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We formally link the 
on
ept of steering (a 
on
ept 
reated by S
hrödinger but only re
ently

formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett. 98, 140402 (2007)℄ and the 
riteria

for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introdu
ed by Reid [Phys. Rev.

A, 40, 913 (1989)℄. We develop a general theory of experimental EPR-steering 
riteria, derive a

number of 
riteria appli
able to dis
rete as well as 
ontinuous-variables observables, and study their

e�
a
y in dete
ting that form of nonlo
ality in some 
lasses of quantum states. We show that

previous versions of EPR-type 
riteria 
an be rederived within this formalism, thus unifying these

e�orts from a modern quantum-information perspe
tive and 
larifying their 
on
eptual and formal

origin. The theory follows in 
lose analogy with 
riteria for other forms of quantum nonlo
ality

(Bell-nonlo
ality and entanglement), and be
ause it is a hybrid of those two, it may lead to insights

into the relationship between the di�erent forms of nonlo
ality and the 
riteria that are able to

dete
t them.

I. INTRODUCTION

In their seminal 1935 paper [1℄, Einstein, Podolsky and

Rosen (EPR) presented an argument whi
h demonstrates

the in
ompatibility between the 
on
epts of lo
al 
ausal-

ity

1

and the 
ompleteness of quantum me
hani
s. Apart

from the foundational importan
e of that work, it had

long-rea
hing 
onsequen
es [5℄: it was the �rst time that

physi
ists 
learly noti
ed the strange phenomena asso
i-

ated with entanglement � the resour
e at the basis of

modern quantum information s
ien
e.

The situation depi
ted by EPR is often referred to as

the �EPR paradox�. The authors themselves did not in-

tend to point out a true paradox; instead they argued

that quantum me
hani
s was an in
omplete theory, that

is, that it did not give a 
omplete des
ription of reality.

S
hrödinger [6℄ seems to have been the �rst to name the

situation a `paradox', as he 
ould not believe with EPR

that quantum me
hani
s was indeed in
omplete but nei-

ther 
ould he see a �aw in the argument. In hindsight,

we now know (sin
e Bell [7℄) that, while the argument is

sound, one of the premises � lo
al 
ausality � is false.

However, we will retain the histori
ally prevalent term

`paradox', if only be
ause we still do not have a fully sat-

isfa
tory understanding of the nature of quantum nonlo-


ality.

The original EPR paradox involved an example of an

idealized bipartite entangled state of 
ontinuous variables

measured at the two subsystems. Later, Bohm [8℄ ex-

tended the EPR paradox to a s
enario involving dis
rete

(spin) observables. The essen
e of both of these argu-

1

This is Bell's terminology [2℄. It is also 
ommonly 
alled lo
al

realism [3℄, whi
h is arguably 
loser to EPR's terminology. See

however Ref. [4℄ for a dis
ussion of Einstein's later writings on

lo
ality and realism.

ments involved perfe
t 
orrelations, and therefore neither

the original EPR paradox nor Bohm's version 
ould be

dire
tly tested in the laboratory without additional as-

sumptions. Criteria for the experimental demonstration

of the EPR paradox, whi
h 
an be used in situations with

non-ideal states, have been derived for the 
ontinuous-

variables s
enario by Reid in 1989 [3℄ and more re
ently

for dis
rete systems by Caval
anti and Reid [9℄ and Cav-

al
anti et al. [10℄.

In another re
ent development, Wiseman, Jones and

Doherty [11℄ have introdu
ed a new 
lassi�
ation of quan-

tum nonlo
ality, a formalisation of the 
on
ept of steering

introdu
ed by S
hrödinger in 1935 [12℄ in a response to

the EPR paper. In that Letter, the authors 
laimed that

any demonstration of the EPR paradox, as proposed by

Reid, is also a demonstration of steering. While that


laim was essentially 
orre
t, the proof proposed there

was in
omplete, as we will see later in this paper. We will

provide the missing proof and further show that the 
on-

verse is also true: any demonstration of steering is also

a demonstration of the EPR paradox. In other words,

the EPR paradox and steering are equivalent notions of

nonlo
ality.

In Ref. [11℄ Wiseman, Jones and Doherty showed that

EPR-steering 
onstitutes a di�erent 
lass of nonlo
al-

ity intermediate between the 
lasses of quantum non-

separability and Bell-nonlo
ality, with the distin
tion be-

tween these being explainable as a matter of trust be-

tween di�erent parties. Therefore, besides its founda-

tional interest, this 
lassi�
ation 
ould prove important

in the 
ontext of quantum 
ommuni
ation and informa-

tion. It would be thus desirable to devise 
riteria to de-

termine to whi
h 
lasses a given state (or a set of observed


orrelations) belongs. For that purpose we will formulate

and develop the theory of EPR-steering 
riteria, de�ned

as any 
riteria whi
h are su�
ient to demonstrate EPR-

steering experimentally. The theory will pro
eed in 
lose

analogy to the theories of entanglement 
riteria [13, 14,

http://arxiv.org/abs/0907.1109v2


2

15, 16℄ and of Bell inequalities (or Bell-nonlo
ality 
rite-

ria) [7, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27℄.

The stru
ture of the paper is as follows: In Se
. II we

will review some of the history and 
on
epts surrounding

the EPR paradox and steering. The main purposes of this

se
tion are to review the 
on
eptual motivation for the

new formulation and to put the steering 
riteria proposed

here in 
ontext with the relevant literature. In Se
. III

we will review the three 
lasses of nonlo
ality, in
luding

Wiseman and 
oworkers' [11℄ steering, and argue in more

detail than in previous papers [28℄ as to why it provides

the 
orre
t formalization of S
hrödinger's 
on
ept. In

Se
. IV we will introdu
e the formalism for derivation

of general EPR-steering 
riteria. We develop two broad


lasses of EPR-steering 
riteria: the multipli
ative vari-

an
e 
riteria, and the additive 
onvex 
riteria (whi
h in-


ludes linear EPR-steering inequalities as a spe
ial 
ase).

We show how the 
riteria in the existing literature 
an

be rederived as spe
ial 
ases within this modern unifying

approa
h. In Se
. V we will apply the 
riteria derived

in Se
. IV to some 
lasses of quantum states, 
omparing

their e�e
tiveness in experimentally demonstrating EPR-

steering. We 
onsider both 
ontinuous variables (as in

the original EPR paradox) and spin-half systems (as in

Bohm's version).

II. HISTORY AND CONCEPTS

A. The Einstein-Podolsky-Rosen argument

The EPR argument has been exhaustively 
ommented

in the literature. However, sin
e in this paper we will

dis
uss a new mathemati
al formulation of it, it will be

important to review it in detail.

The essen
e of Einstein and 
oworkers' [1℄ 1935 argu-

ment is a demonstration of the in
ompatibility between

the premises of lo
al 
ausality and the 
ompleteness of

quantum me
hani
s. EPR started the paper by mak-

ing a distin
tion between reality and the 
on
epts of a

theory, followed by a 
ritique of the operationalist po-

sition, 
learly aimed at the views advo
ated by Bohr,

Heisenberg and the other proponents of the Copenhagen

interpretation.

�Any serious 
onsideration of a physi
al the-

ory must take into a

ount the distin
tion be-

tween the obje
tive reality, whi
h is indepen-

dent of any theory, and the physi
al 
on
epts

with whi
h the theory operates. These 
on-


epts are intended to 
orrespond with the ob-

je
tive reality, and by means of these 
on
epts

we pi
ture this reality to ourselves.

In attempting to judge the su

ess of a phys-

i
al theory, we may ask ourselves two ques-

tions: (1) `Is the theory 
orre
t?' and (2)

`Is the des
ription given by the theory 
om-

plete?' It is only in the 
ase in whi
h positive

answers may be given to both of these ques-

tions, that the 
on
epts of the theory may be

said to be satisfa
tory.� [1℄

Any theory will have some 
on
epts whi
h will be used

to aid in the des
ription and predi
tion of the phenom-

ena whi
h are their subje
t matter. In quantum theory,

S
hrödinger introdu
ed the 
on
ept of the wave fun
tion

and Heisenberg des
ribed the same phenomena with the

more abstra
t matrix me
hani
s. EPR argued that we

must distinguish those 
on
epts from the reality they at-

tempt to des
ribe. One 
an see the physi
al 
on
epts of

the theory as mere 
al
ulational tools if one wishes, but

it was those authors' opinion that one must be 
areful

to avoid falling ba
k into a pure operationalist position;

the theory must strive to furnish a 
omplete pi
ture of

reality.

EPR follow the previous 
onsiderations with a ne
es-

sary 
ondition for 
ompleteness:

EPR's ne
essary 
ondition for 
om-

pleteness: �Whatever the meaning assigned

to the term 
omplete, the following require-

ment for a 
omplete theory seems to be a

ne
essary one: every element of the physi
al

reality must have a 
ounterpart in the physi
al

theory.� [1℄

Soon afterward they note that this 
ondition only makes

sense if one is able to de
ide what are the elements of

the physi
al reality. They did not attempt to de�ne `el-

ement of physi
al reality', saying �The elements of the

physi
al reality 
annot be determined by a priori philo-

sophi
al 
onsiderations, but must be found by an appeal

to results of experiments and measurements. A 
ompre-

hensive de�nition of reality is, however, unne
essary for

our purpose�. Instead they provide a su�
ient 
ondition:

EPR's su�
ient 
ondition for reality:

We shall be satis�ed with the following 
ri-

terion, whi
h we regard as reasonable. If,

without in any way disturbing a system, we


an predi
t with 
ertainty (i.e., with proba-

bility equal to unity) the value of a physi-


al quantity, then there exists an element of

physi
al reality 
orresponding to this physi
al

quantity.� [1℄

Later in the same paragraph it is made expli
it that this


riterion is �regarded not as a ne
essary, but merely as

a su�
ient, 
ondition of reality�. This is followed by a

dis
ussion to the e�e
t that, in quantum me
hani
s, if a

system is in an eigenstate of an operator A with eigen-

value a, by this 
riterion, there must be an element of

physi
al reality 
orresponding to the physi
al quantity

A. �On the other hand�, they 
ontinue, if the state of the

system is a superposition of eigenstates of A, �we 
an no

longer speak of the physi
al quantity A having a parti
-

ular value�. After a few more 
onsiderations, they state

that �the usual 
on
lusion from this in quantum me
han-

i
s is that when the momentum of a parti
le is known, its
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oordinate has no physi
al reality�. We are left therefore,

a

ording to EPR, with two alternatives:

EPR's dilemma: �From this follows that

either (1) the quantum-me
hani
al des
rip-

tion of reality given by the wave fun
tion is

not 
omplete or (2) when the operators 
or-

responding to two physi
al quantities do not


ommute the two quantities 
annot have si-

multaneous reality.� [1℄

They justify this by reasoning that �if both of them had

simultaneous reality � and thus de�nite values � these

values would enter into the 
omplete des
ription, a

ord-

ing to the 
ondition for 
ompleteness�. And in the 
ru
ial

step of the reasoning: �If then the wave fun
tion provided

su
h a 
omplete des
ription of reality it would 
ontain

these values; these would then be predi
table [our em-

phasis℄. This not being the 
ase, we are left with the al-

ternatives stated�. Brassard and Méthot [29℄ (
orre
tly)

pointed out that stri
tly speaking EPR should 
on
lude

that (1) or (2), instead of either (1) or (2), sin
e they


ould not ex
lude the possibility that (1) and (2) 
ould

be both 
orre
t. However, this does not a�e
t EPR's


on
lusion. It was enough for them to show that (1) and

(2) 
ould not both be wrong, and therefore if one 
an

�nd a reason for (2) to be false, (1) must be true

2

.

