <0, (40)

z) <pfjx,z) + (1



in the previous section, the assumption that the statis-
tics of Alice and Bob can be described by a LHS model
of form (28)) implies that the conditional probability of
outcome B given outcome A can be written as

P(B|A) =) P(MA)Py(B|N). (43)
A

The average of this conditional probability,(B) 4, can be
thus written as

(B)a=Y_ PM\A)B), (44)
A
and we remind the reader that (B)x =) 5 Po(B|\) B =

Tr{bpx}.
If fis a convex function, (44)) then implies, for all A,

f (Z P<A|A><B>A,A>

A
S PAA) f((B)x, A). (45)
A

f((B)a, A)

IN

Taking the average over A we obtain

> P(A) f((B)a, A) <> P(AN) f((B)x, A). (46)
A AN

We now introduce the subscripts j, sum both sides of (6]
over j and apply the quantum constraint (40) to obtain

> P(A) £ ((Bj)a,. Ay)
J,A;
<Y P(ALN D i (B Aj) 0. (47)
AJ'>>‘ J

Introducing the simplifying notation FEy,[f;] =
24, P(4) f; ((Bj)a,, A;) , we write the general EPR-
steering criterion

> Bijalfi] <0 (48)

A weaker version of the inequality (i.e., one that detects
steerability less efficiently) can be obtained by using the
following bound, which is a consequence of the convexity
of fj, when f; does not depend explicitly on A;:

fi((Bj)) < Eyjalfi]- (49)

One can therefore substitute Ep,[f;] by f;((B;)) for
some j in [A8)) and the inequality still holds.

1. Ezamples: criteria from inference variances

We will now give some examples of criteria that can be
obtained with the general form of ([@8]).We note, to make
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contact with the previous notation, that when the f;’s
involve variances, the corresponding expressions on the
left-hand side of ([@]) are just

D P(A) ((B)% — (B%)a) = —AhuB.  (50)
A

as defined on (23)). As before, the bound
A2:B>AZ. B (51)

inf min

can be used in the derivation of the inequalities.

We start considering arbitrary observables obeying
commutation relation [by,bs] = iBg, and use the uncer-
tainty relation A%(Bi|p) + A%(Ba|p) > |(Bs),|, which is
of form (0] as shown above. Expanding this in terms of
the f;’s, substituting on (48) and using (B0) and ([BI) we
obtain the EPR-steering inequality

A%Br + A B > |(Bs)int, (52)

inf

where as before |(B3)|int = >_ 4, P(A3)[(Bs),/, and the
bound |(B3)|int > [(B3)| can be used if needed.

For continuous variables observables [27,p®] = 2i,
([B2)) becomes inequality (0],
Aiznf‘,EB + Aiznpr > 27 (53)

and for angular momentum observables inequality (52)
reads

inf inf

A2 TP 4 A2 Jf > (T int- (54)

Inequality (B3) has been derived (within the EPR-Reid
formalism) in E] However, these inequalities are weaker
than the corresponding multiplicative variance criteria:
since for any pair of real numbers 22 +%% > 2zy, inequal-
ity B8) directly implies (52) and thus the latter can be
violated only if the former is.

Another special case of additive convex criterion has
been recently derived in [10]. Consider Schwinger spin
operators defined as

7P = (b +lhs),
7P = 5 (b6 —l5.),
7P = (B —5l5),
NB = (616++BT_B_), (55)

where by are boson operators for two field modes of Bob’s
subsystem, obeying commutation relations [Ei,éit] =1.
Similar operators are defined for Alice. The situation of
the EPR-Bohm setup is therefore extended with number
measurements. We now use the quantum uncertainty
relation [13]

1 1
A7)+ AP ()] |p)+A% (T ]p) = 7 A% (NP |p)+5(NP),,
(56)



and rewrite it in the form of @Q), —A%(JB|p) —
A2(JP|p) — A?(JB]p) + (NP),/2 < 0, dropping the pos-
itive but non-convex term A2N?5 /4. Substituting this in

@8), and using (B0) and (&), we obtain:
(NF)
5

In the angular momentum basis {|j,m)}, where j(j +
1) are the eigenvalues of J? = (jg + jlf + jzz) and
m are the eigenvalues of J., the operator N /2 corre-
sponds to the “total angular momentum” operator Jr =
225 J 2 2m 13, m)(G,m|, i.e., the operator which has a spec-
tral decomposition in terms of projectors onto each sub-
space of constant j, with corresponding eigenvalues j. 8
Any criteria in which (N?) occurs can therefore be mod-
ified by substituting (NB)/2 = (JZ). For a spin-j par-
ticle, this is just (JF) = j. With this substitution we
obtain inequality (I3]).

