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We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The

scheme is based on linear optical components, nonclassical resources, and the joint projective action of a

photon counter and a homodyne detector. We experimentally characterize the gate for the coherent states of the

computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters

of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere.
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Measurement-based, linear optical quantum processors

rely on offline prepared resources, linear optical transforma-

tions, and measurement-induced operations [1]. Among all

measurement-based protocols, the most famous ones are the

cluster state quantum processor where universal operations

are executed by measuring a large entangled cluster state

[2], and the linear quantum computer approach proposed by

Knill, Laflamme, and Milburn [3]. The latter method is based

on single-photon resources that interfere in a linear optical

network and subsequently are measured to enforce the desired

operation. Despite its seeming simplicity, the implementation

of a fault tolerant operating algorithm is complex as it requires

a very large overhead.

An alternative approach to measurement-based linear

quantum computing has been put forward by Ralph et al.
[4]. Rather than using discrete degrees of freedom (e.g.,

the polarization) of a single photon as the computational

basis, it was suggested to use two mesoscopic coherent

states |α〉 and |−α〉, where α is the amplitude. Although

these states are only approximately orthogonal (〈α|− α〉 �= 0),

resource-efficient and fault-tolerant quantum gates can be

implemented: For a large coherent amplitude, that is, α > 2,

deterministic gates can in principle be realized, although the

experimental implementation is very challenging [5]. On the

other hand, by employing a simpler physical implementation,

nondeterministic gates can be realized for any value of α, and

for α > 1.2, the scheme was theoretically shown to be fault

tolerant and resource efficient [6].

An even simpler implementation of a universal set of

nondeterministic quantum gates was recently suggested by

Marek and Fiurášek [7]. They proposed the physical realization

of a single-mode and a two-mode phase gate as well as the

Hadamard gate. In this Rapid Communication we present a

proof of principle experiment of the probabilistic Hadamard

gate for coherent state qubits. The implemented protocol is

based on a squeezed state resource, linear operations as well

as two projective measurements of discrete and continuous

variable types. By injecting the computational basis states

(|α〉 and |− α〉) into the gate we partially characterize
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its function by reconstructing the Wigner functions of the

transformed output states and calculate the fidelity with an

ideally transformed state. Based on these results we perform a

simulation of the gate performance for arbitrary coherent state

qubits.

A Hadamard gate transforms the computational basis states

|± α〉 into the diagonal basis states (|α〉 ± |−α〉)/
√

N±,

which we refer to as the even and odd coherent state qubits

(CSQs) [8–15]. Such a transformation can be performed

probabilistically using the circuit shown in Fig. 1(a). The gate

is based on a supply of coherent state superposition resources

which are assumed to have the same amplitude as the coherent

states of the computational basis. The gate works by displacing

the arbitrary CSQ input state |ψin〉 = (u|α〉 + v|−α〉)/
√

N ,

followed by a nondistinguishable subtraction of a single

photon, from either the displaced input or the resource state.

Physically, this can be done by reflecting a small part of either

state using highly asymmetric beam splitters (ABS1,ABS2),

interfering the resulting beams on a beam splitter (BS) with

transmittivity t and reflectivity r , and detecting one photon

at the output with a single-photon detector. Theoretically

this is described by the operator râ + t b̂, where â and b̂

are annihilation operators corresponding to the subtraction

of a photon from the displaced input and the coherent

state superposition resource, respectively. As a final step the

two-mode state is projected onto the single-mode quadrature

eigenstate |x〉, where x is the amplitude quadrature, by using

a homodyne detector (HD). The resulting output state is

u
|α〉 + |− α〉

√
N+

+ Y1(u + vZ)
|α〉 − |− α〉

√
N−

, (1)

where

Y1 =
t

2r

√

N−

N+
, Z =

〈x|0〉
〈x|2α〉

. (2)

By using a beam splitter (BS) with t ≪ r and setting the

x quadrature such that Z ≫ 1 and ZY1 = 1, the Hadamard

transform is implemented. The gate is probabilistic, and

implemented by a hybrid detection system, using both discrete

and continuous variable projections [16,17]. Its success is

conditioned on the joint measurement of a photon and a

quadrature measurement outcome with the value x.

050301-11050-2947/2011/84(5)/050301(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.050301


RAPID COMMUNICATIONS

ANDERS TIPSMARK et al. PHYSICAL REVIEW A 84, 050301(R) (2011)

FIG. 1. (Color online) (a) Schematic of the Hadamard gate. The

input coherent state qubit (CSQ) is displaced (D̂) and mixed with

a resource state at a beam splitter (BS). The output of the gate

is conditioned by a single-photon detection (〈1|) and a homodyne

measurement (〈x|). (b) Gate fidelity as a function of the CSQ

amplitude for an ideal coherent state superposition resource (solid

green/light gray) and the squeezed state resource (dashed red/gray).

The degree of squeezing that optimizes the fidelity is represented by

the dotted blue/dark gray curve.