The next se
tion in EPR's paper intends to �nd a rea-

son for (2) to be false, that is, to �nd a 
ir
umstan
e in

whi
h one 
an say that there are simultaneous elements of

reality asso
iated to two non-
ommuting operators. They


onsider a 
omposite system 
omposed of two spatially

separated subsystems SA and SB whi
h is prepared, by

way of a suitable initial intera
tion, in an entangled state

of the type

|Ψ〉 =
∑

n

cn|ψn〉A ⊗ |un〉B, (1)

where the |ψn〉A denote a basis of eigenstates of an opera-

tor, say Ô1, of subsystem SA and |un〉B denote some (nor-

malised but not ne
essarily orthogonal) states of SB. If

one measures the quantity Ô1 at SA, and obtains an out-


ome 
orresponding to eigenstate |ψk〉A the global state

is redu
ed to |ψk〉A ⊗ |uk〉B. If, on the other hand, one

2

Brassard and Méthot's further 
on
lusion that the EPR argu-

ment is logi
ally unsound is not based on this mistake, whi
h they

a
knowledge as irrelevant. Their 
on
lusion is, in the present

authors' opinion, based on a misinterpretation of EPR's paper.

They read the quote �In quantum me
hani
s it is usually assumed

that the wave fun
tion does 
ontain a 
omplete des
ription of the

physi
al reality [...℄. We shall show however, that this assump-

tion, together with the 
riterion of reality given above, leads to

a 
ontradi
tion�, as stating that ¬(1) ∧ (2) → false. If that was

the 
orre
t formalisation of the argument we would agree with

their 
on
lusion. However, by �
riterion of reality given above�

EPR 
learly mean their "su�
ient 
ondition for reality", not

statement (2).


hooses to measure a non-
ommuting observable Ô2, with

eigenstates |φs〉A, one should instead use the expansion

|Ψ〉 =
∑

s

c′s|φs〉A ⊗ |vs〉B, (2)

where |vs〉B represent, in general, another set of states of

SB. Now if the out
ome of this measurement is, say, the

one 
orresponding to |φr〉A, the global state is thereby

redu
ed to |φr〉A ⊗ |vr〉B. Therefore, �as a 
onsequen
e

of two di�erent measurements performed upon the �rst

system, the se
ond system may be left in states with two

di�erent wave fun
tions�. This is just what S
hrödinger

later termed steering, and we will return to that later.

Now enters the 
ru
ial assumption of lo
ality, justi�ed

by the fa
t that the systems are spatially separated and

thus no longer intera
ting.

EPR's ne
essary 
ondition for lo
ality:

�No real 
hange 
an take pla
e in the se
ond

system in 
onsequen
e of anything that may

be done to the �rst system.� [1℄

Einstein et al. never expli
itly used the term `lo
ality',

but took this assumption for granted. Be
ause of this

we 
all this a �ne
essary 
ondition for lo
ality�, as this

is the most 
onservative reading of EPR's reasoning: if

they had expli
itly de�ned some assumption of lo
ality,

this would 
ertainly be an impli
ation of it, but there is

no reason (and no need) to take it as a de�nition.

�Thus�, 
on
lude EPR, �it is possible to assign two dif-

ferent wave fun
tions to the same reality�. EPR 
ould

have now simply 
on
luded by noting that two di�er-

ent (pure) states 
an in general assign unit probability

(and thus an element of reality, a

ording to the lo
al-

ity assumption and the su�
ient 
ondition for reality)

to ea
h of two non-
ommuting quantities, in 
ontradi
-

tion of statement (2); this would imply, by way of EPR's

dilemma, that quantum me
hani
s is in
omplete. In-

stead, they 
onsider a spe
i�
 example, depi
ted in Fig. 1,

where those di�erent wave fun
tions are respe
tive eigen-

states of position and momentum. Be
ause they are


anoni
ally 
onjugate, this guarantees that |un〉 is dif-

ferent from |vs〉 for every possible out
ome n or s. The

paradox is thus guaranteed to be realised � one 
annot

attempt to hide behind statisti
s. If the initial state was

of type

Ψ(xA, xB) =

∫ ∞

−∞
eixAp/~e−ixBp/~dp, (3)

then if one measures momentum p̂A at SA and �nds out-


ome p, the redu
ed state of subsystem SB will be the

one asso
iated with out
ome −p of p̂B. On the other

hand, if one measures position x̂A and �nds out
ome x,
the redu
ed state of SB will be the one 
orresponding to

out
ome x of x̂B . By measuring position or momentum

at SA, one 
an predi
t with 
ertainty the out
ome of the

same measurement on SB. But p̂
B
and x̂B 
orrespond to

non-
ommuting operators. EPR 
on
lude from this that
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Alice Bob

XA , PA XB , PB

Figure 1: The EPR s
enario. Ali
e and Bob are two spatially

separated observers who 
an perform one of two (position or

momentum) measurements available to ea
h of them.

�In a

ordan
e with our 
riterion of reality,

in the �rst 
ase we must 
onsider the quan-

tity [p̂B℄ as being an element of reality, in the

se
ond 
ase the quantity [x̂B ℄ is an element

of reality. But, as we have seen, both wave

fun
tions [
orresponding to −p and x℄ belong
to the same reality.� [1℄

In other words, by using the su�
ient 
ondition for re-

ality, the ne
essary 
ondition for lo
ality and the predi
-

tions for the entangled state under 
onsideration, EPR


on
lude that there must be elements of reality asso
i-

ated to a pair of non-
ommuting operators. So horn (2)

of EPR's dilemma is 
losed, leaving as the only alter-

native option (1), namely, that the quantum me
hani
al

des
ription of physi
al reality is in
omplete.

In more modern terminology, the 
on
lusion of EPR

was to infer the existen
e of a set of lo
al hidden vari-

ables (LHVs) underlying quantum systems whi
h should

be able to reprodu
e the statisti
s. It is trivial to repro-

du
e the statisti
s of EPR's example with LHVs, even

though that is not possible with some entangled states,

as later proved by Bell [7℄. S
hrödinger arrived at a dif-

ferent 
on
lusion from an analysis of the paradox raised

by EPR, as we will see in the next se
tion.

In hindsight, as we now know that the premise of lo-


ality is not justi�ed, we 
an read EPR's argument as

demonstrating the in
ompatibility between the premises

of lo
ality, the 
ompleteness of quantum me
hani
s and

some of its predi
tions.

B. S
hrödinger's response: The 
on
ept of steering

EPR's argument prompted an interesting response

from S
hrödinger [6, 12℄. He also 
onsidered nonfa
tor-

izable pure states des
ribable by the wave fun
tion given

by Eq. (1). S
hrödinger, however, had of 
ourse devel-

oped the wave fun
tion for atoms and believed that it

gave a 
omplete des
ription of a quantum system. So

while he was not prepared to a

ept EPR's 
on
lusion

that quantum me
hani
s was in
omplete, neither 
ould

he see a �aw with their argument. For this reason he

termed the situation des
ribed by EPR a paradox.

Clearly S
hrödinger was also interested in impli
ations

arising from 
omposite quantum systems des
ribed by

nonfa
torizable pure states. He des
ribed this situation,


oining a famous term, as follows: �If two separated bod-

ies, ea
h by itself known maximally, enter a situation

in whi
h they in�uen
e ea
h other, and separate again,

then there o

urs regularly ... [an℄ entanglement of our

knowledge of the two bodies.� [6℄

Having de�ned entanglement, S
hrödinger then de-

�ned the pro
ess of disentanglement whi
h o

urs when

a non-degenerate observable is measured on one body:

�After establishing one representative by observation, the

other one 
an be inferred simultaneously ... this pro
e-

dure will be 
alled the disentanglement�. This leads us

dire
tly to the EPR paradox, as S
hrödinger des
ribes

it:

�[EPR 
alled attention℄ to the obvious but

very dis
on
erting fa
t that even though we

restri
t the disentangling measurements to

one system, the representative obtained for

the other system is by no means independent

of the parti
ular 
hoi
e of observations whi
h

we sele
t for that purpose and whi
h by the

way are entirely arbitrary.� [6℄

S
hrödinger des
ribes this ability to a�e
t the state of

the remote subsystem as steering :

�It is rather dis
omforting that the theory

should allow a system to be steered or piloted

into one or the other type of state at the ex-

perimenter's mer
y in spite of his having no

a

ess to it.� [6℄

EPR's example 
on
erning position and momentum was

re
ast in the 
ontext of steering as

�Sin
e I 
an predi
t either x1 or p1 without in-
terfering with system No. 1 and sin
e system

No. 1, like a s
holar in examination, 
annot

possibly know whi
h of the two questions I

am going to ask it �rst: it so seems that our

s
holar is prepared to give the right answer

to the �rst question he is asked anyhow. He

must know both answers; whi
h is an amaz-

ing knowledge.� [6℄

The remainder of S
hrödinger's paper is a generalisation

of steering to more than two measurements:

�[System No. 1℄ does not only know these two

answers but a vast number of others, and that

with no mnemote
hni
al help whatsoever, at

least none that we know of.� [6℄

By �mnemote
hni
al help� S
hrödinger presumably

means a 
heat-sheet (to use his s
holar analogy). That

is, a set of lo
al hidden variables (LHVs) that determine

the measurement results. Thus, unlike EPR, S
hrödinger

expli
itly reje
ted LHVs as an explanation of steering.

Perhaps be
ause he had performed expli
it 
al
ulations

generalizing EPR's example (whi
h 
an be explained

trivially using LHVs), he re
ognized steering as �a ne
-

essary and indispensable feature� [30℄ of quantum me-


hani
s. We now know, thanks to Bell's theorem, that
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S
hrödinger's intuition was 
orre
t: there is no possi-

ble lo
al hidden variable model (or lo
al mnemote
hni
al

help) to explain the 
orrelations between measurement

out
omes for 
ertain entangled states [31℄.

Like EPR, S
hrödinger was troubled by the impli
a-

tions of steerability of entangled states for quantum the-

ory. Unlike EPR, however, he saw the resolution of the

paradox lying in the in
orre
tness of the predi
tions of

quantum me
hani
s. That is, he was �not satis�ed about

there being su�
ient experimental eviden
e for � steering

in nature [30℄. This raises the obvious question: what

eviden
e would have 
onvin
ed S
hrödinger? The pure

entangled states he dis
ussed are an idealization, so we


annot expe
t ever to observe pre
isely the phenomenon

he introdu
ed. On the other hand, S
hrödinger was quite

expli
it that a separable but 
lassi
ally 
orrelated state

whi
h allows �determining the state of the �rst system by

suitable measurement of the se
ond or vi
e versa� [30℄


ould never exhibit steering. For this situation, he says

that �it would utterly eliminate the experimenter's in�u-

en
e on the state of that system whi
h he does not tou
h.�

[30℄. Thus it is apparent that by steering S
hrödinger

meant something that 
ould not be explained by Ali
e

simply �nding out whi
h state Bob's system is in, out of

some prede�ned ensemble of states. Following this rea-

soning leads to the general de�nition of steering as pre-

sented in Ref. [11℄. We return to this 
on
ept in Se
. III.