Using again the linear inferences Best(Ax) = —grAx +
(B + grAg) as discussed above Eq. (1), we can derive
directly from (57)), (53) and (B2)) the respective criteria

AlzanmB+A12an5+A12anzB >

(57)

B
N2(g T2+ TP+ A2 g, 4 TP g 00 02) > B

(58)
A?(ger® + 28) + A%(gpp? +pP) > 2, (59)

and
A%(g1As + Br) + A%*(ga Az + B2) > [(Bs)ing.  (60)

Again we should keep in mind that the corresponding op-
erators for Alice, and the values of g, are arbitrary, and
therefore should be chosen so as to optimize the violation
of the criteria. Inequality (59), which was introduced in
@], is the analogue for EPR-steering of the entanglement
criteria of Duan et al. [13] and Simon [14]. Note that the
bound is half that of those authors (making it harder to
violate), a consequence of the fact that EPR-steering is
a stronger form of nonlocality than entanglement. In-
equality (58] is the analogue of the separability criteria
of (author?) IE]

The inference variance criteria have an immediate in-
terpretation as a demonstration of the situation described
by EPR, as they are based on an apparent violation of
the uncertainty principle by inference of the variances
of the distant subsystem. However, in general any con-
straint that can be derived from the LHS model is an
EPR-steering criterion, and by the arguments of Sec-
tions [ and [II a demonstration of the EPR paradox.
We present below examples of such more general crite-
ria which can be derived as special cases of the additive
convex criterion (E8g]).

8 Note that the angular momentum-square operator J2 is not the
square of this operator. Although they have the same eigenvec-
tors, the eigenvalues of J2 are j(j + 1) and not 52.
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2. Ezamples: linear criteria

We first illustrate this approach by deriving a simple
criteria for the case of two qubits. We start with a quan-
tum constraint on expectation values of spin-1/2 observ-
ables:

adot e < % o1

This must be satisfied by any quantum state of a qubit:
%(Jm +Jy) = Jp is simply the observable corresponding
to the spin projection on a direction at ¢ = 45° between
x and y, and so for any quantum state p, (Jg), < %
Now it must then also be the case that, for a pair of
observables JZ, JB for Bob and JZ', Ji* for Alice, and
where «; € {—%, %} represent possible values for the out-

comes of observable J:,

az<Jf>p + O‘y<Jf>p < \/Tiv (62)
for all values of oy, . This is easy to see by not-
ing that the different values of (., o) lead to one of
F5(JP £ JP), and for each of these the argument of the
previous paragraph leads to (62)). This is of the form
T, and therefore, by substituting on (@8] and noting
that > , P(A) JA(JB) 4 = (JATP), it leads to the EPR-
steering criterion

(J2IBY + (I} TPy < g. (63)

Following a similar procedure, and using the quantum
constraint a,(JF), + oy (JF), > —¥2 which is valid
for the same reason as ([62), we can derive the inequality
(JATB)+(J3}ID) > —g. These two inequalities can be
summarised in the EPR-steering criterion

I3

[(JLATEY + (T I )| < (64)
A similar, more powerful inequality can be derived
from the analogous constraint on three observables
V3 V3
2 )

- 7 S am<<]m>p + O‘y<‘]y>p ta, <Jz>p S (65)

which follows, as (62), from the fact that J; = %(J; +

jy + jz) is another observable corresponding to a spin
projection. From (63) we can derive, following similar
steps as above, the EPR-steering criterion

V3
| < - (66)

(T2 T2) + (T )7 + (T T7)
We can now generalize this to an arbitrary to-

tal spin. For a spin-j particle, the quantum con-
straint | (J,), + oy (Jy), + a2 (J2),] < V352 holds.



To see this, note that J, = (azJ, + ayJ, +

aJ;)/ /i +ai + a2 is again a spin projection opera-

tor, and that , /a2 + a% +a2 < V/3j. Following the same

steps as for the derivation of (64) this leads to the EPR-
steering inequality

[(JAIZ) + (I D) + (JATE) < V332 (67)

3. Generalisation for positive operator valued measures
(POVMs)

In all of the above we have assumed that the mea-
surements on Bob’s system can be described by observ-
ables, with projection operators associated to eigenval-
ues. There is no loss of generality in this assumption if
we allow Bob’s system to be supplemented by an ancilla
system, uncorrelated with any other system M] How-
ever it is often convenient to consider generalized mea-
surements, described by a POVM, that is, a set of posi-
tive operators I, associated to measurement outcomes f,
which sum to unity. In terms of finding appropriate EPR-
steering criteria, the additive convex criteria are the ones
most naturally generalizable to this case. We replace the

[i((Bj), ;) in Eq. @D) by
FiCED = s ),

where for all j and p, F] >0, and for all j, 3° , Fj] = 1.

