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We formally link the onept of steering (a onept reated by Shrödinger but only reently

formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett. 98, 140402 (2007)℄ and the riteria

for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introdued by Reid [Phys. Rev.

A, 40, 913 (1989)℄. We develop a general theory of experimental EPR-steering riteria, derive a

number of riteria appliable to disrete as well as ontinuous-variables observables, and study their

e�ay in deteting that form of nonloality in some lasses of quantum states. We show that

previous versions of EPR-type riteria an be rederived within this formalism, thus unifying these

e�orts from a modern quantum-information perspetive and larifying their oneptual and formal

origin. The theory follows in lose analogy with riteria for other forms of quantum nonloality

(Bell-nonloality and entanglement), and beause it is a hybrid of those two, it may lead to insights

into the relationship between the di�erent forms of nonloality and the riteria that are able to

detet them.

I. INTRODUCTION

In their seminal 1935 paper [1℄, Einstein, Podolsky and

Rosen (EPR) presented an argument whih demonstrates

the inompatibility between the onepts of loal ausal-

ity

1

and the ompleteness of quantum mehanis. Apart

from the foundational importane of that work, it had

long-reahing onsequenes [5℄: it was the �rst time that

physiists learly notied the strange phenomena assoi-

ated with entanglement � the resoure at the basis of

modern quantum information siene.

The situation depited by EPR is often referred to as

the �EPR paradox�. The authors themselves did not in-

tend to point out a true paradox; instead they argued

that quantum mehanis was an inomplete theory, that

is, that it did not give a omplete desription of reality.

Shrödinger [6℄ seems to have been the �rst to name the

situation a `paradox', as he ould not believe with EPR

that quantum mehanis was indeed inomplete but nei-

ther ould he see a �aw in the argument. In hindsight,

we now know (sine Bell [7℄) that, while the argument is

sound, one of the premises � loal ausality � is false.

However, we will retain the historially prevalent term

`paradox', if only beause we still do not have a fully sat-

isfatory understanding of the nature of quantum nonlo-

ality.

The original EPR paradox involved an example of an

idealized bipartite entangled state of ontinuous variables

measured at the two subsystems. Later, Bohm [8℄ ex-

tended the EPR paradox to a senario involving disrete

(spin) observables. The essene of both of these argu-

1

This is Bell's terminology [2℄. It is also ommonly alled loal

realism [3℄, whih is arguably loser to EPR's terminology. See

however Ref. [4℄ for a disussion of Einstein's later writings on

loality and realism.

ments involved perfet orrelations, and therefore neither

the original EPR paradox nor Bohm's version ould be

diretly tested in the laboratory without additional as-

sumptions. Criteria for the experimental demonstration

of the EPR paradox, whih an be used in situations with

non-ideal states, have been derived for the ontinuous-

variables senario by Reid in 1989 [3℄ and more reently

for disrete systems by Cavalanti and Reid [9℄ and Cav-

alanti et al. [10℄.

In another reent development, Wiseman, Jones and

Doherty [11℄ have introdued a new lassi�ation of quan-

tum nonloality, a formalisation of the onept of steering

introdued by Shrödinger in 1935 [12℄ in a response to

the EPR paper. In that Letter, the authors laimed that

any demonstration of the EPR paradox, as proposed by

Reid, is also a demonstration of steering. While that

laim was essentially orret, the proof proposed there

was inomplete, as we will see later in this paper. We will

provide the missing proof and further show that the on-

verse is also true: any demonstration of steering is also

a demonstration of the EPR paradox. In other words,

the EPR paradox and steering are equivalent notions of

nonloality.

In Ref. [11℄ Wiseman, Jones and Doherty showed that

EPR-steering onstitutes a di�erent lass of nonloal-

ity intermediate between the lasses of quantum non-

separability and Bell-nonloality, with the distintion be-

tween these being explainable as a matter of trust be-

tween di�erent parties. Therefore, besides its founda-

tional interest, this lassi�ation ould prove important

in the ontext of quantum ommuniation and informa-

tion. It would be thus desirable to devise riteria to de-

termine to whih lasses a given state (or a set of observed

orrelations) belongs. For that purpose we will formulate

and develop the theory of EPR-steering riteria, de�ned

as any riteria whih are su�ient to demonstrate EPR-

steering experimentally. The theory will proeed in lose

analogy to the theories of entanglement riteria [13, 14,

http://arxiv.org/abs/0907.1109v2
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15, 16℄ and of Bell inequalities (or Bell-nonloality rite-

ria) [7, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27℄.

The struture of the paper is as follows: In Se. II we

will review some of the history and onepts surrounding

the EPR paradox and steering. The main purposes of this

setion are to review the oneptual motivation for the

new formulation and to put the steering riteria proposed

here in ontext with the relevant literature. In Se. III

we will review the three lasses of nonloality, inluding

Wiseman and oworkers' [11℄ steering, and argue in more

detail than in previous papers [28℄ as to why it provides

the orret formalization of Shrödinger's onept. In

Se. IV we will introdue the formalism for derivation

of general EPR-steering riteria. We develop two broad

lasses of EPR-steering riteria: the multipliative vari-

ane riteria, and the additive onvex riteria (whih in-

ludes linear EPR-steering inequalities as a speial ase).

We show how the riteria in the existing literature an

be rederived as speial ases within this modern unifying

approah. In Se. V we will apply the riteria derived

in Se. IV to some lasses of quantum states, omparing

their e�etiveness in experimentally demonstrating EPR-

steering. We onsider both ontinuous variables (as in

the original EPR paradox) and spin-half systems (as in

Bohm's version).

II. HISTORY AND CONCEPTS

A. The Einstein-Podolsky-Rosen argument

The EPR argument has been exhaustively ommented

in the literature. However, sine in this paper we will

disuss a new mathematial formulation of it, it will be

important to review it in detail.

The essene of Einstein and oworkers' [1℄ 1935 argu-

ment is a demonstration of the inompatibility between

the premises of loal ausality and the ompleteness of

quantum mehanis. EPR started the paper by mak-

ing a distintion between reality and the onepts of a

theory, followed by a ritique of the operationalist po-

sition, learly aimed at the views advoated by Bohr,

Heisenberg and the other proponents of the Copenhagen

interpretation.

�Any serious onsideration of a physial the-

ory must take into aount the distintion be-

tween the objetive reality, whih is indepen-

dent of any theory, and the physial onepts

with whih the theory operates. These on-

epts are intended to orrespond with the ob-

jetive reality, and by means of these onepts

we piture this reality to ourselves.

In attempting to judge the suess of a phys-

ial theory, we may ask ourselves two ques-

tions: (1) `Is the theory orret?' and (2)

`Is the desription given by the theory om-

plete?' It is only in the ase in whih positive

answers may be given to both of these ques-

tions, that the onepts of the theory may be

said to be satisfatory.� [1℄

Any theory will have some onepts whih will be used

to aid in the desription and predition of the phenom-

ena whih are their subjet matter. In quantum theory,

Shrödinger introdued the onept of the wave funtion

and Heisenberg desribed the same phenomena with the

more abstrat matrix mehanis. EPR argued that we

must distinguish those onepts from the reality they at-

tempt to desribe. One an see the physial onepts of

the theory as mere alulational tools if one wishes, but

it was those authors' opinion that one must be areful

to avoid falling bak into a pure operationalist position;

the theory must strive to furnish a omplete piture of

reality.

EPR follow the previous onsiderations with a nees-

sary ondition for ompleteness:

EPR's neessary ondition for om-

pleteness: �Whatever the meaning assigned

to the term omplete, the following require-

ment for a omplete theory seems to be a

neessary one: every element of the physial

reality must have a ounterpart in the physial

theory.� [1℄

Soon afterward they note that this ondition only makes

sense if one is able to deide what are the elements of

the physial reality. They did not attempt to de�ne `el-

ement of physial reality', saying �The elements of the

physial reality annot be determined by a priori philo-

sophial onsiderations, but must be found by an appeal

to results of experiments and measurements. A ompre-

hensive de�nition of reality is, however, unneessary for

our purpose�. Instead they provide a su�ient ondition:

EPR's su�ient ondition for reality:

We shall be satis�ed with the following ri-

terion, whih we regard as reasonable. If,

without in any way disturbing a system, we

an predit with ertainty (i.e., with proba-

bility equal to unity) the value of a physi-

al quantity, then there exists an element of

physial reality orresponding to this physial

quantity.� [1℄

Later in the same paragraph it is made expliit that this

riterion is �regarded not as a neessary, but merely as

a su�ient, ondition of reality�. This is followed by a

disussion to the e�et that, in quantum mehanis, if a

system is in an eigenstate of an operator A with eigen-

value a, by this riterion, there must be an element of

physial reality orresponding to the physial quantity

A. �On the other hand�, they ontinue, if the state of the

system is a superposition of eigenstates of A, �we an no

longer speak of the physial quantity A having a parti-

ular value�. After a few more onsiderations, they state

that �the usual onlusion from this in quantum mehan-

is is that when the momentum of a partile is known, its



3

oordinate has no physial reality�. We are left therefore,

aording to EPR, with two alternatives:

EPR's dilemma: �From this follows that

either (1) the quantum-mehanial desrip-

tion of reality given by the wave funtion is

not omplete or (2) when the operators or-

responding to two physial quantities do not

ommute the two quantities annot have si-

multaneous reality.� [1℄

They justify this by reasoning that �if both of them had

simultaneous reality � and thus de�nite values � these

values would enter into the omplete desription, aord-

ing to the ondition for ompleteness�. And in the ruial

step of the reasoning: �If then the wave funtion provided

suh a omplete desription of reality it would ontain

these values; these would then be preditable [our em-

phasis℄. This not being the ase, we are left with the al-

ternatives stated�. Brassard and Méthot [29℄ (orretly)

pointed out that stritly speaking EPR should onlude

that (1) or (2), instead of either (1) or (2), sine they

ould not exlude the possibility that (1) and (2) ould

be both orret. However, this does not a�et EPR's

onlusion. It was enough for them to show that (1) and

(2) ould not both be wrong, and therefore if one an

�nd a reason for (2) to be false, (1) must be true

2

.