C. Bohm's version

Although making referen
e to a general entangled

state, the original EPR argument used the spe
i�
 
ase of

a 
ontinuous-variable state for its �nal (and 
ru
ial) part.

In his 1951 textbook [8℄, Bohm presented a dis
ussion of

the EPR paradox in a modi�ed s
enario involving two en-

tangled spin-1/2 parti
les. Although trivial in hindsight,

this extension had a fundamental importan
e. It was the

s
enario used by Bell in the proof of his now famous the-

orem [7℄ and for most of the subsequent dis
ussions of

Bell inequalities (a Bell-type inequality dire
tly appli
a-

ble to 
ontinuous-variables has only re
ently been derived

[27℄), and was instrumental for our present understand-

ing of entanglement, and parti
ularly for its appli
ations

in quantum information pro
essing.

In Bohm's version the system of interest is a mole
ule


ontaining two spin-1/2 atoms in a singlet state, in whi
h

the total spin is zero:

|Ψs〉 = |z+〉A ⊗ |z−〉B − |z−〉A ⊗ |z+〉B. (4)

Here |z±〉 represent the ±1/2 eigenstate of the spin pro-

je
tion operator along the z dire
tion, Sz. Compare this

state with Eq. (1) used in the EPR argument. If Sz is

measured on system A, and the out
ome 
orresponding

to |z+〉A (or |z−〉A) is obtained, the state of subsystem B

is proje
ted into |z−〉B (or |z+〉B). Thus, one predi
ts an
element of reality for the z 
omponent of the spin of the

se
ond atom. But the same state 
an be written, in the

basis of eigenstates of another spin proje
tion, say Sx,

|Ψs〉 = |x+〉A ⊗ |x−〉B − |x−〉A ⊗ |x+〉B . (5)

Similarly, the x 
omponent of the spin of the �rst atom


ould be measured instead, allowing inferen
e of an ele-

ment of reality asso
iated with the x 
omponent of spin

for the se
ond atom. With this mapping, the rest of the

argument follows in analogy with EPR's.

Bohm's version of the EPR paradox is 
on
eptually

appealing, but (in his 1951 textbook at least) he did

not present it as an argument for the in
ompleteness of

quantum theory (as did EPR). Instead, he used it to

argue that a 
omplete des
ription of nature need not


ontain a one-to-one 
orresponden
e between elements

of reality and the mathemati
al des
ription provided by

the theory. Bohm defended, in 1951, the interpretation

that the quantum state represents only �potentialities� of

measurement results, whi
h a
tually o

ur only when a

system intera
ts with an appropriate apparatus. It is 
u-

rious to �nd that already in 1952 Bohm must have found

this interpretation wanting, sin
e he then developed his

famous non-lo
al hidden-variable interpretation of quan-

tum me
hani
s [32, 33℄, where there is su
h a one-to-one


orresponden
e.

As the original 
ontinuous-variable example remained

unrealizable for de
ades, several early experiments fol-

lowed Bohm's proposal, su
h as Bleuler and Bradt (1948)

[34℄, Wu and Shaknov (1950) [35℄ and Ko
her and Com-

mins (1967) [36℄. All of these su�ered from low dete
tion

e�
ien
ies and had no 
on
ern with 
ausal separation,

however, making their interpretation debatable.

D. The EPR-Reid 
riterion

While the EPR argument was logi
ally sound, one


ould blo
k its 
on
lusion by reje
ting those statisti
al

predi
tions required to formulate it. As we have dis-


ussed in Se
. II B, S
hrödinger seems to have found this

an appealing solution. This move is parti
ularly easy to

make sin
e the ne
essary predi
tions are of perfe
t 
or-

relations, unobtainable in pra
ti
e due to unavoidable

ine�
ien
y in preparation and dete
tion of real physi-


al systems. This problem was 
onsidered by Furry al-

ready in 1936 [37℄ but experimentally useful 
riteria for

the EPR paradox were only proposed in 1989 by Reid

[3℄, whi
h we will dis
uss in detail later in this se
tion.

The notation and terminology will 
losely follow that of

a re
ent review on the EPR paradox [38℄. The essential

di�eren
e in the derivation of the EPR-Reid 
riteria and

the original EPR argument is in a modi�
ation of the

su�
ient 
ondition for reality

3

. This 
ould be stated as

3

Reid's original paper did not expli
itly in
lude this assumption,

whi
h was impli
it in the logi
.
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the following:

Reid's extension of EPR's su�
ient


ondition of reality: If, without in any

way disturbing a system, we 
an predi
t

with some spe
i�ed un
ertainty the value of a

physi
al quantity, then there exists a sto
has-

ti
 element of physi
al reality whi
h deter-

mines this physi
al quantity with at most

that spe
i�
 un
ertainty.

The s
enario 
onsidered is the same as the one for the

EPR paradox above, as depi
ted in Fig. 1, but one does

not need a state whi
h predi
ts the perfe
t 
orrelations


onsidered by EPR. Instead, the two experimenters, Al-

i
e and Bob, 
an measure the 
onditional probabilities of

Bob �nding out
ome xB in a measurement of x̂B given

that Ali
e �nds out
ome xA in a measurement of x̂A, i.e.,
P (xB |xA). Similarly they 
an measure the 
onditional

probabilities P (pB|pA) and the un
onditional probabili-

ties P (xA), P (pA). We denote by∆2(xB |xA), ∆2(pB|pA)
the varian
es of the 
onditional distributions P (xB|xA),
P (pB|pA), respe
tively. Based on a result xA, Ali
e 
an
make an estimate of the result for Bob's out
ome xB . De-
note this estimate xestB (xA). The average inferen
e vari-

an
e of xB given estimate xestB (xA) is de�ned as

∆2
infxB ≡ 〈(xB − xestB (xA))

2〉

=

∫

dxAdxBP (xA, xB)(x− xestB (xA))
2. (6)

Note that this average inferen
e varian
e is minimized

when the estimate is just the expe
tation value of xB
given xA, i.e., the mean of the distribution P (xB|xA) [38℄.
Therefore the optimal (or minimum) inferen
e varian
e

of xB (pB) given a measurement x̂A (p̂A) is given by

∆2
minxB = minxest

B
{∆2

infxB}

=

∫

dxAdxBP (xA)∆
2(xB |xA); (7)

∆2
minpB = minpest

B
{∆2

infpB}

=

∫

dpAdpBP (pA)∆
2(pB|pA). (8)

Reid showed, by use of the su�
ient 
ondition of reality

above, that sin
e Ali
e 
an, by measuring either posi-

tion x̂A or momentum p̂B, infer with some un
ertainty

∆infxB =
√

∆2
inf
xB or ∆infpB =

√

∆2
inf
pB the out
omes

of the 
orresponding experiments performed by Bob, and

sin
e by the lo
ality 
ondition of EPR her 
hoi
e 
annot

a�e
t the elements of reality of Bob, then there must be

simultaneous sto
hasti
 elements of reality whi
h deter-

mine x̂B and p̂B with at most those un
ertainties. Now

by Heisenberg's Un
ertainty Prin
iple (HUP), quantum

me
hani
s imposes a limit to the pre
ision with whi
h

one 
an assign values to observables 
orresponding to

non-
ommuting operators su
h as x̂ and p̂. In appropri-

ately res
aled units the relevant HUP reads ∆x∆p ≥ 1.

Therefore, if quantum me
hani
s is 
omplete and the lo-


ality 
ondition holds, by use of the extended su�
ient


ondition of reality and EPR's ne
essary 
ondition for


ompleteness, the limit with whi
h one 
ould determine

the average inferen
e varian
es above is

∆infxB∆infpB ≥ 1. (9)

This is the EPR-Reid 
riterion. Violation of that 
rite-

rion signi�es the EPR paradox, and has been experimen-

tally demonstrated in 
ontinuous-variables quantum op-

ti
s experiments with quadratures [39, 40, 41, 42, 43℄ and

a
tual position-momentum measurements [44℄. While

these were performed with high dete
tion e�
ien
y, none

of these experimental demonstrations have been able

to a
hieve 
ausal separation between the measurements.

For a detailed review see [38℄.

E. Re
ent developments

Caval
anti and Reid [9℄ re
ently showed that a larger


lass of quantum un
ertainty relations 
an be used to de-

rive EPR inequalities. For example, from the un
ertainty

relation ∆2x +∆2p ≥ 2, whi
h follows from ∆x∆p ≥ 1,
one 
an derive, in analogy with the previous se
tion, the

EPR 
riterion

∆2
infxB +∆2

infpB ≥ 2. (10)

Using instead the spin un
ertainty relation ∆Jx∆Jy ≥
1

2
|〈Jz〉|, one 
an obtain the EPR 
riterion

∆infJ
B
x ∆infJ

B
y ≥ 1

2

∑

JA
z

P (JA
z )|〈JB

z 〉JA
z
|, (11)

useful for demonstration of Bohm's version of the EPR

paradox. Here 〈JB
z 〉JA

z
is the mean of the 
onditional

probability distribution P (JB
z |JA

z ). A weaker version of

Eq. (11),

∆infJ
B
x ∆infJ

B
y ≥ 1

2
|〈JB

z 〉|, (12)

was used by Bowen et al. [43℄ to demonstrate an EPR

paradox in the 
ontinuum limit for opti
al systems, with

Stokes operators playing the role of spin operators, in

states where 〈JB
z 〉 6= 0.

An inequality for demonstration of an EPR-Bohm

paradox has also been derived using an un
ertainty re-

lation based on sums of observables. The un
ertainty

relation ∆2Jx +∆2Jy +∆2Jz ≥ 〈j〉, where 〈j〉 is the av-
erage total spin, has been used in [15℄ for derivation of

separability 
riteria, and re
ently by [10℄ to derive the

following EPR 
riterion

4

4

More pre
isely, inequality (57) was presented in that work. The

following follows with the substitution explained below (57).
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∆2
infJ

B
x +∆2

infJ
B
y +∆2

infJ
B
z ≥ 〈jB〉. (13)

All of the above EPR 
riteria will be rederived from

an unifying perspe
tive in Se
tion IV, and shown to be

spe
ial 
ases of broader 
lasses of EPR-steering 
riteria.

III. LOCALITY MODELS; EPR-STEERING

In [11℄, a distin
tion was made between three lo
ality

models, the failure of ea
h 
orresponding to three stri
tly

distin
t forms of nonlo
ality. To de�ne those we will �rst

establish some notation.

Let a ∈ Mα and b ∈ Mβ represent possible 
hoi
es

of measurements for two spatially separated observers

Ali
e and Bob, with respe
tive out
omes denoted by the

upper-
ase variables A ∈ Oa and B ∈ Ob, respe
tively.

Here we follow the 
ase 
onvention introdu
ed by Bell [7℄.