As an even coherent state superposition with small am-

plitude is reminiscent of a squeezed vacuum state, and this

latter state is experimentally easier to prepare, we will in the

following consider the replacement of the ideal resource with a

squeezed vacuum state. With this substitution, the transformed

state will have the following form:

uŜ(s)|0〉 + Y2(u + vZ)Ŝ(s)â†|0〉, (3)

where s is the squeezing parameter which is related to the

squeezing variance by V = e−2s , and the parameter Y2 is now

given by

Y2 = −t sinh(s)/(2rα). (4)

Again, the requirement for optimal implementation of the

Hadamard transform is Z ≫ 1 and ZY2 = 1. Using this result

we calculate the expected gate fidelity for various amplitudes

α as shown by the dashed red/gray curve in Fig. 1(b). For

the squeezed vacuum resource, we optimize the squeezing

degree (shown by the dotted blue/dark gray curve) to obtain

the highest fidelity which reaches unity for α = 0. At higher

amplitudes, the resource deviates from the ideal coherent state

superposition and thus the fidelity decreases. For comparison,

we also plot the expected gate fidelity for the case of an ideal

resource (the solid green/light gray line). In the experiment

described below we use α = 0.8, which gives a reasonable

trade-off between fidelity (F = 0.97), required squeezing

(V = 2.6 dB), and success probability.

The experimental setup is presented in Fig. 2. Nearly

Fourier-limited picosecond pulses (4.6 ps) generated by a

cavity-dumped Ti:sapphire laser with a repetition rate of

815 kHz and a central wavelength of 830 nm are frequency

doubled [second-harmonic generation (SHG)] by single pass-

ing a 3-mm-long periodically poled KTiOPO4 nonlinear

crystal (PPKTP1). Up-converted pulses at 415 nm pumps

a second crystal (PPKTP2) which is phase matched for

degenerate collinear optical parametric amplification (OPA),

thus yielding up to 3 dB of vacuum squeezing, in the vertical

polarization. This state is used as a resource for the Hadamard

gate. An adjustable fraction of a horizontally polarized mode

at 830 nm passes the OPA crystal unchanged and serves as

the input coherent state to the gate. Approximately 7.5% and

FIG. 2. (Color online) Experimental setup for the coherent state

qubit Hadamard gate.

1.5% of the coaxially propagating resource and input modes,

respectively, are reflected off an asymmetric beam splitter

(ABS) and transmitted through a half-wave plate (HWP) and

a polarizing beam splitter (PBS1), which in combination acts

as a variable beam splitter (BS), thus mixing the input mode

and the resource mode. The transmittance |t |2 of the BS is

set to 25%. The output is spatially and spectrally filtered by

a single-mode optical fiber (SMF) and a narrow interference

filter (IF) with a bandwidth of 0.05 nm and detected by a

single-photon counting module based on a silicon avalanche

photodiode (APD) with a dark count rate of 20 ± 4 per second.

The total efficiency of the APD arm reaches 25 ± 4%.

The transmitted fraction of the modes after the asymmetric

beam splitter is superimposed with a bright local oscillator

(LO) at a polarizing beam splitter (PBS2). The amplitude

quadrature is measured on the reflected mode by homodyne

detection with a fixed relative phase set to zero. The recording

of the measurement results was done by correlating the

APD detection events with a synchronization signal from

the laser cavity dumper through a coincidence circuit to

decrease the probability of dark events. Every time a photon

was detected by the APD within the accepted time slot, the

homodyne signal was sampled by an oscilloscope running in a

memory segmentation regime and fed to a computer where the

corresponding quadrature value was processed. The state at the

output of the gate is measured with another homodyne detector

with the relative phase of the LO scanned over a period and

then reconstructed using maximum-likelihood-based quantum

state tomography [18]. In the reconstruction we corrected

for the total detection efficiency of the homodyne detector,

which was estimated to be 77 ± 2%, including efficiency

of the photodiodes (93 ± 1%), visibility (95 ± 1%), and

transmission efficiency (93 ± 1%).

Making a full experimental investigation of the gate

performance would require access to states in the diagonal

basis. In our experiment we did not have access to these

diagonal states, which prevents us from performing a full

characterization of the gate performance. The gate was solely

tested for the computational basis states |± α〉, which after the

displacement operation D̂(α) corresponds to the injection of

|0〉 and |2α〉, where α = 0.8 ± 0.2 in our case. The uncertainty

is due to the imperfect calibration of total losses of the whole

setup. As described, the gate is heralded by conditioning on two

different measurement outcomes—the APD detection event

and a certain outcome of the first homodyne detector. It can

be seen that the conditional homodyning only plays a role
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when we inject a CSQ into the gate, i.e., when u,v �= 0.

With coherent states as the input, the solution is to choose

a narrow heralding window that would balance the success

probabilities of the gate for those basis states. For the input

state |−α〉 the APD detection probability was of the order of

10−3 while for the |α〉 input state, the probability was of the

order of 10−2. From this we can see that we need to choose a

heralding window that will balance out the factor of 10. Based

on the experimental data we found its optimal position x = 0.4

and the width of 0.02 that would give us an overall success

probability of the order of 10−5.