The next setion in EPR's paper intends to �nd a rea-

son for (2) to be false, that is, to �nd a irumstane in

whih one an say that there are simultaneous elements of

reality assoiated to two non-ommuting operators. They

onsider a omposite system omposed of two spatially

separated subsystems SA and SB whih is prepared, by

way of a suitable initial interation, in an entangled state

of the type

|Ψ〉 =
∑

n

cn|ψn〉A ⊗ |un〉B, (1)

where the |ψn〉A denote a basis of eigenstates of an opera-

tor, say Ô1, of subsystem SA and |un〉B denote some (nor-

malised but not neessarily orthogonal) states of SB. If

one measures the quantity Ô1 at SA, and obtains an out-

ome orresponding to eigenstate |ψk〉A the global state

is redued to |ψk〉A ⊗ |uk〉B. If, on the other hand, one

2

Brassard and Méthot's further onlusion that the EPR argu-

ment is logially unsound is not based on this mistake, whih they

aknowledge as irrelevant. Their onlusion is, in the present

authors' opinion, based on a misinterpretation of EPR's paper.

They read the quote �In quantum mehanis it is usually assumed

that the wave funtion does ontain a omplete desription of the

physial reality [...℄. We shall show however, that this assump-

tion, together with the riterion of reality given above, leads to

a ontradition�, as stating that ¬(1) ∧ (2) → false. If that was

the orret formalisation of the argument we would agree with

their onlusion. However, by �riterion of reality given above�

EPR learly mean their "su�ient ondition for reality", not

statement (2).

hooses to measure a non-ommuting observable Ô2, with

eigenstates |φs〉A, one should instead use the expansion

|Ψ〉 =
∑

s

c′s|φs〉A ⊗ |vs〉B, (2)

where |vs〉B represent, in general, another set of states of

SB. Now if the outome of this measurement is, say, the

one orresponding to |φr〉A, the global state is thereby

redued to |φr〉A ⊗ |vr〉B. Therefore, �as a onsequene

of two di�erent measurements performed upon the �rst

system, the seond system may be left in states with two

di�erent wave funtions�. This is just what Shrödinger

later termed steering, and we will return to that later.

Now enters the ruial assumption of loality, justi�ed

by the fat that the systems are spatially separated and

thus no longer interating.

EPR's neessary ondition for loality:

�No real hange an take plae in the seond

system in onsequene of anything that may

be done to the �rst system.� [1℄

Einstein et al. never expliitly used the term `loality',

but took this assumption for granted. Beause of this

we all this a �neessary ondition for loality�, as this

is the most onservative reading of EPR's reasoning: if

they had expliitly de�ned some assumption of loality,

this would ertainly be an impliation of it, but there is

no reason (and no need) to take it as a de�nition.

�Thus�, onlude EPR, �it is possible to assign two dif-

ferent wave funtions to the same reality�. EPR ould

have now simply onluded by noting that two di�er-

ent (pure) states an in general assign unit probability

(and thus an element of reality, aording to the loal-

ity assumption and the su�ient ondition for reality)

to eah of two non-ommuting quantities, in ontradi-

tion of statement (2); this would imply, by way of EPR's

dilemma, that quantum mehanis is inomplete. In-

stead, they onsider a spei� example, depited in Fig. 1,

where those di�erent wave funtions are respetive eigen-

states of position and momentum. Beause they are

anonially onjugate, this guarantees that |un〉 is dif-

ferent from |vs〉 for every possible outome n or s. The

paradox is thus guaranteed to be realised � one annot

attempt to hide behind statistis. If the initial state was

of type

Ψ(xA, xB) =

∫ ∞

−∞
eixAp/~e−ixBp/~dp, (3)

then if one measures momentum p̂A at SA and �nds out-

ome p, the redued state of subsystem SB will be the

one assoiated with outome −p of p̂B. On the other

hand, if one measures position x̂A and �nds outome x,
the redued state of SB will be the one orresponding to

outome x of x̂B . By measuring position or momentum

at SA, one an predit with ertainty the outome of the

same measurement on SB. But p̂
B
and x̂B orrespond to

non-ommuting operators. EPR onlude from this that
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Alice Bob

XA , PA XB , PB

Figure 1: The EPR senario. Alie and Bob are two spatially

separated observers who an perform one of two (position or

momentum) measurements available to eah of them.

�In aordane with our riterion of reality,

in the �rst ase we must onsider the quan-

tity [p̂B℄ as being an element of reality, in the

seond ase the quantity [x̂B ℄ is an element

of reality. But, as we have seen, both wave

funtions [orresponding to −p and x℄ belong
to the same reality.� [1℄

In other words, by using the su�ient ondition for re-

ality, the neessary ondition for loality and the predi-

tions for the entangled state under onsideration, EPR

onlude that there must be elements of reality assoi-

ated to a pair of non-ommuting operators. So horn (2)

of EPR's dilemma is losed, leaving as the only alter-

native option (1), namely, that the quantum mehanial

desription of physial reality is inomplete.

In more modern terminology, the onlusion of EPR

was to infer the existene of a set of loal hidden vari-

ables (LHVs) underlying quantum systems whih should

be able to reprodue the statistis. It is trivial to repro-

due the statistis of EPR's example with LHVs, even

though that is not possible with some entangled states,

as later proved by Bell [7℄. Shrödinger arrived at a dif-

ferent onlusion from an analysis of the paradox raised

by EPR, as we will see in the next setion.

In hindsight, as we now know that the premise of lo-

ality is not justi�ed, we an read EPR's argument as

demonstrating the inompatibility between the premises

of loality, the ompleteness of quantum mehanis and

some of its preditions.

B. Shrödinger's response: The onept of steering

EPR's argument prompted an interesting response

from Shrödinger [6, 12℄. He also onsidered nonfator-

izable pure states desribable by the wave funtion given

by Eq. (1). Shrödinger, however, had of ourse devel-

oped the wave funtion for atoms and believed that it

gave a omplete desription of a quantum system. So

while he was not prepared to aept EPR's onlusion

that quantum mehanis was inomplete, neither ould

he see a �aw with their argument. For this reason he

termed the situation desribed by EPR a paradox.

Clearly Shrödinger was also interested in impliations

arising from omposite quantum systems desribed by

nonfatorizable pure states. He desribed this situation,

oining a famous term, as follows: �If two separated bod-

ies, eah by itself known maximally, enter a situation

in whih they in�uene eah other, and separate again,

then there ours regularly ... [an℄ entanglement of our

knowledge of the two bodies.� [6℄

Having de�ned entanglement, Shrödinger then de-

�ned the proess of disentanglement whih ours when

a non-degenerate observable is measured on one body:

�After establishing one representative by observation, the

other one an be inferred simultaneously ... this proe-

dure will be alled the disentanglement�. This leads us

diretly to the EPR paradox, as Shrödinger desribes

it:

�[EPR alled attention℄ to the obvious but

very disonerting fat that even though we

restrit the disentangling measurements to

one system, the representative obtained for

the other system is by no means independent

of the partiular hoie of observations whih

we selet for that purpose and whih by the

way are entirely arbitrary.� [6℄

Shrödinger desribes this ability to a�et the state of

the remote subsystem as steering :

�It is rather disomforting that the theory

should allow a system to be steered or piloted

into one or the other type of state at the ex-

perimenter's mery in spite of his having no

aess to it.� [6℄

EPR's example onerning position and momentum was

reast in the ontext of steering as

�Sine I an predit either x1 or p1 without in-
terfering with system No. 1 and sine system

No. 1, like a sholar in examination, annot

possibly know whih of the two questions I

am going to ask it �rst: it so seems that our

sholar is prepared to give the right answer

to the �rst question he is asked anyhow. He

must know both answers; whih is an amaz-

ing knowledge.� [6℄

The remainder of Shrödinger's paper is a generalisation

of steering to more than two measurements:

�[System No. 1℄ does not only know these two

answers but a vast number of others, and that

with no mnemotehnial help whatsoever, at

least none that we know of.� [6℄

By �mnemotehnial help� Shrödinger presumably

means a heat-sheet (to use his sholar analogy). That

is, a set of loal hidden variables (LHVs) that determine

the measurement results. Thus, unlike EPR, Shrödinger

expliitly rejeted LHVs as an explanation of steering.

Perhaps beause he had performed expliit alulations

generalizing EPR's example (whih an be explained

trivially using LHVs), he reognized steering as �a ne-

essary and indispensable feature� [30℄ of quantum me-

hanis. We now know, thanks to Bell's theorem, that
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Shrödinger's intuition was orret: there is no possi-

ble loal hidden variable model (or loal mnemotehnial

help) to explain the orrelations between measurement

outomes for ertain entangled states [31℄.

Like EPR, Shrödinger was troubled by the implia-

tions of steerability of entangled states for quantum the-

ory. Unlike EPR, however, he saw the resolution of the

paradox lying in the inorretness of the preditions of

quantum mehanis. That is, he was �not satis�ed about

there being su�ient experimental evidene for � steering

in nature [30℄. This raises the obvious question: what

evidene would have onvined Shrödinger? The pure

entangled states he disussed are an idealization, so we

annot expet ever to observe preisely the phenomenon

he introdued. On the other hand, Shrödinger was quite

expliit that a separable but lassially orrelated state

whih allows �determining the state of the �rst system by

suitable measurement of the seond or vie versa� [30℄

ould never exhibit steering. For this situation, he says

that �it would utterly eliminate the experimenter's in�u-

ene on the state of that system whih he does not touh.�

[30℄. Thus it is apparent that by steering Shrödinger

meant something that ould not be explained by Alie

simply �nding out whih state Bob's system is in, out of

some prede�ned ensemble of states. Following this rea-

soning leads to the general de�nition of steering as pre-

sented in Ref. [11℄. We return to this onept in Se. III.

C. Bohm's version

Although making referene to a general entangled

state, the original EPR argument used the spei� ase of

a ontinuous-variable state for its �nal (and ruial) part.