Ali
e and Bob perform measurements on pairs of systems

prepared by a reprodu
ible preparation pro
edure c. We

denote the set of ordered pairs M ≡ {(a, b) : a ∈ Mα, b ∈
Mβ} a measurement strategy. The joint probability of

obtaining out
omes A and B upon measuring a and b
after preparation c is denoted by

P (A,B|a, b, c). (14)

The preparation pro
edure c represents all those vari-
ables whi
h are expli
itly known in the experimental situ-

ation. The joint probabilities for all out
omes of all pairs

of observables in a measurement strategy given a prepa-

ration pro
edure de�ne a phenomenon. Following Bell

[45℄, we represent by λ ∈ Λ any variables asso
iated with

events in the union of the past light 
ones of a, A, b, B
whi
h are relevant to the experimental situation but are

not expli
itly known, and therefore not in
luded in c. In
this sense they may be deemed hidden variables, but our

usage will not imply that they are ne
essarily hidden in

prin
iple (although in parti
ular theories they may be).

A. Bell-nonlo
ality

Given that notation, it is said that a phenomenon

has a lo
al hidden variable (LHV or Bell-lo
al or lo-


ally 
ausal) model if and only if for all a ∈ Mα, A ∈
Oa, b ∈ Mβ, B ∈ Ob, there exist (i) a probability dis-

tribution P (λ|c) over the hidden variables, 
onditional

on the information about the preparation pro
edure c
5

and (ii) arbitrary probability distributions P (A|a, c, λ)

5

In general one 
ould have a 
ontinuum of hidden variables, and

Eq. (15) 
an be modi�ed in the obvious way. No generality is

gained with that pro
edure, though, so we use the sum notation

for simpli
ity.

and P (B|b, c, λ), whi
h reprodu
e the phenomenon in the

form:

P (A,B|a, b, c) =
∑

λ

P (λ|c)P (A|a, c, λ)P (B|b, c, λ).

(15)

Any 
onstraint on the set of possible phenomena that


an be derived from (15) is 
alled a Bell inequality. A

state for whi
h all phenomena 
an be given a LHV model,

when the sets Mα and Mβ in
lude all observables on the

Hilbert spa
es of ea
h 
orresponding subsystems, is 
alled

a Bell-lo
al state. If a state is not Bell-lo
al it is 
alled

Bell-nonlo
al.

B. Entanglement

Similarly, it is said that a phenomenon has a quan-

tum separable model, or separable model for simpli
ity,

if and only if for all a ∈ Mα, A ∈ Oa, b ∈ Mβ , B ∈ Ob,
there exist P (λ|c) as above and probability distributions

PQ(A|a, c, λ) and PQ(B|b, c, λ) su
h that

P (A,B|a, b, c) =
∑

λ

P (λ|c)PQ(A|a, c, λ)PQ(B|b, c, λ),

(16)

where now PQ(A|a, c, λ) represent probability distribu-

tions for out
omes A whi
h are 
ompatible with a quan-

tum state. That is, given a proje
tor ΠA
a asso
iated to

out
ome A of measurement a, and given a quantum den-

sity operator ρα(c, λ) for Ali
e's subsystem (as a fun
tion

of c and λ), these probabilities are determined by

PQ(A|a, c, λ) = Tr{ΠA
a ρα(c, λ)}.

Similar de�nitions apply for Bob's subsystem.

Any 
onstraint on the set of possible phenomena that


an be derived from assumption (16) is 
alled a sepa-

rability 
riterion or entanglement 
riterion. A state for

whi
h all phenomena 
an be given a separable model,

when the sets Mα and Mβ in
lude all observables on

the Hilbert spa
es of ea
h 
orresponding subsystems, is


alled a separable state. A state whi
h is not separa-

ble is 
alled non-separable or entangled. This de�nition

is of 
ourse equivalent to the usual de�nition involving

produ
t states, sin
e if there is a separable model for all

possible measurement settings, then the joint state 
an

be given as a 
onvex 
ombination of produ
t states

ρ =
∑

λ

P (λ|c)ρα(c, λ)⊗ ρβ(c, λ). (17)

Conversely, if the state is given as a 
onvex 
ombination

of produ
t states of form (17), the joint probabilities for

ea
h pair of measurements are given straightforwardly by

Eq. (16).
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C. EPR-steering

Stri
tly intermediate between the LHV and separable

models is the lo
al hidden-state (LHS) model for Bob.

This was argued in [11℄ to be the 
orre
t formalisation

of non-steering 
orrelations. That is, violation of a LHS

model for Bob is a demonstration of EPR-steering, the


on
ept introdu
ed by S
hrödinger to refer to the situ-

ation depi
ted in the EPR paradox. Following the pre-

vious notations, we say that a phenomenon has a no-

Bob-steering model or a LHS model for Bob (or LHS

model for short)

6

if and only if for all a ∈ Mα, A ∈
Oa, b∈ Mβ , B ∈ Ob, there exist P (λ|c), P (A|a, c, λ) and
PQ(B|b, c, λ) de�ned as before su
h that

P (A,B|a, b, c) =
∑

λ

P (λ|c)P (A|a, c, λ)PQ(B|b, c, λ).

(18)

In other words, in a LHS model Bob's out
omes are

des
ribed by some quantum state, but Ali
e's out
omes

are free to be arbitrarily determined by the variables λ.
We 
all any 
onstraint on the set of possible phenomena

that 
an be derived from (18) an EPR-steering 
riterion

or EPR-steering inequality. A state for whi
h all phe-

nomena 
an be given a LHS model, when the sets Mα

and Mβ in
lude all observables on the Hilbert spa
es

of ea
h 
orresponding subsystems, is 
alled an EPR-

steerable state. A state whi
h is not steerable is 
alled

non-EPR-steerable.

D. Foundational relevan
e of EPR-steering

As we have seen in Se
tion (II B), S
hrödinger was

�dis
omforted� with the possibility of Ali
e being able

to �steer� Bob's system �in spite of [her℄ having no a

ess

to it�. In other words, the strange phenomenon revealed

by the EPR paradox whi
h he termed �steering� was the

possibility that Ali
e 
ould prepare, simply by di�erent


hoi
es of measurement on her own system, di�erent en-

sembles of states for Bob whi
h are in
ompatible with a

LHS model, that is, whi
h 
annot be explained as aris-

ing from a 
oarse-graining from a pre-existing ensemble

of lo
al quantum states for Bob. This is an inherently

asymmetri
 
on
ept, thus the asymmetry in the formal-

ization given by Eq. (18).

For ea
h 
hoi
e of measurement a, Ali
e will prepare

for Bob one state out of an ensemble Ea ≡ {ρ̃Aa : A ∈
Oa}. If the state of the global system is Wc, the (unnor-

6

It would perhaps be more logi
al to use the term LHV/LHS

model to denote no-steering, and the other types of nonlo
ality

by LHV and LHS models respe
tively, but we will use the simpler

terminology introdu
ed in Ref.[11℄, as we believe there is no risk

of 
onfusion.

malized) redu
ed state for Bob's subsystem 
orrespond-

ing to out
ome A will be

ρ̃Aa ≡ Trα[Wc(Π
A
a ⊗ I)]. (19)

Evidently, the redu
ed density matrix for Bob is inde-

pendent of Ali
e's 
hoi
e: ρβ = Trα[Wc] =
∑

A ρ̃
A
a for all

a � otherwise Ali
e 
ould send faster-than-light signals

to Bob.

In Ref. [11℄ it was shown that for pure states Wc, en-
tangled states, steerable states and Bell-nonlo
al states

are all equivalent 
lasses. The di�
ulty (and interest)


omes when talking about mixed states. In this 
ase,

one 
ertainly does not want to 
onsider it as an exam-

ple of steering when the ensembles prepared by Ali
e are

just di�erent 
oarse-grainings of some underlying ensem-

ble of states. After all, these ensembles 
an be repro-

du
ed if Bob's lo
al state is simply 
lassi
ally 
orrelated

with some variables available to Ali
e. These 
orrelations

would hardly 
onstitute a puzzle for S
hrödinger, as we

have argued in Se
tion (II B).

Thus, Wiseman and 
o-workers [11℄ 
onsidered EPR-

steering to o

ur i� it is not the 
ase that there ex-

ists a de
omposition of Bob's redu
ed state, ρβ =
∑

λ P (λ|c)ρβ(c, λ) su
h that for all a ∈ Mα, A ∈ Oa

there exists a sto
hasti
 map P (A|a, c, λ) whi
h allows

all states in the ensembles Ea
to be reprodu
ed as

ρ̃Aa =
∑

λ

P (A|a, c, λ)P (λ|c)ρβ(c, λ). (20)

This de�nition leads dire
tly to the formulation of a

no-steering model, Eq. (18). A

ording to the redu
ed

state (20), the probability for out
ome B of Bob's mea-

surement b, given an out
ome A of Ali
e's measurement

a, is given by P (B|A, a, b, c) = Tr[ΠB
b ρ̃

A
a ]/P (A|a, b, c),

where the denominator is introdu
ed for normalization.

Therefore the joint probability be
omes

P (A,B|a, b, c) = Tr[ΠB
b ρ̃

A
a ]

=
∑

λ

P (A|a, c, λ)P (λ|c)Tr[ΠB
b ρβ(c, λ)]

=
∑

λ

P (λ|c)P (A|a, c, λ)PQ(B|b, c, λ),

(21)

as in Eq. (18). The 
onverse 
an also be trivially shown.

One 
ould propose that the de�nition of EPR-steering

should take into a

ount the fa
t that Ali
e's state is

also des
ribable by quantum me
hani
s. It 
an indeed

be argued [46℄ that the 
onjun
tion of the assumptions of

lo
al 
ausality and the 
ompleteness of quantum me
han-

i
s (for both Ali
e and Bob) leads dire
tly to a quantum

separable model, and in that sense EPR's 
on
lusion that

quantum me
hani
s is in
omplete (assuming lo
al 
ausal-

ity) 
ould have been rea
hed by simply pointing out the

predi
tions from any entangled state. However, we are

interested in 
apturing the phenomenon whi
h is 
entral
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to EPR's a
tual argument, and in S
hrödinger's general-

ization of this phenomenon, and hen
e we are led to the

asymmetry in the de�nition. This is the phenomenon

that Einstein famously des
ribed as "spooky a
tion at a

distan
e" [47℄.

As we will see, this formalization also leads pre
isely

to existing EPR 
riteria, putting in a modern 
ontext

the phenomena that have already been dis
ussed in the

literature as generalizations of the EPR paradox. Fol-

lowing Einstein's informal turn of phrase, we 
ould even


all them tests of spooky a
tion at a distan
e.

E. EPR-steering as a quantum information task

Wiseman and 
o-workers [11, 28℄ showed that the dis-

tin
tion between the three forms of nonlo
ality above 
an

be formulated in a modern quantum information perspe
-

tive, as a task. Suppose a third party, Charlie, wants

proof that Ali
e and Bob share an entangled state. Al-

i
e and Bob are not allowed to 
ommuni
ate, but they


an share any amount of 
lassi
al randomness. If Charlie

trusts both Ali
e and Bob, he would be 
onvin
ed i� Ali
e

and Bob are able to demonstrate entanglement, via viola-

tion of a separable model, Eq. (16). If Charlie trusts Bob

but not Ali
e, he would be 
onvin
ed they share entan-

glement i� they are able to demonstrate EPR-steering by

violating the lo
al hidden state model for Bob, Eq. (18).