The convexity requirement in (B;), would be replaced
by a more general convexity requirement, that for all j
and «;, all p and p/, and 0 <p <1,

Fi{(FD = 1}y 05)

<pfi(FDp s 1} o) + (=) fi({FD)p = 1}, ),

(68)

where p”” = pp+ (1 — p)p’. The derivation of Eq. (@8]
then follows exactly as before.

V. APPLICATIONS TO CLASSES OF
QUANTUM STATES

We now apply the criteria derived in the previous sec-
tion to some classes of quantum states of experimental in-
terest. Violations of those inequalities amount to demon-
strations of the effect termed “steering” by Schrodinger
in his response to EPR, reviewed in Sec. [[Bl In the
continuous variables case, this provides a more modern
and unifying approach to the demonstration of the cor-
relations considered by EPR in their original example,
discussed in Sec. [[TAl In the discrete variables case this
represents a modern approach to the demonstration of
EPR-Bohm correlations discussed in Sec. [ICl We con-
sider each case in turn.

15
A. Continuous variables

We consider as a continuous variable example the case
of two-mode Gaussian states prepared by optical para-
metric amplifiers [50]. Such states include the original
EPR state as a special case with zero entropy and infi-
nite energy. We define #4 = a + a' and p* = —i(a — af)
as the position and momentum observables to be mea-
sured by Alice, where @ and a' are the annihilation and
creation operators for a bosonic field mode at Alice’s sub-
system. We define 22, pP analogously for Bob’s subsys-
tem in terms of the annihilation and creation operators
b and b! for his field mode. When the entanglement is
symmetric between the two modes the covariance ma-
trix describing such states has a particularly simple form.
The continuous variable entanglement properties of such
a state have recently been characterized experimentally
@] In this case the covariance matrix of the state W
has just two parameters, p and n:

v 0 6 0

o 0 0 —6
OMWE =V = 5 D g | (69)

0 =00 ~

where v = 1+ 27 and 6 = 2ny/n(1 4+ 7). Here 7 is the
mean photon number for each party, and p is a mixing
parameter defined such that the covariance matrix is lin-
ear in p and that 0 < p < 1, such that g = 0 corresponds
to an uncorrelated state and p = 1 corresponds to a pure
state [28]. Tt has been shown by Duan et al. [13] and Si-
mon |14] that if a quantum state such as W2 is separable
it must satisfy

A% (et —2P) + A% (p? +pP) > 4, (70)

It is straightforward to show that for states defined by
Eq. (69) this leads to the condition that
n
sy (71)
indicates entanglement. This condition is plotted in
Fig. Bl where states above the line are entangled.

As discussed in Sec. [[V] the generalization of Duan et
al. and Simon’s entanglement criterion to EPR-steering
is given by inequality (B9). For states of the form of
Eq. (69), the relevant criterion becomes, using the opti-
mal scale factors g, = —1 and g, =1,

A% (et —2P) + A% (p? +pP) > 2, (72)
For the two-mode symmetric states we find
A%(z? - 2B) = A2 (p? + pPB) = 2y — 2. (73)
Substituting into ({2) and rearranging we find that

1+4n
> _~tan (74)
4/n(1+n)
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Figure 2: (Color on-line.) Boundaries between different
classes of symmetric two-mode Gaussian states. The lower
line (green, dotted) is an entanglement boundary given by
Eq. (0): states above the line are entangled. The central
(blue, dashed) line is a steerability (lower) boundary based
on Eq. ({7 for the EPR paradox: states above this line are
steerable. The upper line (red, full) is a second steerability
(lower) boundary based on a generalisation of the entangle-
ment criterion of Duan et al. [13] and Simon [14]: states
above this line are steerable.

indicates EPR-steering. This condition is plotted in
Fig. @ where states above the line are steerable. For
this particular state the additive convex criterion (72)
and the corresponding multiplicative criterion

A?(z? — 2B)A? (p? +pP) > 1, (75)

derived from (37), give the same results, since both vari-
ances are identical in this case.