In his 1951 textbook [8℄, Bohm presented a disussion of

the EPR paradox in a modi�ed senario involving two en-

tangled spin-1/2 partiles. Although trivial in hindsight,

this extension had a fundamental importane. It was the

senario used by Bell in the proof of his now famous the-

orem [7℄ and for most of the subsequent disussions of

Bell inequalities (a Bell-type inequality diretly applia-

ble to ontinuous-variables has only reently been derived

[27℄), and was instrumental for our present understand-

ing of entanglement, and partiularly for its appliations

in quantum information proessing.

In Bohm's version the system of interest is a moleule

ontaining two spin-1/2 atoms in a singlet state, in whih

the total spin is zero:

|Ψs〉 = |z+〉A ⊗ |z−〉B − |z−〉A ⊗ |z+〉B. (4)

Here |z±〉 represent the ±1/2 eigenstate of the spin pro-

jetion operator along the z diretion, Sz. Compare this

state with Eq. (1) used in the EPR argument. If Sz is

measured on system A, and the outome orresponding

to |z+〉A (or |z−〉A) is obtained, the state of subsystem B

is projeted into |z−〉B (or |z+〉B). Thus, one predits an
element of reality for the z omponent of the spin of the

seond atom. But the same state an be written, in the

basis of eigenstates of another spin projetion, say Sx,

|Ψs〉 = |x+〉A ⊗ |x−〉B − |x−〉A ⊗ |x+〉B . (5)

Similarly, the x omponent of the spin of the �rst atom

ould be measured instead, allowing inferene of an ele-

ment of reality assoiated with the x omponent of spin

for the seond atom. With this mapping, the rest of the

argument follows in analogy with EPR's.

Bohm's version of the EPR paradox is oneptually

appealing, but (in his 1951 textbook at least) he did

not present it as an argument for the inompleteness of

quantum theory (as did EPR). Instead, he used it to

argue that a omplete desription of nature need not

ontain a one-to-one orrespondene between elements

of reality and the mathematial desription provided by

the theory. Bohm defended, in 1951, the interpretation

that the quantum state represents only �potentialities� of

measurement results, whih atually our only when a

system interats with an appropriate apparatus. It is u-

rious to �nd that already in 1952 Bohm must have found

this interpretation wanting, sine he then developed his

famous non-loal hidden-variable interpretation of quan-

tum mehanis [32, 33℄, where there is suh a one-to-one

orrespondene.

As the original ontinuous-variable example remained

unrealizable for deades, several early experiments fol-

lowed Bohm's proposal, suh as Bleuler and Bradt (1948)

[34℄, Wu and Shaknov (1950) [35℄ and Koher and Com-

mins (1967) [36℄. All of these su�ered from low detetion

e�ienies and had no onern with ausal separation,

however, making their interpretation debatable.

D. The EPR-Reid riterion

While the EPR argument was logially sound, one

ould blok its onlusion by rejeting those statistial

preditions required to formulate it. As we have dis-

ussed in Se. II B, Shrödinger seems to have found this

an appealing solution. This move is partiularly easy to

make sine the neessary preditions are of perfet or-

relations, unobtainable in pratie due to unavoidable

ine�ieny in preparation and detetion of real physi-

al systems. This problem was onsidered by Furry al-

ready in 1936 [37℄ but experimentally useful riteria for

the EPR paradox were only proposed in 1989 by Reid

[3℄, whih we will disuss in detail later in this setion.

The notation and terminology will losely follow that of

a reent review on the EPR paradox [38℄. The essential

di�erene in the derivation of the EPR-Reid riteria and

the original EPR argument is in a modi�ation of the

su�ient ondition for reality

3

. This ould be stated as

3

Reid's original paper did not expliitly inlude this assumption,

whih was impliit in the logi.
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the following:

Reid's extension of EPR's su�ient

ondition of reality: If, without in any

way disturbing a system, we an predit

with some spei�ed unertainty the value of a

physial quantity, then there exists a stohas-

ti element of physial reality whih deter-

mines this physial quantity with at most

that spei� unertainty.

The senario onsidered is the same as the one for the

EPR paradox above, as depited in Fig. 1, but one does

not need a state whih predits the perfet orrelations

onsidered by EPR. Instead, the two experimenters, Al-

ie and Bob, an measure the onditional probabilities of

Bob �nding outome xB in a measurement of x̂B given

that Alie �nds outome xA in a measurement of x̂A, i.e.,
P (xB |xA). Similarly they an measure the onditional

probabilities P (pB|pA) and the unonditional probabili-

ties P (xA), P (pA). We denote by∆2(xB |xA), ∆2(pB|pA)
the varianes of the onditional distributions P (xB|xA),
P (pB|pA), respetively. Based on a result xA, Alie an
make an estimate of the result for Bob's outome xB . De-
note this estimate xestB (xA). The average inferene vari-

ane of xB given estimate xestB (xA) is de�ned as

∆2
infxB ≡ 〈(xB − xestB (xA))

2〉

=

∫

dxAdxBP (xA, xB)(x− xestB (xA))
2. (6)

Note that this average inferene variane is minimized

when the estimate is just the expetation value of xB
given xA, i.e., the mean of the distribution P (xB|xA) [38℄.
Therefore the optimal (or minimum) inferene variane

of xB (pB) given a measurement x̂A (p̂A) is given by

∆2
minxB = minxest

B
{∆2

infxB}

=

∫

dxAdxBP (xA)∆
2(xB |xA); (7)

∆2
minpB = minpest

B
{∆2

infpB}

=

∫

dpAdpBP (pA)∆
2(pB|pA). (8)

Reid showed, by use of the su�ient ondition of reality

above, that sine Alie an, by measuring either posi-

tion x̂A or momentum p̂B, infer with some unertainty

∆infxB =
√

∆2
inf
xB or ∆infpB =

√

∆2
inf
pB the outomes

of the orresponding experiments performed by Bob, and

sine by the loality ondition of EPR her hoie annot

a�et the elements of reality of Bob, then there must be

simultaneous stohasti elements of reality whih deter-

mine x̂B and p̂B with at most those unertainties. Now

by Heisenberg's Unertainty Priniple (HUP), quantum

mehanis imposes a limit to the preision with whih

one an assign values to observables orresponding to

non-ommuting operators suh as x̂ and p̂. In appropri-

ately resaled units the relevant HUP reads ∆x∆p ≥ 1.

Therefore, if quantum mehanis is omplete and the lo-

ality ondition holds, by use of the extended su�ient

ondition of reality and EPR's neessary ondition for

ompleteness, the limit with whih one ould determine

the average inferene varianes above is

∆infxB∆infpB ≥ 1. (9)

This is the EPR-Reid riterion. Violation of that rite-

rion signi�es the EPR paradox, and has been experimen-

tally demonstrated in ontinuous-variables quantum op-

tis experiments with quadratures [39, 40, 41, 42, 43℄ and

atual position-momentum measurements [44℄. While

these were performed with high detetion e�ieny, none

of these experimental demonstrations have been able

to ahieve ausal separation between the measurements.

For a detailed review see [38℄.

E. Reent developments

Cavalanti and Reid [9℄ reently showed that a larger

lass of quantum unertainty relations an be used to de-

rive EPR inequalities. For example, from the unertainty

relation ∆2x +∆2p ≥ 2, whih follows from ∆x∆p ≥ 1,
one an derive, in analogy with the previous setion, the

EPR riterion

∆2
infxB +∆2

infpB ≥ 2. (10)

Using instead the spin unertainty relation ∆Jx∆Jy ≥
1

2
|〈Jz〉|, one an obtain the EPR riterion

∆infJ
B
x ∆infJ

B
y ≥ 1

2

∑

JA
z

P (JA
z )|〈JB

z 〉JA
z
|, (11)

useful for demonstration of Bohm's version of the EPR

paradox. Here 〈JB
z 〉JA

z
is the mean of the onditional

probability distribution P (JB
z |JA

z ). A weaker version of

Eq. (11),

∆infJ
B
x ∆infJ

B
y ≥ 1

2
|〈JB

z 〉|, (12)

was used by Bowen et al. [43℄ to demonstrate an EPR

paradox in the ontinuum limit for optial systems, with

Stokes operators playing the role of spin operators, in

states where 〈JB
z 〉 6= 0.

An inequality for demonstration of an EPR-Bohm

paradox has also been derived using an unertainty re-

lation based on sums of observables. The unertainty

relation ∆2Jx +∆2Jy +∆2Jz ≥ 〈j〉, where 〈j〉 is the av-
erage total spin, has been used in [15℄ for derivation of

separability riteria, and reently by [10℄ to derive the

following EPR riterion

4

4

More preisely, inequality (57) was presented in that work. The

following follows with the substitution explained below (57).
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∆2
infJ

B
x +∆2

infJ
B
y +∆2

infJ
B
z ≥ 〈jB〉. (13)

All of the above EPR riteria will be rederived from

an unifying perspetive in Setion IV, and shown to be

speial ases of broader lasses of EPR-steering riteria.

III. LOCALITY MODELS; EPR-STEERING

In [11℄, a distintion was made between three loality

models, the failure of eah orresponding to three stritly

distint forms of nonloality. To de�ne those we will �rst

establish some notation.

Let a ∈ Mα and b ∈ Mβ represent possible hoies

of measurements for two spatially separated observers

Alie and Bob, with respetive outomes denoted by the

upper-ase variables A ∈ Oa and B ∈ Ob, respetively.

Here we follow the ase onvention introdued by Bell [7℄.

Alie and Bob perform measurements on pairs of systems

prepared by a reproduible preparation proedure c. We

denote the set of ordered pairs M ≡ {(a, b) : a ∈ Mα, b ∈
Mβ} a measurement strategy. The joint probability of

obtaining outomes A and B upon measuring a and b
after preparation c is denoted by

P (A,B|a, b, c). (14)

The preparation proedure c represents all those vari-
ables whih are expliitly known in the experimental situ-

ation. The joint probabilities for all outomes of all pairs

of observables in a measurement strategy given a prepa-

ration proedure de�ne a phenomenon. Following Bell

[45℄, we represent by λ ∈ Λ any variables assoiated with

events in the union of the past light ones of a, A, b, B
whih are relevant to the experimental situation but are

not expliitly known, and therefore not inluded in c. In
this sense they may be deemed hidden variables, but our

usage will not imply that they are neessarily hidden in

priniple (although in partiular theories they may be).