If, on the other hand, Charlie trusts neither of them, Al-

i
e and Bob would have to demonstrate Bell-nonlo
ality,

violating a lo
al hidden variable model, Eq. (15). The

reason is that, in the absen
e of trust, it is possible for

the weaker forms of nonlo
ality to be reprodu
ed with

the use of 
lassi
al resour
es.

IV. EXPERIMENTAL CRITERIA FOR

EPR-STEERING

The above de�nition of EPR-steering invites the ques-

tion: what are the analogues for EPR-steering of Bell

inequalities or entanglement 
riteria, i.e., how 
an one de-

rive what we have termed EPR-steering 
riteria above?

In Refs. [11℄ and [28℄ the emphasis was on the EPR-

steering 
apabilities as a property of states, and an anal-

ysis was made of how the steerability of some families

of quantum states depends on parameters whi
h spe
-

ify the states within those families. This was ne
essary

and useful for proving the stri
t distin
tion between en-

tangled, EPR-steerable and Bell-nonlo
al states. In an

experimental situation, however, this kind of analysis is

insu�
ient. Quantum state tomography 
ould be used

to determine those parameters, but what if the prepared

state is only approximately a member of the studied fam-

ily? What about states whi
h are not even approximately

members of any useful 
lass? An experimental EPR-

steering 
riterion should not depend on any assumption

about the type of state being prepared, but only on the

measured data. Compare this situation with that of Bell

inequalities, where a violation represents failure of a LHV

model, independently of any assumption about the state

being measured.

Another important issue is the relation between the

EPR-type 
riteria existing in the literature and the above

formalization of EPR-steering. In [11℄ the authors pro-

vided a partial answer by showing that for a 
lass of

Gaussian states the EPR-Reid 
riterion is violated if and

only if the state is steerable by Gaussian measurements.

However, the EPR-Reid 
riterion is valid for arbitrary

states, and therefore their 
on
lusion that it is merely

a spe
ial 
ase of EPR-steering was not entirely justi�ed.

Furthermore, the relation between this formalization of

EPR-steering and the other existing EPR-type 
riteria


ited in Se
. II E was not dis
ussed. Here we will show

that not only the EPR-Reid 
riterion but other exist-

ing EPR-type 
riteria are indeed spe
ial 
ases of EPR-

steering. We will rederive those inequalities within this

modern approa
h, and also derive a number of new 
ri-

teria for EPR-steering.

There is an important di�eren
e between Bell inequal-

ities and EPR-steering 
riteria. Sin
e the LHV model

(15) does not depend on the Hilbert spa
e stru
ture of

quantum me
hani
s, Bell inequalities are independent of

the a
tual measurements being performed. To be 
lear,

the violation of the inequality will 
ertainly depend on

whi
h measurements are performed (as well as the state

being prepared), but the derivation of the inequality it-

self is independent of that information. In a Bell in-

equality the measurements are treated as �bla
k boxes�,

where the only important feature is (usually, but see [27℄)

their number of out
omes. In a LHS model, on the other

hand, Bob's subsytem is treated as a quantum state, and

therefore it is important in general to spe
ify the a
tual

quantum operators 
orresponding to Bob's measurement


hoi
es, just as in an entanglement 
riterion this infor-

mation is in general required for both Ali
e and Bob

7

.

The fa
t that in a no-steering model Bob's probabilities

are 
onstrained to be 
ompatible with a quantum state

suggests the use of quantum un
ertainty relations as in-

gredients in the derivation of 
riteria for EPR-steering. A


onne
tion between un
ertainty relations and EPR 
rite-

ria has been pointed out by two of the present authors in

[9℄ (although using the logi
 of the EPR-Reid 
riteria, not

the present formalization of EPR-steering), and that be-

tween un
ertainty relations and separability 
riteria has

been shown by [15℄, among others.

We identify two main types of EPR-steering 
riteria:

the multipli
ative varian
e 
riteria, whi
h in
lude the

EPR-Reid 
riteria and are based on produ
t un
ertainty

7

The quali�
ation 'in general' here is needed be
ause a Bell in-

equality is an EPR-steering and an entanglement 
riterion. The

failure of a LHV model implies the failure of a LHS model and

of a separable model. However, in general a Bell inequality is

ine�
ient as a 
riterion for these weaker forms of nonlo
ality.
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relations involving varian
es of observables; and the addi-

tive 
onvex 
riteria, based on un
ertainty relations whi
h

are sums of 
onvex fun
tions.

A. Existen
e of linear EPR-Steering 
riteria

An interesting spe
ial 
ase of additive 
onvex 
riteria

will be the linear 
riteria, based on linear fun
tions of ex-

pe
tation values of observables, and whi
h 
an therefore

be written as the expe
tation value of a single Hermitian

EPR-steering operator S.
In general, for any (�nite-dimensional) quantum state

W , if the state in question is steerable, then there exists

a linear 
riterion that would demonstrate EPR-steering

for that phenomenon.

The proof is as follows. If the state is steerable, then

by de�nition there exists a measurement strategy whi
h


an demonstrate steering with that state. Let M be that

measurement strategy. Consider the set P(M) of all pos-
sible phenomena for M, i.e., the set of all possible sets

of joint probabilities P (A,B|a, b) for all pair of out
omes

(A,B) of ea
h pair of measurements (a, b) ∈ M. Let M
be the number of possible settings for the pair of mea-

surements performed by Ali
e and Bob (i.e., the number

of elements in M) and let O be the number of possible

pairs of out
omes (A,B) for ea
h pair of measurements.

A phenomenon is de�ned by spe
ifying the MO prob-

abilities for all possible out
omes of all measurements

in the measurement strategy. We represent those prob-

abilities as an ordered set, and thus an element P of

P(M) is asso
iated to a point in R
MO, where the joint

probability for ea
h (A,B, a, b) is asso
iated to a 
o-

ordinate xAB
ab of R

MO. For example, in a phenomenon

with 2 measurements per site with 2 out
omes ea
h,

M = O = 4, and the number of probabilities to be

spe
i�ed is MO = 16. Denoting those measurements

by a ∈ {a1, a2} and the out
omes of ea
h measure-

ment by A ∈ {0, 1} (and similarly for Bob), these

probabilities would be represented by the ve
tor P =
(P (0, 0|a1, b1), P (0, 1|a1, b1), ..., P (1, 1|a2, b2)).
Now 
onsider two phenomena asso
iated to P1 and P2,

and take a 
onvex 
ombination of the two ve
tors, i.e.,

P3 = pP1 + (1− p)P2, (22)

where 0 ≤ p ≤ 1. If P1 and P2 have a no-steering

model, then P3 also does. The proof is simple: by as-

sumption we 
an write the joint probabilities given by

P1 and P2 in form (18). Simple manipulation shows

that Eq. (22) 
an also be written in form (18), with

P3(λ) = pP1(λ)+(1−p)P2(λ). In other words, the set of

phenomena NS(M) ⊂ P(M) whi
h do not demonstrate

EPR-steering is a 
onvex set. (The same is also true, of


ourse, for the other forms of nonlo
ality.)

Now 
onsider a phenomenon Ps ∈ P(M) whi
h does

demonstrate EPR-steering. By de�nition it is not in

NS(M). Sin
e, as shown above, that is a 
onvex set,

we 
an invoke a well known result from 
onvex analysis:

there exists a plane in R
MO

separating Ps from points

in NS(M). Denote by n̂ an unit ve
tor normal to this

plane pointing away from NS(M) and by P0 an arbi-

trary point on the plane. Then all points Ps̄ ∈ NS(M)
satisfy

n̂ · (Ps̄ −P0) ≤ 0. (23)

Inequality (23) is an EPR-steering 
riterion. If for an

arbitrary point Pc ∈ P(M), n̂ · (Pc−P0) > 0, then Pc /∈
NS and so this phenomenon demonstrates EPR-steering.

We 
an de
ompose Pc =
∑

A,B,a,b〈ΠA
a Π

B
b 〉cêAB

ab , where

〈ΠA
a Π

B
b 〉c ≡ P (A,B|a, b, c) = Tr[Wc (Π

A
a ⊗ ΠB

b )] and

{êAB
ab } is an orthonormal basis of R

MO
. De
omposing

n̂ =
∑

A,B,a,b n
AB
ab êAB

ab and denoting d ≡ −n̂ · P0, (23)

be
omes

∑

A,B,a,b n
AB
ab 〈ΠA

a Π
B
b 〉c + d ≤ 0. De�ning a Her-

mitian operator S ≡ ∑

A,B,a,b n
AB
ab ΠA

a Π
B
b + dI we 
an

rewrite the EPR-steering 
riterion (23) as

Tr[WcS] ≤ 0, (24)

whi
h 
ompletes the proof.

However, this is merely an existen
e proof. It is quite

a di�erent matter to produ
e the EPR-steering opera-

tor S whi
h will demonstrate EPR-steering for a given

state Wc. This is analogous to the situation with Bell

inequalities and entanglement, where one 
an prove the

existen
e of a Bell operator or entanglement witness for

states whi
h 
an demonstrate the 
orresponding form of

nonlo
ality, but 
annot easily produ
e su
h operators be-

yond some simple 
ases.

Furthermore, in the 
ase of EPR-steering (and also

of entanglement) the matter is even more 
ompli
ated:

there is an in�nite (and 
ontinuous) number of extreme

points in the 
onvex set of phenomena whi
h allow a LHS

model (or a separable model) � the set is not a polytope.

Therefore even for a �nite measurement strategy, an in-

�nite number of linear inequalities are needed to fully

spe
ify the set. So in general nonlinear 
riteria may be

more useful, and we will 
onsider that general 
ase in this

paper.

In the following subse
tions we will �rst derive the


lass of multipli
ative varian
e 
riteria, whi
h will redu
e

to the well-known EPR-Reid 
riterion as a spe
ial 
ase.

Then we will introdu
e the quite general 
lass of additive


onvex 
riteria, a spe
ial 
ase of whi
h will be the linear


riteria.

B. Multipli
ative varian
e 
riteria

Following [3℄, we 
onsider a situation where Ali
e tries

to infer the out
omes of Bob's measurements through

measurements on her subsystem. We denote by Best(A)
Ali
e's estimate of the value of Bob's measurement b as
a fun
tion of the out
omes of her measurement a. As in
Se
tion IID, the average inferen
e varian
e of B given

estimate Best(A) is de�ned by

∆2
infB = 〈(B −Best(A))

2〉. (25)
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Here the average is over all out
omes B, A. Sin
e for a

given A, the estimate that minimizes 〈(B − Best(A))
2〉

is just the mean 〈B〉A of the 
onditional probabil-

ity P (B|A), the optimal estimate for ea
h A is just

Best(A) = 〈B〉A. We denote thus the optimal inferen
e

varian
e of B by measurement of a as

∆2
minB =

∑

A,B

P (A,B)(B − 〈B〉A)2

=
∑

A

P (A)
∑

B

P (B|A)(B − 〈B〉A)2

=
∑

A

P (A)∆2(B|A) (26)

where ∆2(B|A) is the varian
e of B 
al
ulated from

the 
onditional probability distribution P (B|A). As ex-
plained above,

∆2
infB ≥ ∆2

minB (27)

for all 
hoi
es of Best(A). This minimum is optimal,

but not always experimentally a

essible, in EPR ex-

periments, sin
e it requires one to be able to measure


onditional probability distributions.