The reconstructed output states for both input states |−α〉
and |α〉 can be seen in Fig. 3. For the |−α〉 input, the gate

yields a state which closely resembles a small odd cat state,

which is what we expect from the gate operation. We found

the fidelity between the prepared state and the ideal CSQ,

(|α〉 − |−α〉)/
√

N−, is maximized for α = 0.75 and reaches

a value of F−α = 0.65 ± 0.04. The nonclassicality of the

superposition state produced by the Hadamard gate can be

seen from the negativity of the corresponding Wigner function,

which is W (0,0) = −0.11 ± 0.02, which is comparable to

previous experiments where photon subtraction has been used

to prepare non-Gaussian states [9–15]. The nonclassical effects

were also observable without correction, with a fidelity of

F−α = 0.55 ± 0.04 and a value at the origin of W (0,0) =
−0.05 ± 0.02. For the |α〉 input, the output state closely

resembles a squeezed state, approximating a small even CSQ,

(|α〉 + |−α〉)/
√

N+. The fidelity between the prepared state

and the ideal CSQ for α = 0.75 was found to be Fα =
0.94 ± 0.02.

FIG. 3. (Color online) Reconstructed density matrices (insets)

and calculated Wigner functions of the output states for (a) |−α〉
input and (b) |α〉 input.

The experimental results shown in Fig. 3 only provide a

partial test of the Hadamard gate. In order to gain insight into

its action on an arbitrary CSQ input, we conducted a numerical

simulation of the gate, taking into account all important

experimental imperfections, including realistic splitting ratios

of ABS1, ABS2, and BS, losses in APD and HD channels, and

the impurity of our resource squeezed state.

Our simulation starts with an arbitrary qubit in the coherent

state basis |ψin〉 for which the global input state reads

ρ̂in = |ψin〉1〈ψin| ⊗ |0〉2〈0| ⊗ |0〉3〈0| ⊗ ρ̂A
4 , (5)

where the subscripts are used to label the four participating

modes and ρ̂A represents the density matrix of a squeezed

thermal state used as the ancillary resource. The action of the

gate can now be represented by a unitary evolution of the linear

optical elements Û , followed by positive operator-valued

measure (POVM) elements of successful heralding events �̂,

with the output state given by

ρout =
1

PS

Tr123(Û ρ̂inÛ
†�̂), (6)

where PS = Tr(ÛρinÛ
†�̂) is the success rate. Û =

Û23(tBS)Û12(tABS1)Û34(tABS2) is composed of unitary beam-

splitter operations coupling the respective modes, and �̂ =
�̂HD

1 ⊗ �̂APD
3 describes the inefficient homodyne and APD

measurements. To parametrize a Bloch sphere of input CSQ

states, we denote u = cos θ and v = sin θ exp(iφ), where θ ∈
[0,π/2] and φ ∈ [0,2π ]. The north and south poles correspond

to the pseudo-orthogonal states |α〉 and |−α〉, respectively.

FIG. 4. (Color online) The overall quality of the gate is visualized

by mapping the Bloch sphere of input CSQ onto the fidelity F of the

output states (a) and their corresponding success probabilities PS (b).
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A mapping of this Bloch sphere onto the corresponding

fidelities and success probabilities at the output is shown

in Fig. 4. The fidelity spans the interval of F ∈ [0.67,0.96]

with an average value of F̄ = 0.78. Particularly, for coherent

states |α〉 and |−α〉 at the input, the fidelities of 0.88 and

0.67 are predicted, respectively, which agrees well with the

actually measured values. The success probabilities associated

with |α〉 and |−α〉 are almost equal, which confirms the

correct value of the amplitude quadrature used at the HD

for conditioning. The average success probability is P̄S =
7.2 × 10−6.

Alternatively, we quantify the performance of the gate by

employing the process fidelity. This quantity is based on

the elegant notion that any operation can be implemented

through teleportation: The desired operation is conducted

onto an entangled state which is subsequently used to tele-

port the state on which the operation should be imparted

[19]. The quality of such an operation is given by the

quality of the actually transformed entangled state, which

can be quantified by the fidelity with respect to the ideally

transformed entangled state. We have performed a numeri-

cal simulation of the transformation of the entangled state

|α,α〉 + |−α, −α〉 and compared it to the ideally transformed

state |α〉(|α〉 + |−α〉)/
√

N+ + |−α〉(|α〉 − |−α〉)/
√

N−. The

process fidelity resulting from this simulation reaches

F = 0.70.

In conclusion, we have demonstrated a single-mode

Hadamard gate for coherent state qubits on the computational

basis, by using a hybrid projector consisting of a conditional

homodyne detector and a photon counter. Its performance

has been characterized by a set of basis states and from

this we derived a model which could be used to simulate

its performance for an arbitrary qubit. This implementation

constitutes an important step toward the demonstration of

quantum computing with macroscopic qubit states. To imple-

ment universal quantum computing, the Hadamard gate must

be supplemented with a single-mode phase gate (a special

case—the sign-flip gate—was recently implemented [20])

and a two-mode controlled phase gate. In addition to the

implementation of these gates, another outlook is to refine

the experimental techniques or propose alternate schemes that

may increase the gate fidelity, and thus eventually may allow

for fault-tolerant operation.
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