A. Bell-nonloality

Given that notation, it is said that a phenomenon

has a loal hidden variable (LHV or Bell-loal or lo-

ally ausal) model if and only if for all a ∈ Mα, A ∈
Oa, b ∈ Mβ, B ∈ Ob, there exist (i) a probability dis-

tribution P (λ|c) over the hidden variables, onditional

on the information about the preparation proedure c
5

and (ii) arbitrary probability distributions P (A|a, c, λ)

5

In general one ould have a ontinuum of hidden variables, and

Eq. (15) an be modi�ed in the obvious way. No generality is

gained with that proedure, though, so we use the sum notation

for simpliity.

and P (B|b, c, λ), whih reprodue the phenomenon in the

form:

P (A,B|a, b, c) =
∑

λ

P (λ|c)P (A|a, c, λ)P (B|b, c, λ).

(15)

Any onstraint on the set of possible phenomena that

an be derived from (15) is alled a Bell inequality. A

state for whih all phenomena an be given a LHV model,

when the sets Mα and Mβ inlude all observables on the

Hilbert spaes of eah orresponding subsystems, is alled

a Bell-loal state. If a state is not Bell-loal it is alled

Bell-nonloal.

B. Entanglement

Similarly, it is said that a phenomenon has a quan-

tum separable model, or separable model for simpliity,

if and only if for all a ∈ Mα, A ∈ Oa, b ∈ Mβ , B ∈ Ob,
there exist P (λ|c) as above and probability distributions

PQ(A|a, c, λ) and PQ(B|b, c, λ) suh that

P (A,B|a, b, c) =
∑

λ

P (λ|c)PQ(A|a, c, λ)PQ(B|b, c, λ),

(16)

where now PQ(A|a, c, λ) represent probability distribu-

tions for outomes A whih are ompatible with a quan-

tum state. That is, given a projetor ΠA
a assoiated to

outome A of measurement a, and given a quantum den-

sity operator ρα(c, λ) for Alie's subsystem (as a funtion

of c and λ), these probabilities are determined by

PQ(A|a, c, λ) = Tr{ΠA
a ρα(c, λ)}.

Similar de�nitions apply for Bob's subsystem.

Any onstraint on the set of possible phenomena that

an be derived from assumption (16) is alled a sepa-

rability riterion or entanglement riterion. A state for

whih all phenomena an be given a separable model,

when the sets Mα and Mβ inlude all observables on

the Hilbert spaes of eah orresponding subsystems, is

alled a separable state. A state whih is not separa-

ble is alled non-separable or entangled. This de�nition

is of ourse equivalent to the usual de�nition involving

produt states, sine if there is a separable model for all

possible measurement settings, then the joint state an

be given as a onvex ombination of produt states

ρ =
∑

λ

P (λ|c)ρα(c, λ)⊗ ρβ(c, λ). (17)

Conversely, if the state is given as a onvex ombination

of produt states of form (17), the joint probabilities for

eah pair of measurements are given straightforwardly by

Eq. (16).
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C. EPR-steering

Stritly intermediate between the LHV and separable

models is the loal hidden-state (LHS) model for Bob.

This was argued in [11℄ to be the orret formalisation

of non-steering orrelations. That is, violation of a LHS

model for Bob is a demonstration of EPR-steering, the

onept introdued by Shrödinger to refer to the situ-

ation depited in the EPR paradox. Following the pre-

vious notations, we say that a phenomenon has a no-

Bob-steering model or a LHS model for Bob (or LHS

model for short)

6

if and only if for all a ∈ Mα, A ∈
Oa, b∈ Mβ , B ∈ Ob, there exist P (λ|c), P (A|a, c, λ) and
PQ(B|b, c, λ) de�ned as before suh that

P (A,B|a, b, c) =
∑

λ

P (λ|c)P (A|a, c, λ)PQ(B|b, c, λ).

(18)

In other words, in a LHS model Bob's outomes are

desribed by some quantum state, but Alie's outomes

are free to be arbitrarily determined by the variables λ.
We all any onstraint on the set of possible phenomena

that an be derived from (18) an EPR-steering riterion

or EPR-steering inequality. A state for whih all phe-

nomena an be given a LHS model, when the sets Mα

and Mβ inlude all observables on the Hilbert spaes

of eah orresponding subsystems, is alled an EPR-

steerable state. A state whih is not steerable is alled

non-EPR-steerable.

D. Foundational relevane of EPR-steering

As we have seen in Setion (II B), Shrödinger was

�disomforted� with the possibility of Alie being able

to �steer� Bob's system �in spite of [her℄ having no aess

to it�. In other words, the strange phenomenon revealed

by the EPR paradox whih he termed �steering� was the

possibility that Alie ould prepare, simply by di�erent

hoies of measurement on her own system, di�erent en-

sembles of states for Bob whih are inompatible with a

LHS model, that is, whih annot be explained as aris-

ing from a oarse-graining from a pre-existing ensemble

of loal quantum states for Bob. This is an inherently

asymmetri onept, thus the asymmetry in the formal-

ization given by Eq. (18).

For eah hoie of measurement a, Alie will prepare

for Bob one state out of an ensemble Ea ≡ {ρ̃Aa : A ∈
Oa}. If the state of the global system is Wc, the (unnor-

6

It would perhaps be more logial to use the term LHV/LHS

model to denote no-steering, and the other types of nonloality

by LHV and LHS models respetively, but we will use the simpler

terminology introdued in Ref.[11℄, as we believe there is no risk

of onfusion.

malized) redued state for Bob's subsystem orrespond-

ing to outome A will be

ρ̃Aa ≡ Trα[Wc(Π
A
a ⊗ I)]. (19)

Evidently, the redued density matrix for Bob is inde-

pendent of Alie's hoie: ρβ = Trα[Wc] =
∑

A ρ̃
A
a for all

a � otherwise Alie ould send faster-than-light signals

to Bob.

In Ref. [11℄ it was shown that for pure states Wc, en-
tangled states, steerable states and Bell-nonloal states

are all equivalent lasses. The di�ulty (and interest)

omes when talking about mixed states. In this ase,

one ertainly does not want to onsider it as an exam-

ple of steering when the ensembles prepared by Alie are

just di�erent oarse-grainings of some underlying ensem-

ble of states. After all, these ensembles an be repro-

dued if Bob's loal state is simply lassially orrelated

with some variables available to Alie. These orrelations

would hardly onstitute a puzzle for Shrödinger, as we

have argued in Setion (II B).

Thus, Wiseman and o-workers [11℄ onsidered EPR-

steering to our i� it is not the ase that there ex-

ists a deomposition of Bob's redued state, ρβ =
∑

λ P (λ|c)ρβ(c, λ) suh that for all a ∈ Mα, A ∈ Oa

there exists a stohasti map P (A|a, c, λ) whih allows

all states in the ensembles Ea
to be reprodued as

ρ̃Aa =
∑

λ

P (A|a, c, λ)P (λ|c)ρβ(c, λ). (20)

This de�nition leads diretly to the formulation of a

no-steering model, Eq. (18). Aording to the redued

state (20), the probability for outome B of Bob's mea-

surement b, given an outome A of Alie's measurement

a, is given by P (B|A, a, b, c) = Tr[ΠB
b ρ̃

A
a ]/P (A|a, b, c),

where the denominator is introdued for normalization.

Therefore the joint probability beomes

P (A,B|a, b, c) = Tr[ΠB
b ρ̃

A
a ]

=
∑

λ

P (A|a, c, λ)P (λ|c)Tr[ΠB
b ρβ(c, λ)]

=
∑

λ

P (λ|c)P (A|a, c, λ)PQ(B|b, c, λ),

(21)

as in Eq. (18). The onverse an also be trivially shown.

One ould propose that the de�nition of EPR-steering

should take into aount the fat that Alie's state is

also desribable by quantum mehanis. It an indeed

be argued [46℄ that the onjuntion of the assumptions of

loal ausality and the ompleteness of quantum mehan-

is (for both Alie and Bob) leads diretly to a quantum

separable model, and in that sense EPR's onlusion that

quantum mehanis is inomplete (assuming loal ausal-

ity) ould have been reahed by simply pointing out the

preditions from any entangled state. However, we are

interested in apturing the phenomenon whih is entral



9

to EPR's atual argument, and in Shrödinger's general-

ization of this phenomenon, and hene we are led to the

asymmetry in the de�nition. This is the phenomenon

that Einstein famously desribed as "spooky ation at a

distane" [47℄.

As we will see, this formalization also leads preisely

to existing EPR riteria, putting in a modern ontext

the phenomena that have already been disussed in the

literature as generalizations of the EPR paradox. Fol-

lowing Einstein's informal turn of phrase, we ould even

all them tests of spooky ation at a distane.

E. EPR-steering as a quantum information task

Wiseman and o-workers [11, 28℄ showed that the dis-

tintion between the three forms of nonloality above an

be formulated in a modern quantum information perspe-

tive, as a task. Suppose a third party, Charlie, wants

proof that Alie and Bob share an entangled state. Al-

ie and Bob are not allowed to ommuniate, but they

an share any amount of lassial randomness. If Charlie

trusts both Alie and Bob, he would be onvined i� Alie

and Bob are able to demonstrate entanglement, via viola-

tion of a separable model, Eq. (16). If Charlie trusts Bob

but not Alie, he would be onvined they share entan-

glement i� they are able to demonstrate EPR-steering by

violating the loal hidden state model for Bob, Eq. (18).

If, on the other hand, Charlie trusts neither of them, Al-

ie and Bob would have to demonstrate Bell-nonloality,

violating a loal hidden variable model, Eq. (15). The

reason is that, in the absene of trust, it is possible for

the weaker forms of nonloality to be reprodued with

the use of lassial resoures.

IV. EXPERIMENTAL CRITERIA FOR

EPR-STEERING

The above de�nition of EPR-steering invites the ques-

tion: what are the analogues for EPR-steering of Bell

inequalities or entanglement riteria, i.e., how an one de-

rive what we have termed EPR-steering riteria above?