We assume that the statisti
s of Ali
e's and Bob's ex-

perimental out
omes 
an be des
ribed by a LHS model,

i.e., by a model of form (18) [omitting hen
eforth, for

notational simpli
ity, the preparation c and the mea-

surement 
hoi
es a, b from the 
onditional probabilities

P (A,B|a, b, c), et
.℄,

P (A,B) =
∑

λ

P (λ)P (A|λ)PQ(B|λ). (28)

Assuming this model, the 
onditional probability of B
given A is

P (B|A) =
∑

λ

P (λ)P (A|λ)
P (A)

PQ(B|λ)

=
∑

λ

P (λ|A)PQ(B|λ). (29)

As in Se
tion III, PQ(B|λ) = Tr[ΠB
b ρλ] represents the

probability for B predi
ted by a quantum state ρλ.
It is a general result that if a probability distribu-

tion has a 
onvex de
omposition of the type P (x) =
∑

y P (y)P (x|y), then the varian
e ∆2x over the distri-

bution P (x) 
annot be smaller than the average of the

varian
es over the 
omponent distributions P (x|y), i.e.,
∆2x ≥∑y P (y)∆

2(x|y). Therefore, by (29), the varian
e
∆2(B|A) satis�es

∆2(B|A) ≥
∑

λ

P (λ|A)∆2
Q(B|λ), (30)

where ∆2
Q(B|λ) is the varian
e of PQ(B|λ). Using this

result, we 
an derive a bound for Eq. (26),

∆2
minB ≥

∑

A,λ

P (A, λ)∆2
Q(B|λ) =

∑

λ

P (λ)∆2
Q(B|λ).

(31)

Suppose Bob's set of measurements 
onsists of

Mβ = {b1, b2, b3}, with respe
tive out
omes labeled by

B1, B2, B3. Ali
e measures Mα = {a1, a2, a3}. Sup-

pose the 
orresponding quantum observables for Bob,

{b̂1, b̂2, b̂3}, obey the 
ommutation relation [b̂1, b̂2] = ib̂3.
The out
omes must then satisfy the produ
t un
ertainty

relation

∆Q(B1|ρ)∆Q(B2|ρ) ≥
1

2
|〈B3〉ρ|, (32)

where ∆Q(Bi|ρ) and 〈Bi〉ρ are respe
tively the standard

deviation and the average of Bi in the quantum state ρ.
We will use the un
ertainty relation above and the

Cau
hy-S
hwarz (C-S) inequality to obtain an EPR-

steering 
riterion. The C-S inequality states that, for

two ve
tors u and v, |u||v| ≥ |u · v|. De�ne u =

(
√

P (λ1)∆Q(B1|λ1)),
√

P (λ2)∆Q(B1|λ2), . . .) and v =

(
√

P (λ1)∆Q(B2|λ1),
√

P (λ2)∆Q(B2|λ2), . . .). Then by

(31)

∆minB1 =
√

∆2
min

B1 ≥ |u|,

∆minB2 =
√

∆2
min

B2 ≥ |v|. (33)

We thus obtain, from (33), the C-S inequality and the

un
ertainty relation (32),

∆minB1∆minB2 ≥ |u||v|
≥ |u · v|
=
∑

λ

P (λ)∆Q(B1|λ)∆Q(B2|λ)

≥ 1

2

∑

λ

P (λ)|〈B3〉λ|. (34)

Here we denote by 〈B〉λ the expe
tation value of B 
al-


ulated from PQ(B|λ). Using again Eq. (29) and the

fa
t that f(x) = |x| is a 
onvex fun
tion, that is, that

∑

x P (x)|x| ≥ |
∑

x P (x)x|, we obtain a bound for the

last term:

∑

λ

P (λ)|〈B3〉λ| =
∑

A3,λ

P (A3, λ)|〈B3〉λ|

≥
∑

A3

P (A3)

∣

∣

∣

∣

∣

∑

λ

P (λ|A3)〈B3〉λ

∣

∣

∣

∣

∣

=
∑

A3

P (A3)|〈B3〉A3
|

≡ |〈Bi〉|inf (35)

Using now (27), we obtain, from (34) and (35), the EPR-

steering 
riterion

∆infB1∆infB2 ≥ 1

2
|〈B3〉|inf . (36)

This inequality was introdu
ed in [9℄, but its derivation

was based on the 
on
eptual s
heme of the EPR-Reid 
ri-

terion. Here we have shown that it follows dire
tly from
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the LHS model (28). Its experimental violation implies

the failure of the LHS model to represent the measure-

ment statisti
s, that is, it is an experimental demonstra-

tion of EPR-steering. It is important to note that the


hoi
es of measurement a1, a2, a3 used by Ali
e to infer

the values of the 
orresponding measurements of Bob are

arbitrary in this derivation; the spe
i�
 quantum observ-

ables âi played no role in the above be
ause in a LHS

model Ali
e's probabilities are allowed to depend arbi-

trarily on the variables λ. In an experimental situation,

one should 
hoose, of 
ourse, those whi
h 
an maximise

the violation of (36).

One 
an also derive 
riteria involving 
olle
tive vari-

an
es su
h as ∆2(gkAk + Bk), where gk is a real num-

ber. These measurements are often simpler to be re-

alised as they do not require the full 
onditional dis-

tributions. These are just the average inferen
e vari-

an
es ∆2
inf
Bk = 〈[Bk−Best(Ak)]

2〉 with a linear estimate

Best(Ak) = −gkAk + 〈Bk + gkAk〉, as shown in [38℄. We


an therefore straightforwardly derive, from (36):

∆(g1A1 +B1)∆(g2A2 +B2) ≥
1

2
|〈B3〉|inf , (37)

keeping in mind that the measurements for Ali
e and the

values of gk are arbitrary, and should be 
hosen so as to

optimize the violation of the inequality.

1. Examples

The �rst example of a multipli
ative varian
e 
riterion

is the original EPR-Reid 
riterion [3℄, reviewed in Se
-

tion IID. It was developed for 
ontinuous variables ob-

servables x̂B and p̂B, whi
h obey an un
ertainty relation

∆Q(x
B |ρ)∆Q(p

B |ρ) ≥ 1, arising from the 
ommutation

relation (in appropriate units) [x̂B, p̂B] = 2i. Substitut-

ing B1 = xB , B2 = pB and B3 = 2 in (36) we obtain the

EPR-Reid 
riterion (9),

∆infx
B∆infp

B ≥ 1. (38)

This provides a formal proof of the in
omplete 
onje
-

ture put forth in [11℄, that the EPR-Reid 
riterion is a

spe
ial 
ase of EPR-steering. It is a dire
t 
onsequen
e of

the assumption of a LHS model; in parti
ular this deriva-

tion does not require Reid's extension of EPR's ne
essary


ondition for reality.

For angular momentum observables, obeying a 
ommu-

tation relation [ĴB
x , Ĵ

B
y ] = iĴB

z (and its 
y
li
al permu-

tations) the 
orresponding quantum un
ertainty relation

is ∆Q(J
B
x |ρ)∆Q(J

B
y |ρ) ≥ 1

2
|〈JB

z 〉ρ| (and permutations).

Substituting these in (36), with B1 = JB
x , B2 = JB

y and

B3 = JB
z , we obtain the 
riterion (11) reviewed in Se
tion

II E:

∆infJ
B
x ∆infJ

B
y ≥ 1

2
|〈JB

z 〉|inf , (39)

and of 
ourse, its permutations. Violation of one of these

inequalities 
orresponds to a demonstration of the EPR-

Bohm paradox dis
ussed in Se
. II C. Bowen et al.'s [43℄

inequality (12) is the spe
ial 
ase in whi
h Ali
e's 
hoi
e

of measurement used to infer |〈JB
z 〉|inf is the identity.

We 
an see that it is a weaker 
riterion than the above

by noting that the 
onvexity of the fun
tion f(x) = |x|
implies |〈JB

z 〉|inf ≡ ∑

JA
z
P (JA

z )|〈JB
z 〉JA

z
| ≥ |〈JB

z 〉|. In-
equality (12) therefore will be violated only if (39) also

is. In parti
ular, (39) 
an dete
t EPR-steering for states

in whi
h the expe
tation value of JB
z is zero, su
h as the

symmetri
 state originally 
onsidered by Bohm [8℄. Ap-

pli
ations of these 
riteria to spe
i�
 
lasses of quantum

states will be given in Se
. V.

C. Additive 
onvex 
riteria

We now present the derivation of the 
lass of additive


onvex 
riteria. Suppose one has an un
ertainty relation

in the broadest sense � a general 
onstraint whi
h must

be obeyed by all quantum states of Bob's subsystem �

of form

∑

j

fj(〈Bj〉ρ, αj) ≤ 0, (40)

where j indexes observables on Bob's subsystem, 〈Bj〉ρ
denotes the expe
tation value of observable bj on a quan-

tum state ρ, αj ∈ R are parameters of the 
onstraint

whi
h 
an take any values in some set Oaj
(the signi�-


an
e of whi
h should be 
lear soon), and the fun
tions fj
are 
onvex on the interval 
ontaining the possible values

of the �rst argument (i.e., the possible expe
tation values

〈Bj〉ρ, whi
h is the 
onvex hull Hconvex{Obj} of the set

of possible out
omes of bj). This last requirement means

that for all x, y ∈ Hconvex{Obj}, for all z ∈ Oaj
and for

all p ∈ [0, 1],

fj(px+ (1− p)y, z) ≤ pfj(x, z) + (1 − p)fj(y, z). (41)

Although the produ
t un
ertainty relations 
onsidered

in the previous se
tion are not of form (40), sin
e they

in
lude terms like 〈B2
1〉〈B2

2〉, a large 
lass of un
ertainty

relations 
an be written in this form. The negative of the

varian
e of a variable B, that is, −∆2B = 〈B〉2−〈B2〉, is
a sum of two 
onvex fun
tions f1(〈B〉) + f2(〈B2〉), [with
f1(x) = x2 and f2(x) = −x℄ and thus we 
an obtain

EPR-steering 
riteria from un
ertainty relations that in-

volve sums of varian
es of observables. For example, the

relation ∆2B1 +∆2B2 ≥ |〈B3〉| [48℄ 
an be rewritten as

|〈B3〉| − 〈B2
1〉+ 〈B3〉2 − 〈B2

3〉+ 〈B3〉2 ≤ 0, (42)

whi
h is of form (40), with 5 terms in the sum. All terms

are 
onvex, sin
e the 
oe�
ients of the square terms and

absolute-value terms are positive. Any term linear on the

expe
tation values 〈Bj〉ρ is 
learly also of that form. As
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in the previous se
tion, the assumption that the statis-

ti
s of Ali
e and Bob 
an be des
ribed by a LHS model

of form (28) implies that the 
onditional probability of

out
ome B given out
ome A 
an be written as

P (B|A) =
∑

λ

P (λ|A)PQ(B|λ). (43)