For comparison, recall the EPR-Reid criterion, (38,
which tells us that the violation of

AP Apsp® > 1 (76)

indicates EPR-steering. Evaluating the left hand side
of (76l for two-mode symmetric Gaussian states, using
the optimal inference variances Aminz? as defined in Eq.
E4)), we thus obtain

1+2n

SR VT ey

(77)

as a condition indicating the demonstration of EPR-
steering. Also in this case inequality (@) detects EPR-
steering just as well as the analogous additive criterion
(E3), since both inference variances for 22 and p” have
the same value. In Fig. 2 we see that (Z6) provides a
lower bound on steerability than that provided by (72)
(although for 7 > 1 the two bounds become arbitrar-
ily close). This is not surprising when one remembers,
as discussed in Sec. [V Bl that the optimal conditional
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variances ({0) are lower bounds for the linear-estimate
inference of the form A?(g,z* + xP). In other words,
as pointed out in Sec. [[V] the EPR criterion is a more
sensitive witness to EPR-steering than inequality (72),
derived as the steerability generalisation of the entangle-
ment criterion of Duan et al. and Simon.

B. Discrete variables

To illustrate the use of EPR-steering criteria in the dis-
crete variable case we will make use of the Werner states
m] For the case of a two-dimensional subsystems, these
are a natural mixed-state generalization of the singlet
state considered by Bohm, and can be written as follows

I
pw = pls)(s| + (1 - M)Za (78)
where |[¢g) = %(|%>| —3)—|—=3)|3)), Lis the identity

over both subsystems, and p is a mixing parameter that
can take values ¢ < 1, with 4 = 0 again corresponding
to a product state [11].

It was shown in Ref. M] that the Werner state is steer-
able in theory with an infinite number of measurements
whenever p > 1/2. In order to demonstrate EPR-steering
in a realistic experimental setup it is sufficient to instead
test a suitable EPR-steering criterion.

We will first evaluate the criterion given by inequality
[9). Calculation shows that for the Werner state (Z8),

inf

1
AR TS = ne — 1)

and

el

5"

The Werner state is rotationally symmetric, and thus
AingJB = Aianf = A?anf. We therefore find that
inequality ([B9) will be violated (demonstrating EPR-
steering) for u > (v/5 — 1)/2 ~ 0.62. This inequality
cannot therefore detect all steerable states.

For inequality (57) we make the substitution (as ex-
plained below Eq. 7)) (NP)/2 = j = 1/2, and with
the values for AZ . JB a simple calculation reveals viola-
tion whenever p > 1/4/3 ~ 0.58, This inequality, more
symmetric between the different measurements, thus de-
tects more steerable states (within the class of Werner
states) than the less symmetric (39).

We now proceed to evaluating the linear inequalities
(©4) and (66). The expectation value of the products
of observables required for those inequalities, given the
Werner state, is

(T2 lint =

A 7B K
(J7J7) = R
where again by symmetry those expectation values are
the same for all ¢ € {z,y,z}. Substituting in (64) we



obtain a violation for u > 1/v/2 =~ 0.71 and in (B0),
violation for > 1/4/3 ~ 0.58. The first inequality, with
only two measurements per site, performs worse (detects
less steerable Werner states) than (39), but the second,
with three measurements, detects a larger range. Note
that the range of states for which violation is predicted
using (B7) is the same as that detected with (66). The
latter, however, offers the advantage of being simpler to
measure and calculate.

VI. CONCLUSION

We have developed a general theory of EPR-steering
criteria. These criteria are the experimental conse-
quences of a LHS model for one party (Bob), just as Bell
inequalities are the experimental consequence of a LHV
model and entanglement criteria are consequences of a
quantum separable model. The essential ingredients in
the derivation of the criteria are the convexity of the set
of correlations that allow a LHS model and (generalized)
uncertainty relations which define bounds on how Bob’s
outcomes can be described by quantum states.
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Analysing the different forms of nonlocality, we see
that they differ only in how they treat the states of Al-
ice and/or Bob, but they are all convex combinations
of separable probability distributions. Some of the cri-
teria derived here were therefore similar to known en-
tanglement criteria, but with a more restrictive bound
due to the fact that Alice’s subsystem is treated as an
arbitrary hidden-variable state. However others, in par-
ticular the linear EPR-steering criteria, are entirely new.
These criteria open the possibility to new experimental
demonstrations of the EPR-steering phenomenon, with
close links to topics in quantum information including
entanglement witnesses and quantum cryptography.
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