In Refs. [11℄ and [28℄ the emphasis was on the EPR-

steering apabilities as a property of states, and an anal-

ysis was made of how the steerability of some families

of quantum states depends on parameters whih spe-

ify the states within those families. This was neessary

and useful for proving the strit distintion between en-

tangled, EPR-steerable and Bell-nonloal states. In an

experimental situation, however, this kind of analysis is

insu�ient. Quantum state tomography ould be used

to determine those parameters, but what if the prepared

state is only approximately a member of the studied fam-

ily? What about states whih are not even approximately

members of any useful lass? An experimental EPR-

steering riterion should not depend on any assumption

about the type of state being prepared, but only on the

measured data. Compare this situation with that of Bell

inequalities, where a violation represents failure of a LHV

model, independently of any assumption about the state

being measured.

Another important issue is the relation between the

EPR-type riteria existing in the literature and the above

formalization of EPR-steering. In [11℄ the authors pro-

vided a partial answer by showing that for a lass of

Gaussian states the EPR-Reid riterion is violated if and

only if the state is steerable by Gaussian measurements.

However, the EPR-Reid riterion is valid for arbitrary

states, and therefore their onlusion that it is merely

a speial ase of EPR-steering was not entirely justi�ed.

Furthermore, the relation between this formalization of

EPR-steering and the other existing EPR-type riteria

ited in Se. II E was not disussed. Here we will show

that not only the EPR-Reid riterion but other exist-

ing EPR-type riteria are indeed speial ases of EPR-

steering. We will rederive those inequalities within this

modern approah, and also derive a number of new ri-

teria for EPR-steering.

There is an important di�erene between Bell inequal-

ities and EPR-steering riteria. Sine the LHV model

(15) does not depend on the Hilbert spae struture of

quantum mehanis, Bell inequalities are independent of

the atual measurements being performed. To be lear,

the violation of the inequality will ertainly depend on

whih measurements are performed (as well as the state

being prepared), but the derivation of the inequality it-

self is independent of that information. In a Bell in-

equality the measurements are treated as �blak boxes�,

where the only important feature is (usually, but see [27℄)

their number of outomes. In a LHS model, on the other

hand, Bob's subsytem is treated as a quantum state, and

therefore it is important in general to speify the atual

quantum operators orresponding to Bob's measurement

hoies, just as in an entanglement riterion this infor-

mation is in general required for both Alie and Bob

7

.

The fat that in a no-steering model Bob's probabilities

are onstrained to be ompatible with a quantum state

suggests the use of quantum unertainty relations as in-

gredients in the derivation of riteria for EPR-steering. A

onnetion between unertainty relations and EPR rite-

ria has been pointed out by two of the present authors in

[9℄ (although using the logi of the EPR-Reid riteria, not

the present formalization of EPR-steering), and that be-

tween unertainty relations and separability riteria has

been shown by [15℄, among others.

We identify two main types of EPR-steering riteria:

the multipliative variane riteria, whih inlude the

EPR-Reid riteria and are based on produt unertainty

7

The quali�ation 'in general' here is needed beause a Bell in-

equality is an EPR-steering and an entanglement riterion. The

failure of a LHV model implies the failure of a LHS model and

of a separable model. However, in general a Bell inequality is

ine�ient as a riterion for these weaker forms of nonloality.
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relations involving varianes of observables; and the addi-

tive onvex riteria, based on unertainty relations whih

are sums of onvex funtions.

A. Existene of linear EPR-Steering riteria

An interesting speial ase of additive onvex riteria

will be the linear riteria, based on linear funtions of ex-

petation values of observables, and whih an therefore

be written as the expetation value of a single Hermitian

EPR-steering operator S.
In general, for any (�nite-dimensional) quantum state

W , if the state in question is steerable, then there exists

a linear riterion that would demonstrate EPR-steering

for that phenomenon.

The proof is as follows. If the state is steerable, then

by de�nition there exists a measurement strategy whih

an demonstrate steering with that state. Let M be that

measurement strategy. Consider the set P(M) of all pos-
sible phenomena for M, i.e., the set of all possible sets

of joint probabilities P (A,B|a, b) for all pair of outomes

(A,B) of eah pair of measurements (a, b) ∈ M. Let M
be the number of possible settings for the pair of mea-

surements performed by Alie and Bob (i.e., the number

of elements in M) and let O be the number of possible

pairs of outomes (A,B) for eah pair of measurements.

A phenomenon is de�ned by speifying the MO prob-

abilities for all possible outomes of all measurements

in the measurement strategy. We represent those prob-

abilities as an ordered set, and thus an element P of

P(M) is assoiated to a point in R
MO, where the joint

probability for eah (A,B, a, b) is assoiated to a o-

ordinate xAB
ab of R

MO. For example, in a phenomenon

with 2 measurements per site with 2 outomes eah,

M = O = 4, and the number of probabilities to be

spei�ed is MO = 16. Denoting those measurements

by a ∈ {a1, a2} and the outomes of eah measure-

ment by A ∈ {0, 1} (and similarly for Bob), these

probabilities would be represented by the vetor P =
(P (0, 0|a1, b1), P (0, 1|a1, b1), ..., P (1, 1|a2, b2)).
Now onsider two phenomena assoiated to P1 and P2,

and take a onvex ombination of the two vetors, i.e.,

P3 = pP1 + (1− p)P2, (22)

where 0 ≤ p ≤ 1. If P1 and P2 have a no-steering

model, then P3 also does. The proof is simple: by as-

sumption we an write the joint probabilities given by

P1 and P2 in form (18). Simple manipulation shows

that Eq. (22) an also be written in form (18), with

P3(λ) = pP1(λ)+(1−p)P2(λ). In other words, the set of

phenomena NS(M) ⊂ P(M) whih do not demonstrate

EPR-steering is a onvex set. (The same is also true, of

ourse, for the other forms of nonloality.)

Now onsider a phenomenon Ps ∈ P(M) whih does

demonstrate EPR-steering. By de�nition it is not in

NS(M). Sine, as shown above, that is a onvex set,

we an invoke a well known result from onvex analysis:

there exists a plane in R
MO

separating Ps from points

in NS(M). Denote by n̂ an unit vetor normal to this

plane pointing away from NS(M) and by P0 an arbi-

trary point on the plane. Then all points Ps̄ ∈ NS(M)
satisfy

n̂ · (Ps̄ −P0) ≤ 0. (23)

Inequality (23) is an EPR-steering riterion. If for an

arbitrary point Pc ∈ P(M), n̂ · (Pc−P0) > 0, then Pc /∈
NS and so this phenomenon demonstrates EPR-steering.

We an deompose Pc =
∑

A,B,a,b〈ΠA
a Π

B
b 〉cêAB

ab , where

〈ΠA
a Π

B
b 〉c ≡ P (A,B|a, b, c) = Tr[Wc (Π

A
a ⊗ ΠB

b )] and

{êAB
ab } is an orthonormal basis of R

MO
. Deomposing

n̂ =
∑

A,B,a,b n
AB
ab êAB

ab and denoting d ≡ −n̂ · P0, (23)

beomes

∑

A,B,a,b n
AB
ab 〈ΠA

a Π
B
b 〉c + d ≤ 0. De�ning a Her-

mitian operator S ≡ ∑

A,B,a,b n
AB
ab ΠA

a Π
B
b + dI we an

rewrite the EPR-steering riterion (23) as

Tr[WcS] ≤ 0, (24)

whih ompletes the proof.

However, this is merely an existene proof. It is quite

a di�erent matter to produe the EPR-steering opera-

tor S whih will demonstrate EPR-steering for a given

state Wc. This is analogous to the situation with Bell

inequalities and entanglement, where one an prove the

existene of a Bell operator or entanglement witness for

states whih an demonstrate the orresponding form of

nonloality, but annot easily produe suh operators be-

yond some simple ases.

Furthermore, in the ase of EPR-steering (and also

of entanglement) the matter is even more ompliated:

there is an in�nite (and ontinuous) number of extreme

points in the onvex set of phenomena whih allow a LHS

model (or a separable model) � the set is not a polytope.

Therefore even for a �nite measurement strategy, an in-

�nite number of linear inequalities are needed to fully

speify the set. So in general nonlinear riteria may be

more useful, and we will onsider that general ase in this

paper.

In the following subsetions we will �rst derive the

lass of multipliative variane riteria, whih will redue

to the well-known EPR-Reid riterion as a speial ase.

Then we will introdue the quite general lass of additive

onvex riteria, a speial ase of whih will be the linear

riteria.

B. Multipliative variane riteria

Following [3℄, we onsider a situation where Alie tries

to infer the outomes of Bob's measurements through

measurements on her subsystem. We denote by Best(A)
Alie's estimate of the value of Bob's measurement b as
a funtion of the outomes of her measurement a. As in
Setion IID, the average inferene variane of B given

estimate Best(A) is de�ned by

∆2
infB = 〈(B −Best(A))

2〉. (25)
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Here the average is over all outomes B, A. Sine for a

given A, the estimate that minimizes 〈(B − Best(A))
2〉

is just the mean 〈B〉A of the onditional probabil-

ity P (B|A), the optimal estimate for eah A is just

Best(A) = 〈B〉A. We denote thus the optimal inferene

variane of B by measurement of a as

∆2
minB =

∑

A,B

P (A,B)(B − 〈B〉A)2

=
∑

A

P (A)
∑

B

P (B|A)(B − 〈B〉A)2

=
∑

A

P (A)∆2(B|A) (26)

where ∆2(B|A) is the variane of B alulated from

the onditional probability distribution P (B|A). As ex-
plained above,

∆2
infB ≥ ∆2

minB (27)

for all hoies of Best(A). This minimum is optimal,

but not always experimentally aessible, in EPR ex-

periments, sine it requires one to be able to measure

onditional probability distributions.