The average of this 
onditional probability,〈B〉A, 
an be

thus written as

〈B〉A =
∑

λ

P (λ|A)〈B〉λ, (44)

and we remind the reader that 〈B〉λ ≡
∑

B PQ(B|λ)B =

Tr{b̂ ρλ}.
If f is a 
onvex fun
tion, (44) then implies, for all A,

f (〈B〉A, A) = f

(

∑

λ

P (λ|A)〈B〉λ, A
)

≤
∑

λ

P (λ|A) f (〈B〉λ, A) . (45)

Taking the average over A we obtain

∑

A

P (A) f (〈B〉A, A) ≤
∑

A,λ

P (A, λ) f (〈B〉λ, A) . (46)

We now introdu
e the subs
ripts j, sum both sides of (46)

over j and apply the quantum 
onstraint (40) to obtain

∑

j,Aj

P (Aj) fj
(

〈Bj〉Aj
, Aj

)

≤
∑

Aj ,λ

P (Aj , λ)
∑

j

fj (〈Bj〉λ, Aj) ≤ 0 . (47)

Introdu
ing the simplifying notation Eb|a[fj ] ≡
∑

Aj
P (Aj) fj

(

〈Bj〉Aj
, Aj

)

, we write the general EPR-

steering 
riterion

∑

j

Eb|a[fj ] ≤ 0 . (48)

A weaker version of the inequality (i.e., one that dete
ts

steerability less e�
iently) 
an be obtained by using the

following bound, whi
h is a 
onsequen
e of the 
onvexity

of fj, when fj does not depend expli
itly on Aj :

fj(〈Bj〉) ≤ Eb|a[fj]. (49)

One 
an therefore substitute Eb|a[fj] by fj(〈Bj〉) for

some j in (48) and the inequality still holds.

1. Examples: 
riteria from inferen
e varian
es

We will now give some examples of 
riteria that 
an be

obtained with the general form of (48).We note, to make


onta
t with the previous notation, that when the fj's
involve varian
es, the 
orresponding expressions on the

left-hand side of (48) are just

∑

A

P (A)
(

〈B〉2A − 〈B2〉A
)

= −∆2
minB, (50)

as de�ned on (25). As before, the bound

∆2
infB ≥ ∆2

minB (51)


an be used in the derivation of the inequalities.

We start 
onsidering arbitrary observables obeying


ommutation relation [b̂1, b̂2] = ib̂3, and use the un
er-

tainty relation ∆2(B1|ρ) + ∆2(B2|ρ) ≥ |〈B3〉ρ|, whi
h is

of form (40) as shown above. Expanding this in terms of

the fj's, substituting on (48) and using (50) and (51) we

obtain the EPR-steering inequality

∆2
infB1 +∆2

infB2 ≥ |〈B3〉|inf , (52)

where as before |〈B3〉|inf ≡
∑

A3
P (A3)|〈B3〉A3

|, and the

bound |〈B3〉|inf ≥ |〈B3〉| 
an be used if needed.

For 
ontinuous variables observables [x̂B, p̂B] = 2i,
(52) be
omes inequality (10),

∆2
infx

B +∆2
infp

B ≥ 2, (53)

and for angular momentum observables inequality (52)

reads

∆2
infJ

B
x +∆2

infJ
B
y ≥ |〈JB

z 〉|inf . (54)

Inequality (53) has been derived (within the EPR-Reid

formalism) in [9℄. However, these inequalities are weaker

than the 
orresponding multipli
ative varian
e 
riteria:

sin
e for any pair of real numbers x2+y2 ≥ 2xy, inequal-
ity (36) dire
tly implies (52) and thus the latter 
an be

violated only if the former is.

Another spe
ial 
ase of additive 
onvex 
riterion has

been re
ently derived in [10℄. Consider S
hwinger spin

operators de�ned as

ĴB
x =

1

2

(

b̂−b̂
†
+ + b̂†−b̂+

)

,

ĴB
y =

1

2i

(

b̂−b̂
†
+ − b̂†−b̂+

)

,

ĴB
z =

1

2

(

b̂†+b̂+ − b̂†−b̂−
)

,

N̂B =
(

b̂†+b̂+ + b̂†−b̂−
)

, (55)

where b̂± are boson operators for two �eld modes of Bob's

subsystem, obeying 
ommutation relations [b̂±, b̂
†
±] = 1.

Similar operators are de�ned for Ali
e. The situation of

the EPR-Bohm setup is therefore extended with number

measurements. We now use the quantum un
ertainty

relation [15℄

∆2(JB
x |ρ)+∆2(JB

y |ρ)+∆2(JB
z |ρ) ≥ 1

4
∆2(NB|ρ)+1

2
〈NB〉ρ,
(56)
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and rewrite it in the form of (40), −∆2(JB
x |ρ) −

∆2(JB
y |ρ)−∆2(JB

z |ρ) + 〈NB〉ρ/2 ≤ 0, dropping the pos-

itive but non-
onvex term ∆2NB/4. Substituting this in

(48), and using (50) and (51), we obtain:

∆2
infJ

B
x +∆2

infJ
B
y +∆2

infJ
B
z ≥ 〈NB〉

2
. (57)

In the angular momentum basis {|j,m〉}, where j(j +

1) are the eigenvalues of Ĵ2 = (Ĵ2
x + Ĵ2

y + Ĵ2
z ) and

m are the eigenvalues of Ĵz, the operator N̂/2 
orre-

sponds to the �total angular momentum� operator ĴT =
∑

j j
∑

m |j,m〉〈j,m|, i.e., the operator whi
h has a spe
-

tral de
omposition in terms of proje
tors onto ea
h sub-

spa
e of 
onstant j, with 
orresponding eigenvalues j. 8

Any 
riteria in whi
h 〈NB〉 o

urs 
an therefore be mod-

i�ed by substituting 〈NB〉/2 = 〈JB
T 〉. For a spin-j par-

ti
le, this is just 〈JB
T 〉 = j. With this substitution we

obtain inequality (13).

Using again the linear inferen
es Best(Ak) = −gkAk +
〈Bk + gkAk〉 as dis
ussed above Eq. (37), we 
an derive

dire
tly from (57), (53) and (52) the respe
tive 
riteria

∆2(gxJ
A
x +JB

x )+∆2(gyJ
A
y +JB

y )+∆2(gzJ
A
z +JB

z ) ≥ 〈NB〉
2

,

(58)

∆2(gxx
A + xB) + ∆2(gpp

A + pB) ≥ 2, (59)

and

∆2(g1A1 +B1) + ∆2(g2A2 +B2) ≥ |〈B3〉|inf . (60)

Again we should keep in mind that the 
orresponding op-

erators for Ali
e, and the values of gk, are arbitrary, and
therefore should be 
hosen so as to optimize the violation

of the 
riteria. Inequality (59), whi
h was introdu
ed in

[38℄, is the analogue for EPR-steering of the entanglement


riteria of Duan et al. [13℄ and Simon [14℄. Note that the

bound is half that of those authors (making it harder to

violate), a 
onsequen
e of the fa
t that EPR-steering is

a stronger form of nonlo
ality than entanglement. In-

equality (58) is the analogue of the separability 
riteria

of (author?) [15℄.

The inferen
e varian
e 
riteria have an immediate in-

terpretation as a demonstration of the situation des
ribed

by EPR, as they are based on an apparent violation of

the un
ertainty prin
iple by inferen
e of the varian
es

of the distant subsystem. However, in general any 
on-

straint that 
an be derived from the LHS model is an

EPR-steering 
riterion, and by the arguments of Se
-

tions II and III, a demonstration of the EPR paradox.

We present below examples of su
h more general 
rite-

ria whi
h 
an be derived as spe
ial 
ases of the additive


onvex 
riterion (48).

8

Note that the angular momentum-square operator J2
is not the

square of this operator. Although they have the same eigenve
-

tors, the eigenvalues of J2
are j(j + 1) and not j2.

2. Examples: linear 
riteria

We �rst illustrate this approa
h by deriving a simple


riteria for the 
ase of two qubits. We start with a quan-

tum 
onstraint on expe
tation values of spin-1/2 observ-

ables:

〈Jx〉ρ + 〈Jy〉ρ ≤
√
2

2
. (61)

This must be satis�ed by any quantum state of a qubit:

1√
2
(Ĵx+ Ĵy) ≡ Ĵθ is simply the observable 
orresponding

to the spin proje
tion on a dire
tion at θ = 45o between

x and y, and so for any quantum state ρ, 〈Ĵθ〉ρ ≤ 1

2
.

Now it must then also be the 
ase that, for a pair of

observables ĴB
x , Ĵ

B
y for Bob and ĴA

x , Ĵ
A
y for Ali
e, and

where αi ∈ {− 1

2
, 1
2
} represent possible values for the out-


omes of observable ĴA
i ,

αx〈JB
x 〉ρ + αy〈JB

y 〉ρ ≤
√
2

4
, (62)

for all values of αx, αy. This is easy to see by not-

ing that the di�erent values of (αx, αy) lead to one of

∓ 1

2
〈JB

x ± JB
y 〉, and for ea
h of these the argument of the

previous paragraph leads to (62). This is of the form

(40), and therefore, by substituting on (48) and noting

that

∑

A P (A)J
A
i 〈JB

i 〉A = 〈JA
i J

B
i 〉, it leads to the EPR-

steering 
riterion

〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉 ≤

√
2

4
. (63)

Following a similar pro
edure, and using the quantum


onstraint αx〈JB
x 〉ρ + αy〈JB

y 〉ρ ≥ −
√
2

4
, whi
h is valid

for the same reason as (62), we 
an derive the inequality

〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉 ≥ −

√
2

4
. These two inequalities 
an be

summarised in the EPR-steering 
riterion

∣

∣〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉
∣

∣ ≤
√
2

4
. (64)

A similar, more powerful inequality 
an be derived

from the analogous 
onstraint on three observables

−
√
3

2
≤ αx〈Jx〉ρ + αy〈Jy〉ρ + αz〈Jz〉ρ ≤

√
3

2
, (65)

whi
h follows, as (62), from the fa
t that Ĵφ ≡ 1√
3
(Ĵx +

Ĵy + Ĵz) is another observable 
orresponding to a spin

proje
tion. From (65) we 
an derive, following similar

steps as above, the EPR-steering 
riterion

∣

∣〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉+ 〈JA

z J
B
z 〉
∣

∣ ≤
√
3

4
. (66)

We 
an now generalize this to an arbitrary to-

tal spin. For a spin-j parti
le, the quantum 
on-

straint |αx〈Jx〉ρ + αy〈Jy〉ρ + αz〈Jz〉ρ| ≤
√
3j2 holds.
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To see this, note that Ĵφ ≡ (αxĴx + αyĴy +

αzĴz)/
√

α2
x + α2

y + α2
z is again a spin proje
tion opera-

tor, and that

√

α2
x + α2

y + α2
z ≤

√
3j. Following the same

steps as for the derivation of (64) this leads to the EPR-

steering inequality

∣

∣〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉+ 〈JA

z J
B
z 〉
∣

∣ ≤
√
3j2. (67)

3. Generalisation for positive operator valued measures

(POVMs)

In all of the above we have assumed that the mea-

surements on Bob's system 
an be des
ribed by observ-

ables, with proje
tion operators asso
iated to eigenval-

ues. There is no loss of generality in this assumption if

we allow Bob's system to be supplemented by an an
illa

system, un
orrelated with any other system [49℄. How-

ever it is often 
onvenient to 
onsider generalized mea-

surements, des
ribed by a POVM, that is, a set of posi-

tive operators Fµ asso
iated to measurement out
omes µ,
whi
h sum to unity. In terms of �nding appropriate EPR-

steering 
riteria, the additive 
onvex 
riteria are the ones

most naturally generalizable to this 
ase. We repla
e the

fj(〈Bj〉, αj) in Eq. (40) by

fj({〈F j
µ〉ρ : µ}, αj),

where for all j and µ, F j
µ ≥ 0, and for all j,

∑

µ F
j
µ = 1.

The 
onvexity requirement in 〈Bj〉ρ would be repla
ed

by a more general 
onvexity requirement, that for all j
and αj , all ρ and ρ′, and 0 ≤ p ≤ 1,

fj({〈F j
µ〉ρ′′ : µ}, αj)

≤ pfj({〈F j
µ〉ρ : µ}, αj) + (1− p)fj({〈F j

µ〉ρ′ : µ}, αj),

(68)

where ρ′′ = pρ + (1 − p)ρ′. The derivation of Eq. (48)

then follows exa
tly as before.

V. APPLICATIONS TO CLASSES OF

QUANTUM STATES

We now apply the 
riteria derived in the previous se
-

tion to some 
lasses of quantum states of experimental in-

terest. Violations of those inequalities amount to demon-

strations of the e�e
t termed �steering� by S
hrödinger

in his response to EPR, reviewed in Se
. II B. In the


ontinuous variables 
ase, this provides a more modern

and unifying approa
h to the demonstration of the 
or-

relations 
onsidered by EPR in their original example,

dis
ussed in Se
. II A. In the dis
rete variables 
ase this

represents a modern approa
h to the demonstration of

EPR-Bohm 
orrelations dis
ussed in Se
. II C. We 
on-

sider ea
h 
ase in turn.

A. Continuous variables

We 
onsider as a 
ontinuous variable example the 
ase

of two-mode Gaussian states prepared by opti
al para-

metri
 ampli�ers [50℄. Su
h states in
lude the original

EPR state as a spe
ial 
ase with zero entropy and in�-

nite energy. We de�ne x̂A = â+ â† and p̂A = −i(â− â†)
as the position and momentum observables to be mea-

sured by Ali
e, where â and â† are the annihilation and


reation operators for a bosoni
 �eld mode at Ali
e's sub-

system. We de�ne x̂B, p̂B analogously for Bob's subsys-

tem in terms of the annihilation and 
reation operators

b̂ and b̂† for his �eld mode. When the entanglement is

symmetri
 between the two modes the 
ovarian
e ma-

trix des
ribing su
h states has a parti
ularly simple form.

The 
ontinuous variable entanglement properties of su
h

a state have re
ently been 
hara
terized experimentally

[50℄.. In this 
ase the 
ovarian
e matrix of the state W
has just two parameters, µ and n̄:

CM[Wµ
n̄ ] = V αβ

2 =







γ 0 δ 0
0 γ 0 −δ
δ 0 γ 0
0 −δ 0 γ






, (69)

where γ = 1 + 2n̄ and δ = 2η
√

n̄(1 + n̄). Here n̄ is the

mean photon number for ea
h party, and µ is a mixing

parameter de�ned su
h that the 
ovarian
e matrix is lin-

ear in µ and that 0 ≤ µ ≤ 1, su
h that µ = 0 
orresponds
to an un
orrelated state and µ = 1 
orresponds to a pure
state [28℄. It has been shown by Duan et al. [13℄ and Si-

mon [14℄ that if a quantum state su
h asWµ
n̄ is separable

it must satisfy

∆2(xA − xB) + ∆2(pA + pB) ≥ 4. (70)

It is straightforward to show that for states de�ned by

Eq. (69) this leads to the 
ondition that

µ >
n̄

√

n̄(1 + n̄)
(71)

indi
ates entanglement. This 
ondition is plotted in

Fig. 2, where states above the line are entangled.

As dis
ussed in Se
. IV, the generalization of Duan et

al. and Simon's entanglement 
riterion to EPR-steering

is given by inequality (59). For states of the form of

Eq. (69), the relevant 
riterion be
omes, using the opti-

mal s
ale fa
tors gx = −1 and gp = 1,

∆2(xA − xB) + ∆2(pA + pB) ≥ 2. (72)

For the two-mode symmetri
 states we �nd

∆2(xA − xB) = ∆2(pA + pB) = 2γ − 2δ. (73)

Substituting into (72) and rearranging we �nd that

µ >
1 + 4n̄

4
√

n̄(1 + n̄)
(74)
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Figure 2: (Color on-line.) Boundaries between di�erent


lasses of symmetri
 two-mode Gaussian states. The lower

line (green, dotted) is an entanglement boundary given by

Eq. (70): states above the line are entangled. The 
entral

(blue, dashed) line is a steerability (lower) boundary based

on Eq. (77) for the EPR paradox: states above this line are

steerable. The upper line (red, full) is a se
ond steerability

(lower) boundary based on a generalisation of the entangle-

ment 
riterion of Duan et al. [13℄ and Simon [14℄: states

above this line are steerable.

indi
ates EPR-steering. This 
ondition is plotted in

Fig. 2, where states above the line are steerable. For

this parti
ular state the additive 
onvex 
riterion (72)

and the 
orresponding multipli
ative 
riterion

∆2(xA − xB)∆2(pA + pB) ≥ 1, (75)

derived from (37), give the same results, sin
e both vari-

an
es are identi
al in this 
ase.

For 
omparison, re
all the EPR-Reid 
riterion, (38),

whi
h tells us that the violation of

∆infx
B∆infp

B ≥ 1 (76)

indi
ates EPR-steering. Evaluating the left hand side

of (76) for two-mode symmetri
 Gaussian states, using

the optimal inferen
e varian
es ∆minx
B
as de�ned in Eq.

(26), we thus obtain

µ >

√

1 + 2n̄

2(1 + n̄)
(77)

as a 
ondition indi
ating the demonstration of EPR-

steering. Also in this 
ase inequality (76) dete
ts EPR-

steering just as well as the analogous additive 
riterion

(53), sin
e both inferen
e varian
es for xB and pB have

the same value. In Fig. 2 we see that (76) provides a

lower bound on steerability than that provided by (72)

(although for n̄ ≫ 1 the two bounds be
ome arbitrar-

ily 
lose). This is not surprising when one remembers,

as dis
ussed in Se
. IVB, that the optimal 
onditional

varian
es (76) are lower bounds for the linear-estimate

inferen
e of the form ∆2(gxx
A + xB). In other words,

as pointed out in Se
. IV, the EPR 
riterion is a more

sensitive witness to EPR-steering than inequality (72),

derived as the steerability generalisation of the entangle-

ment 
riterion of Duan et al. and Simon.

B. Dis
rete variables

To illustrate the use of EPR-steering 
riteria in the dis-


rete variable 
ase we will make use of the Werner states

[51℄. For the 
ase of a two-dimensional subsystems, these

are a natural mixed-state generalization of the singlet

state 
onsidered by Bohm, and 
an be written as follows

ρW = µ|ψS〉〈ψS |+ (1− µ)
I

4
, (78)

where |ψS〉 = 1√
2
(| 1

2
〉| − 1

2
〉 − | − 1

2
〉| 1

2
〉), I is the identity

over both subsystems, and µ is a mixing parameter that


an take values µ ≤ 1, with µ = 0 again 
orresponding

to a produ
t state [11℄.

It was shown in Ref. [11℄ that the Werner state is steer-

able in theory with an in�nite number of measurements

whenever µ > 1/2. In order to demonstrate EPR-steering

in a realisti
 experimental setup it is su�
ient to instead

test a suitable EPR-steering 
riterion.

We will �rst evaluate the 
riterion given by inequality

(39). Cal
ulation shows that for the Werner state (78),

∆2
infJ

B
z =

1

4
(1− µ2)

and

|〈JB
z 〉|inf =

µ

2
.

The Werner state is rotationally symmetri
, and thus

∆infJ
B
x = ∆infJ

B
y = ∆2

inf
JB
z . We therefore �nd that

inequality (39) will be violated (demonstrating EPR-

steering) for µ > (
√
5 − 1)/2 ≈ 0.62. This inequality


annot therefore dete
t all steerable states.

For inequality (57) we make the substitution (as ex-

plained below Eq. (57)) 〈NB〉/2 = j = 1/2, and with

the values for ∆2
inf
JB
z a simple 
al
ulation reveals viola-

tion whenever µ > 1/
√
3 ≈ 0.58, This inequality, more

symmetri
 between the di�erent measurements, thus de-

te
ts more steerable states (within the 
lass of Werner

states) than the less symmetri
 (39).

We now pro
eed to evaluating the linear inequalities

(64) and (66). The expe
tation value of the produ
ts

of observables required for those inequalities, given the

Werner state, is

〈JA
i J

B
i 〉 = −µ

4
,

where again by symmetry those expe
tation values are

the same for all i ∈ {x, y, z}. Substituting in (64) we
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obtain a violation for µ > 1/
√
2 ≈ 0.71 and in (66),

violation for µ > 1/
√
3 ≈ 0.58. The �rst inequality, with

only two measurements per site, performs worse (dete
ts

less steerable Werner states) than (39), but the se
ond,

with three measurements, dete
ts a larger range. Note

that the range of states for whi
h violation is predi
ted

using (57) is the same as that dete
ted with (66). The

latter, however, o�ers the advantage of being simpler to

measure and 
al
ulate.

VI. CONCLUSION

We have developed a general theory of EPR-steering


riteria. These 
riteria are the experimental 
onse-

quen
es of a LHS model for one party (Bob), just as Bell

inequalities are the experimental 
onsequen
e of a LHV

model and entanglement 
riteria are 
onsequen
es of a

quantum separable model. The essential ingredients in

the derivation of the 
riteria are the 
onvexity of the set

of 
orrelations that allow a LHS model and (generalized)

un
ertainty relations whi
h de�ne bounds on how Bob's

out
omes 
an be des
ribed by quantum states.

Analysing the di�erent forms of nonlo
ality, we see

that they di�er only in how they treat the states of Al-

i
e and/or Bob, but they are all 
onvex 
ombinations

of separable probability distributions. Some of the 
ri-

teria derived here were therefore similar to known en-

tanglement 
riteria, but with a more restri
tive bound

due to the fa
t that Ali
e's subsystem is treated as an

arbitrary hidden-variable state. However others, in par-

ti
ular the linear EPR-steering 
riteria, are entirely new.

These 
riteria open the possibility to new experimental

demonstrations of the EPR-steering phenomenon, with


lose links to topi
s in quantum information in
luding

entanglement witnesses and quantum 
ryptography.
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