We assume that the statistis of Alie's and Bob's ex-

perimental outomes an be desribed by a LHS model,

i.e., by a model of form (18) [omitting heneforth, for

notational simpliity, the preparation c and the mea-

surement hoies a, b from the onditional probabilities

P (A,B|a, b, c), et.℄,

P (A,B) =
∑

λ

P (λ)P (A|λ)PQ(B|λ). (28)

Assuming this model, the onditional probability of B
given A is

P (B|A) =
∑

λ

P (λ)P (A|λ)
P (A)

PQ(B|λ)

=
∑

λ

P (λ|A)PQ(B|λ). (29)

As in Setion III, PQ(B|λ) = Tr[ΠB
b ρλ] represents the

probability for B predited by a quantum state ρλ.
It is a general result that if a probability distribu-

tion has a onvex deomposition of the type P (x) =
∑

y P (y)P (x|y), then the variane ∆2x over the distri-

bution P (x) annot be smaller than the average of the

varianes over the omponent distributions P (x|y), i.e.,
∆2x ≥∑y P (y)∆

2(x|y). Therefore, by (29), the variane
∆2(B|A) satis�es

∆2(B|A) ≥
∑

λ

P (λ|A)∆2
Q(B|λ), (30)

where ∆2
Q(B|λ) is the variane of PQ(B|λ). Using this

result, we an derive a bound for Eq. (26),

∆2
minB ≥

∑

A,λ

P (A, λ)∆2
Q(B|λ) =

∑

λ

P (λ)∆2
Q(B|λ).

(31)

Suppose Bob's set of measurements onsists of

Mβ = {b1, b2, b3}, with respetive outomes labeled by

B1, B2, B3. Alie measures Mα = {a1, a2, a3}. Sup-

pose the orresponding quantum observables for Bob,

{b̂1, b̂2, b̂3}, obey the ommutation relation [b̂1, b̂2] = ib̂3.
The outomes must then satisfy the produt unertainty

relation

∆Q(B1|ρ)∆Q(B2|ρ) ≥
1

2
|〈B3〉ρ|, (32)

where ∆Q(Bi|ρ) and 〈Bi〉ρ are respetively the standard

deviation and the average of Bi in the quantum state ρ.
We will use the unertainty relation above and the

Cauhy-Shwarz (C-S) inequality to obtain an EPR-

steering riterion. The C-S inequality states that, for

two vetors u and v, |u||v| ≥ |u · v|. De�ne u =

(
√

P (λ1)∆Q(B1|λ1)),
√

P (λ2)∆Q(B1|λ2), . . .) and v =

(
√

P (λ1)∆Q(B2|λ1),
√

P (λ2)∆Q(B2|λ2), . . .). Then by

(31)

∆minB1 =
√

∆2
min

B1 ≥ |u|,

∆minB2 =
√

∆2
min

B2 ≥ |v|. (33)

We thus obtain, from (33), the C-S inequality and the

unertainty relation (32),

∆minB1∆minB2 ≥ |u||v|
≥ |u · v|
=
∑

λ

P (λ)∆Q(B1|λ)∆Q(B2|λ)

≥ 1

2

∑

λ

P (λ)|〈B3〉λ|. (34)

Here we denote by 〈B〉λ the expetation value of B al-

ulated from PQ(B|λ). Using again Eq. (29) and the

fat that f(x) = |x| is a onvex funtion, that is, that

∑

x P (x)|x| ≥ |
∑

x P (x)x|, we obtain a bound for the

last term:

∑

λ

P (λ)|〈B3〉λ| =
∑

A3,λ

P (A3, λ)|〈B3〉λ|

≥
∑

A3

P (A3)

∣

∣

∣

∣

∣

∑

λ

P (λ|A3)〈B3〉λ

∣

∣

∣

∣

∣

=
∑

A3

P (A3)|〈B3〉A3
|

≡ |〈Bi〉|inf (35)

Using now (27), we obtain, from (34) and (35), the EPR-

steering riterion

∆infB1∆infB2 ≥ 1

2
|〈B3〉|inf . (36)

This inequality was introdued in [9℄, but its derivation

was based on the oneptual sheme of the EPR-Reid ri-

terion. Here we have shown that it follows diretly from
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the LHS model (28). Its experimental violation implies

the failure of the LHS model to represent the measure-

ment statistis, that is, it is an experimental demonstra-

tion of EPR-steering. It is important to note that the

hoies of measurement a1, a2, a3 used by Alie to infer

the values of the orresponding measurements of Bob are

arbitrary in this derivation; the spei� quantum observ-

ables âi played no role in the above beause in a LHS

model Alie's probabilities are allowed to depend arbi-

trarily on the variables λ. In an experimental situation,

one should hoose, of ourse, those whih an maximise

the violation of (36).

One an also derive riteria involving olletive vari-

anes suh as ∆2(gkAk + Bk), where gk is a real num-

ber. These measurements are often simpler to be re-

alised as they do not require the full onditional dis-

tributions. These are just the average inferene vari-

anes ∆2
inf
Bk = 〈[Bk−Best(Ak)]

2〉 with a linear estimate

Best(Ak) = −gkAk + 〈Bk + gkAk〉, as shown in [38℄. We

an therefore straightforwardly derive, from (36):

∆(g1A1 +B1)∆(g2A2 +B2) ≥
1

2
|〈B3〉|inf , (37)

keeping in mind that the measurements for Alie and the

values of gk are arbitrary, and should be hosen so as to

optimize the violation of the inequality.

1. Examples

The �rst example of a multipliative variane riterion

is the original EPR-Reid riterion [3℄, reviewed in Se-

tion IID. It was developed for ontinuous variables ob-

servables x̂B and p̂B, whih obey an unertainty relation

∆Q(x
B |ρ)∆Q(p

B |ρ) ≥ 1, arising from the ommutation

relation (in appropriate units) [x̂B, p̂B] = 2i. Substitut-

ing B1 = xB , B2 = pB and B3 = 2 in (36) we obtain the

EPR-Reid riterion (9),

∆infx
B∆infp

B ≥ 1. (38)

This provides a formal proof of the inomplete onje-

ture put forth in [11℄, that the EPR-Reid riterion is a

speial ase of EPR-steering. It is a diret onsequene of

the assumption of a LHS model; in partiular this deriva-

tion does not require Reid's extension of EPR's neessary

ondition for reality.

For angular momentum observables, obeying a ommu-

tation relation [ĴB
x , Ĵ

B
y ] = iĴB

z (and its ylial permu-

tations) the orresponding quantum unertainty relation

is ∆Q(J
B
x |ρ)∆Q(J

B
y |ρ) ≥ 1

2
|〈JB

z 〉ρ| (and permutations).

Substituting these in (36), with B1 = JB
x , B2 = JB

y and

B3 = JB
z , we obtain the riterion (11) reviewed in Setion

II E:

∆infJ
B
x ∆infJ

B
y ≥ 1

2
|〈JB

z 〉|inf , (39)

and of ourse, its permutations. Violation of one of these

inequalities orresponds to a demonstration of the EPR-

Bohm paradox disussed in Se. II C. Bowen et al.'s [43℄

inequality (12) is the speial ase in whih Alie's hoie

of measurement used to infer |〈JB
z 〉|inf is the identity.

We an see that it is a weaker riterion than the above

by noting that the onvexity of the funtion f(x) = |x|
implies |〈JB

z 〉|inf ≡ ∑

JA
z
P (JA

z )|〈JB
z 〉JA

z
| ≥ |〈JB

z 〉|. In-
equality (12) therefore will be violated only if (39) also

is. In partiular, (39) an detet EPR-steering for states

in whih the expetation value of JB
z is zero, suh as the

symmetri state originally onsidered by Bohm [8℄. Ap-

pliations of these riteria to spei� lasses of quantum

states will be given in Se. V.

C. Additive onvex riteria

We now present the derivation of the lass of additive

onvex riteria. Suppose one has an unertainty relation

in the broadest sense � a general onstraint whih must

be obeyed by all quantum states of Bob's subsystem �

of form

∑

j

fj(〈Bj〉ρ, αj) ≤ 0, (40)

where j indexes observables on Bob's subsystem, 〈Bj〉ρ
denotes the expetation value of observable bj on a quan-

tum state ρ, αj ∈ R are parameters of the onstraint

whih an take any values in some set Oaj
(the signi�-

ane of whih should be lear soon), and the funtions fj
are onvex on the interval ontaining the possible values

of the �rst argument (i.e., the possible expetation values

〈Bj〉ρ, whih is the onvex hull Hconvex{Obj} of the set

of possible outomes of bj). This last requirement means

that for all x, y ∈ Hconvex{Obj}, for all z ∈ Oaj
and for

all p ∈ [0, 1],

fj(px+ (1− p)y, z) ≤ pfj(x, z) + (1 − p)fj(y, z). (41)

Although the produt unertainty relations onsidered

in the previous setion are not of form (40), sine they

inlude terms like 〈B2
1〉〈B2

2〉, a large lass of unertainty

relations an be written in this form. The negative of the

variane of a variable B, that is, −∆2B = 〈B〉2−〈B2〉, is
a sum of two onvex funtions f1(〈B〉) + f2(〈B2〉), [with
f1(x) = x2 and f2(x) = −x℄ and thus we an obtain

EPR-steering riteria from unertainty relations that in-

volve sums of varianes of observables. For example, the

relation ∆2B1 +∆2B2 ≥ |〈B3〉| [48℄ an be rewritten as

|〈B3〉| − 〈B2
1〉+ 〈B3〉2 − 〈B2

3〉+ 〈B3〉2 ≤ 0, (42)

whih is of form (40), with 5 terms in the sum. All terms

are onvex, sine the oe�ients of the square terms and

absolute-value terms are positive. Any term linear on the

expetation values 〈Bj〉ρ is learly also of that form. As
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in the previous setion, the assumption that the statis-

tis of Alie and Bob an be desribed by a LHS model

of form (28) implies that the onditional probability of

outome B given outome A an be written as

P (B|A) =
∑

λ

P (λ|A)PQ(B|λ). (43)

The average of this onditional probability,〈B〉A, an be

thus written as

〈B〉A =
∑

λ

P (λ|A)〈B〉λ, (44)

and we remind the reader that 〈B〉λ ≡
∑

B PQ(B|λ)B =

Tr{b̂ ρλ}.
If f is a onvex funtion, (44) then implies, for all A,

f (〈B〉A, A) = f

(

∑

λ

P (λ|A)〈B〉λ, A
)

≤
∑

λ

P (λ|A) f (〈B〉λ, A) . (45)

Taking the average over A we obtain

∑

A

P (A) f (〈B〉A, A) ≤
∑

A,λ

P (A, λ) f (〈B〉λ, A) . (46)

We now introdue the subsripts j, sum both sides of (46)

over j and apply the quantum onstraint (40) to obtain

∑

j,Aj

P (Aj) fj
(

〈Bj〉Aj
, Aj

)

≤
∑

Aj ,λ

P (Aj , λ)
∑

j

fj (〈Bj〉λ, Aj) ≤ 0 . (47)

Introduing the simplifying notation Eb|a[fj ] ≡
∑

Aj
P (Aj) fj

(

〈Bj〉Aj
, Aj

)

, we write the general EPR-

steering riterion

∑

j

Eb|a[fj ] ≤ 0 . (48)

A weaker version of the inequality (i.e., one that detets

steerability less e�iently) an be obtained by using the

following bound, whih is a onsequene of the onvexity

of fj, when fj does not depend expliitly on Aj :

fj(〈Bj〉) ≤ Eb|a[fj]. (49)

One an therefore substitute Eb|a[fj] by fj(〈Bj〉) for

some j in (48) and the inequality still holds.

1. Examples: riteria from inferene varianes

We will now give some examples of riteria that an be

obtained with the general form of (48).We note, to make

ontat with the previous notation, that when the fj's
involve varianes, the orresponding expressions on the

left-hand side of (48) are just

∑

A

P (A)
(

〈B〉2A − 〈B2〉A
)

= −∆2
minB, (50)

as de�ned on (25). As before, the bound

∆2
infB ≥ ∆2

minB (51)

an be used in the derivation of the inequalities.

We start onsidering arbitrary observables obeying

ommutation relation [b̂1, b̂2] = ib̂3, and use the uner-

tainty relation ∆2(B1|ρ) + ∆2(B2|ρ) ≥ |〈B3〉ρ|, whih is

of form (40) as shown above. Expanding this in terms of

the fj's, substituting on (48) and using (50) and (51) we

obtain the EPR-steering inequality

∆2
infB1 +∆2

infB2 ≥ |〈B3〉|inf , (52)

where as before |〈B3〉|inf ≡
∑

A3
P (A3)|〈B3〉A3

|, and the

bound |〈B3〉|inf ≥ |〈B3〉| an be used if needed.

For ontinuous variables observables [x̂B, p̂B] = 2i,
(52) beomes inequality (10),

∆2
infx

B +∆2
infp

B ≥ 2, (53)

and for angular momentum observables inequality (52)

reads

∆2
infJ

B
x +∆2

infJ
B
y ≥ |〈JB

z 〉|inf . (54)

Inequality (53) has been derived (within the EPR-Reid

formalism) in [9℄. However, these inequalities are weaker

than the orresponding multipliative variane riteria:

sine for any pair of real numbers x2+y2 ≥ 2xy, inequal-
ity (36) diretly implies (52) and thus the latter an be

violated only if the former is.

Another speial ase of additive onvex riterion has

been reently derived in [10℄. Consider Shwinger spin

operators de�ned as

ĴB
x =

1

2

(

b̂−b̂
†
+ + b̂†−b̂+

)

,

ĴB
y =

1

2i

(

b̂−b̂
†
+ − b̂†−b̂+

)

,

ĴB
z =

1

2

(

b̂†+b̂+ − b̂†−b̂−
)

,

N̂B =
(

b̂†+b̂+ + b̂†−b̂−
)

, (55)

where b̂± are boson operators for two �eld modes of Bob's

subsystem, obeying ommutation relations [b̂±, b̂
†
±] = 1.

Similar operators are de�ned for Alie. The situation of

the EPR-Bohm setup is therefore extended with number

measurements. We now use the quantum unertainty

relation [15℄

∆2(JB
x |ρ)+∆2(JB

y |ρ)+∆2(JB
z |ρ) ≥ 1

4
∆2(NB|ρ)+1

2
〈NB〉ρ,
(56)
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and rewrite it in the form of (40), −∆2(JB
x |ρ) −

∆2(JB
y |ρ)−∆2(JB

z |ρ) + 〈NB〉ρ/2 ≤ 0, dropping the pos-

itive but non-onvex term ∆2NB/4. Substituting this in

(48), and using (50) and (51), we obtain:

∆2
infJ

B
x +∆2

infJ
B
y +∆2

infJ
B
z ≥ 〈NB〉

2
. (57)

In the angular momentum basis {|j,m〉}, where j(j +

1) are the eigenvalues of Ĵ2 = (Ĵ2
x + Ĵ2

y + Ĵ2
z ) and

m are the eigenvalues of Ĵz, the operator N̂/2 orre-

sponds to the �total angular momentum� operator ĴT =
∑

j j
∑

m |j,m〉〈j,m|, i.e., the operator whih has a spe-

tral deomposition in terms of projetors onto eah sub-

spae of onstant j, with orresponding eigenvalues j. 8

Any riteria in whih 〈NB〉 ours an therefore be mod-

i�ed by substituting 〈NB〉/2 = 〈JB
T 〉. For a spin-j par-

tile, this is just 〈JB
T 〉 = j. With this substitution we

obtain inequality (13).

Using again the linear inferenes Best(Ak) = −gkAk +
〈Bk + gkAk〉 as disussed above Eq. (37), we an derive

diretly from (57), (53) and (52) the respetive riteria

∆2(gxJ
A
x +JB

x )+∆2(gyJ
A
y +JB

y )+∆2(gzJ
A
z +JB

z ) ≥ 〈NB〉
2

,

(58)

∆2(gxx
A + xB) + ∆2(gpp

A + pB) ≥ 2, (59)

and

∆2(g1A1 +B1) + ∆2(g2A2 +B2) ≥ |〈B3〉|inf . (60)

Again we should keep in mind that the orresponding op-

erators for Alie, and the values of gk, are arbitrary, and
therefore should be hosen so as to optimize the violation

of the riteria. Inequality (59), whih was introdued in

[38℄, is the analogue for EPR-steering of the entanglement

riteria of Duan et al. [13℄ and Simon [14℄. Note that the

bound is half that of those authors (making it harder to

violate), a onsequene of the fat that EPR-steering is

a stronger form of nonloality than entanglement. In-

equality (58) is the analogue of the separability riteria

of (author?) [15℄.

The inferene variane riteria have an immediate in-

terpretation as a demonstration of the situation desribed

by EPR, as they are based on an apparent violation of

the unertainty priniple by inferene of the varianes

of the distant subsystem. However, in general any on-

straint that an be derived from the LHS model is an

EPR-steering riterion, and by the arguments of Se-

tions II and III, a demonstration of the EPR paradox.

We present below examples of suh more general rite-

ria whih an be derived as speial ases of the additive

onvex riterion (48).

8

Note that the angular momentum-square operator J2
is not the

square of this operator. Although they have the same eigenve-

tors, the eigenvalues of J2
are j(j + 1) and not j2.

2. Examples: linear riteria

We �rst illustrate this approah by deriving a simple

riteria for the ase of two qubits. We start with a quan-

tum onstraint on expetation values of spin-1/2 observ-

ables:

〈Jx〉ρ + 〈Jy〉ρ ≤
√
2

2
. (61)

This must be satis�ed by any quantum state of a qubit:

1√
2
(Ĵx+ Ĵy) ≡ Ĵθ is simply the observable orresponding

to the spin projetion on a diretion at θ = 45o between

x and y, and so for any quantum state ρ, 〈Ĵθ〉ρ ≤ 1

2
.

Now it must then also be the ase that, for a pair of

observables ĴB
x , Ĵ

B
y for Bob and ĴA

x , Ĵ
A
y for Alie, and

where αi ∈ {− 1

2
, 1
2
} represent possible values for the out-

omes of observable ĴA
i ,

αx〈JB
x 〉ρ + αy〈JB

y 〉ρ ≤
√
2

4
, (62)

for all values of αx, αy. This is easy to see by not-

ing that the di�erent values of (αx, αy) lead to one of

∓ 1

2
〈JB

x ± JB
y 〉, and for eah of these the argument of the

previous paragraph leads to (62). This is of the form

(40), and therefore, by substituting on (48) and noting

that

∑

A P (A)J
A
i 〈JB

i 〉A = 〈JA
i J

B
i 〉, it leads to the EPR-

steering riterion

〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉 ≤

√
2

4
. (63)

Following a similar proedure, and using the quantum

onstraint αx〈JB
x 〉ρ + αy〈JB

y 〉ρ ≥ −
√
2

4
, whih is valid

for the same reason as (62), we an derive the inequality

〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉 ≥ −

√
2

4
. These two inequalities an be

summarised in the EPR-steering riterion

∣

∣〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉
∣

∣ ≤
√
2

4
. (64)

A similar, more powerful inequality an be derived

from the analogous onstraint on three observables

−
√
3

2
≤ αx〈Jx〉ρ + αy〈Jy〉ρ + αz〈Jz〉ρ ≤

√
3

2
, (65)

whih follows, as (62), from the fat that Ĵφ ≡ 1√
3
(Ĵx +

Ĵy + Ĵz) is another observable orresponding to a spin

projetion. From (65) we an derive, following similar

steps as above, the EPR-steering riterion

∣

∣〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉+ 〈JA

z J
B
z 〉
∣

∣ ≤
√
3

4
. (66)

We an now generalize this to an arbitrary to-

tal spin. For a spin-j partile, the quantum on-

straint |αx〈Jx〉ρ + αy〈Jy〉ρ + αz〈Jz〉ρ| ≤
√
3j2 holds.



15

To see this, note that Ĵφ ≡ (αxĴx + αyĴy +

αzĴz)/
√

α2
x + α2

y + α2
z is again a spin projetion opera-

tor, and that

√

α2
x + α2

y + α2
z ≤

√
3j. Following the same

steps as for the derivation of (64) this leads to the EPR-

steering inequality

∣

∣〈JA
x J

B
x 〉+ 〈JA

y J
B
y 〉+ 〈JA

z J
B
z 〉
∣

∣ ≤
√
3j2. (67)

3. Generalisation for positive operator valued measures

(POVMs)

In all of the above we have assumed that the mea-

surements on Bob's system an be desribed by observ-

ables, with projetion operators assoiated to eigenval-

ues. There is no loss of generality in this assumption if

we allow Bob's system to be supplemented by an anilla

system, unorrelated with any other system [49℄. How-

ever it is often onvenient to onsider generalized mea-

surements, desribed by a POVM, that is, a set of posi-

tive operators Fµ assoiated to measurement outomes µ,
whih sum to unity. In terms of �nding appropriate EPR-

steering riteria, the additive onvex riteria are the ones

most naturally generalizable to this ase. We replae the

fj(〈Bj〉, αj) in Eq. (40) by

fj({〈F j
µ〉ρ : µ}, αj),

where for all j and µ, F j
µ ≥ 0, and for all j,

∑

µ F
j
µ = 1.

The onvexity requirement in 〈Bj〉ρ would be replaed

by a more general onvexity requirement, that for all j
and αj , all ρ and ρ′, and 0 ≤ p ≤ 1,

fj({〈F j
µ〉ρ′′ : µ}, αj)

≤ pfj({〈F j
µ〉ρ : µ}, αj) + (1− p)fj({〈F j

µ〉ρ′ : µ}, αj),

(68)

where ρ′′ = pρ + (1 − p)ρ′. The derivation of Eq. (48)

then follows exatly as before.

V. APPLICATIONS TO CLASSES OF

QUANTUM STATES

We now apply the riteria derived in the previous se-

tion to some lasses of quantum states of experimental in-

terest. Violations of those inequalities amount to demon-

strations of the e�et termed �steering� by Shrödinger

in his response to EPR, reviewed in Se. II B. In the

ontinuous variables ase, this provides a more modern

and unifying approah to the demonstration of the or-

relations onsidered by EPR in their original example,

disussed in Se. II A. In the disrete variables ase this

represents a modern approah to the demonstration of

EPR-Bohm orrelations disussed in Se. II C. We on-

sider eah ase in turn.

A. Continuous variables

We onsider as a ontinuous variable example the ase

of two-mode Gaussian states prepared by optial para-

metri ampli�ers [50℄. Suh states inlude the original

EPR state as a speial ase with zero entropy and in�-

nite energy. We de�ne x̂A = â+ â† and p̂A = −i(â− â†)
as the position and momentum observables to be mea-

sured by Alie, where â and â† are the annihilation and

reation operators for a bosoni �eld mode at Alie's sub-

system. We de�ne x̂B, p̂B analogously for Bob's subsys-

tem in terms of the annihilation and reation operators

b̂ and b̂† for his �eld mode. When the entanglement is

symmetri between the two modes the ovariane ma-

trix desribing suh states has a partiularly simple form.

The ontinuous variable entanglement properties of suh

a state have reently been haraterized experimentally

[50℄.. In this ase the ovariane matrix of the state W
has just two parameters, µ and n̄:

CM[Wµ
n̄ ] = V αβ

2 =







γ 0 δ 0
0 γ 0 −δ
δ 0 γ 0
0 −δ 0 γ






, (69)

where γ = 1 + 2n̄ and δ = 2η
√

n̄(1 + n̄). Here n̄ is the

mean photon number for eah party, and µ is a mixing

parameter de�ned suh that the ovariane matrix is lin-

ear in µ and that 0 ≤ µ ≤ 1, suh that µ = 0 orresponds
to an unorrelated state and µ = 1 orresponds to a pure
state [28℄. It has been shown by Duan et al. [13℄ and Si-

mon [14℄ that if a quantum state suh asWµ
n̄ is separable

it must satisfy

∆2(xA − xB) + ∆2(pA + pB) ≥ 4. (70)

It is straightforward to show that for states de�ned by

Eq. (69) this leads to the ondition that

µ >
n̄

√

n̄(1 + n̄)
(71)

indiates entanglement. This ondition is plotted in

Fig. 2, where states above the line are entangled.

As disussed in Se. IV, the generalization of Duan et

al. and Simon's entanglement riterion to EPR-steering

is given by inequality (59). For states of the form of

Eq. (69), the relevant riterion beomes, using the opti-

mal sale fators gx = −1 and gp = 1,

∆2(xA − xB) + ∆2(pA + pB) ≥ 2. (72)

For the two-mode symmetri states we �nd

∆2(xA − xB) = ∆2(pA + pB) = 2γ − 2δ. (73)

Substituting into (72) and rearranging we �nd that

µ >
1 + 4n̄

4
√

n̄(1 + n̄)
(74)
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Figure 2: (Color on-line.) Boundaries between di�erent

lasses of symmetri two-mode Gaussian states. The lower

line (green, dotted) is an entanglement boundary given by

Eq. (70): states above the line are entangled. The entral

(blue, dashed) line is a steerability (lower) boundary based

on Eq. (77) for the EPR paradox: states above this line are

steerable. The upper line (red, full) is a seond steerability

(lower) boundary based on a generalisation of the entangle-

ment riterion of Duan et al. [13℄ and Simon [14℄: states

above this line are steerable.

indiates EPR-steering. This ondition is plotted in

Fig. 2, where states above the line are steerable. For

this partiular state the additive onvex riterion (72)

and the orresponding multipliative riterion

∆2(xA − xB)∆2(pA + pB) ≥ 1, (75)

derived from (37), give the same results, sine both vari-

anes are idential in this ase.

For omparison, reall the EPR-Reid riterion, (38),

whih tells us that the violation of

∆infx
B∆infp

B ≥ 1 (76)

indiates EPR-steering. Evaluating the left hand side

of (76) for two-mode symmetri Gaussian states, using

the optimal inferene varianes ∆minx
B
as de�ned in Eq.

(26), we thus obtain

µ >

√

1 + 2n̄

2(1 + n̄)
(77)

as a ondition indiating the demonstration of EPR-

steering. Also in this ase inequality (76) detets EPR-

steering just as well as the analogous additive riterion

(53), sine both inferene varianes for xB and pB have

the same value. In Fig. 2 we see that (76) provides a

lower bound on steerability than that provided by (72)

(although for n̄ ≫ 1 the two bounds beome arbitrar-

ily lose). This is not surprising when one remembers,

as disussed in Se. IVB, that the optimal onditional

varianes (76) are lower bounds for the linear-estimate

inferene of the form ∆2(gxx
A + xB). In other words,

as pointed out in Se. IV, the EPR riterion is a more

sensitive witness to EPR-steering than inequality (72),

derived as the steerability generalisation of the entangle-

ment riterion of Duan et al. and Simon.

B. Disrete variables

To illustrate the use of EPR-steering riteria in the dis-

rete variable ase we will make use of the Werner states

[51℄. For the ase of a two-dimensional subsystems, these

are a natural mixed-state generalization of the singlet

state onsidered by Bohm, and an be written as follows

ρW = µ|ψS〉〈ψS |+ (1− µ)
I

4
, (78)

where |ψS〉 = 1√
2
(| 1

2
〉| − 1

2
〉 − | − 1

2
〉| 1

2
〉), I is the identity

over both subsystems, and µ is a mixing parameter that

an take values µ ≤ 1, with µ = 0 again orresponding

to a produt state [11℄.

It was shown in Ref. [11℄ that the Werner state is steer-

able in theory with an in�nite number of measurements

whenever µ > 1/2. In order to demonstrate EPR-steering

in a realisti experimental setup it is su�ient to instead

test a suitable EPR-steering riterion.

We will �rst evaluate the riterion given by inequality

(39). Calulation shows that for the Werner state (78),

∆2
infJ

B
z =

1

4
(1− µ2)

and

|〈JB
z 〉|inf =

µ

2
.

The Werner state is rotationally symmetri, and thus

∆infJ
B
x = ∆infJ

B
y = ∆2

inf
JB
z . We therefore �nd that

inequality (39) will be violated (demonstrating EPR-

steering) for µ > (
√
5 − 1)/2 ≈ 0.62. This inequality

annot therefore detet all steerable states.

For inequality (57) we make the substitution (as ex-

plained below Eq. (57)) 〈NB〉/2 = j = 1/2, and with

the values for ∆2
inf
JB
z a simple alulation reveals viola-

tion whenever µ > 1/
√
3 ≈ 0.58, This inequality, more

symmetri between the di�erent measurements, thus de-

tets more steerable states (within the lass of Werner

states) than the less symmetri (39).

We now proeed to evaluating the linear inequalities

(64) and (66). The expetation value of the produts

of observables required for those inequalities, given the

Werner state, is

〈JA
i J

B
i 〉 = −µ

4
,

where again by symmetry those expetation values are

the same for all i ∈ {x, y, z}. Substituting in (64) we
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obtain a violation for µ > 1/
√
2 ≈ 0.71 and in (66),

violation for µ > 1/
√
3 ≈ 0.58. The �rst inequality, with

only two measurements per site, performs worse (detets

less steerable Werner states) than (39), but the seond,

with three measurements, detets a larger range. Note

that the range of states for whih violation is predited

using (57) is the same as that deteted with (66). The

latter, however, o�ers the advantage of being simpler to

measure and alulate.

VI. CONCLUSION

We have developed a general theory of EPR-steering

riteria. These riteria are the experimental onse-

quenes of a LHS model for one party (Bob), just as Bell

inequalities are the experimental onsequene of a LHV

model and entanglement riteria are onsequenes of a

quantum separable model. The essential ingredients in

the derivation of the riteria are the onvexity of the set

of orrelations that allow a LHS model and (generalized)

unertainty relations whih de�ne bounds on how Bob's

outomes an be desribed by quantum states.

Analysing the di�erent forms of nonloality, we see

that they di�er only in how they treat the states of Al-

ie and/or Bob, but they are all onvex ombinations

of separable probability distributions. Some of the ri-

teria derived here were therefore similar to known en-

tanglement riteria, but with a more restritive bound

due to the fat that Alie's subsystem is treated as an

arbitrary hidden-variable state. However others, in par-

tiular the linear EPR-steering riteria, are entirely new.

These riteria open the possibility to new experimental

demonstrations of the EPR-steering phenomenon, with

lose links to topis in quantum information inluding

entanglement witnesses and quantum ryptography.
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