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The first experimental demonstration of an adaptive quantum state estimation (AQSE) is reported. The

strong consistency and asymptotic efficiency of AQSE have been mathematically proven [A. Fujiwara,

J. Phys. A 39, 12489 (2006)]. In this Letter, the angle of linear polarization of single photons, the phase

parameter between the right and the left circularly polarization, is estimated using AQSE, and the strong

consistency and asymptotic efficiency are experimentally verified. AQSE will provide a general useful

method in both quantum information processing and metrology.
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Quantum theory is inherently statistical. This entails

repetition of experiments over a number of identically

prepared quantum objects, for example, quantum states,

if one wants to know the true state or the true value of the

parameter that specifies the quantum state [1–4]. Such an

estimation procedure is particularly important for quantum

communication and quantum computation [5] and is, also,

indispensable to quantum metrology [6–10]. In applica-

tions, one needs to design the estimation procedure in such

a way that the estimated value of the parameter should be

close to the true value (consistency), and that the uncer-

tainty of the estimated value should be as small as possible

(efficiency) for a given limited number of samples. In order

to realize these requirements, Nagaoka advocated an adap-

tive quantum state estimation (AQSE) procedure [11,12],

and recently, Fujiwara proved the strong consistency and

asymptotic efficiency for AQSE [13,14].

In this Letter, we report the first experimental demon-

stration of AQSE using photons. The angle of a half wave

plate (HWP) that initializes the linear polarization of input

photons is estimated using AQSE. A sequence of AQSE is

carried out with 300 input photons and the sequence is

repeated 500 times for four different settings of HWP. The

statistical analysis of these results verifies the strong con-

sistency and asymptotic efficiency of AQSE. Recently, it

has been mathematically proven that the precision of

AQSE outperforms the conventional state tomography

[15]. It is thus expected that AQSE will provide a useful

methodology in the broad area of quantum information

processing, communication, and metrology.

Let us first explain AQSE, in detail. For simplicity, we

restrict ourselves to a one-dimensional quantum statistical

model S ¼ f��; � 2 �ð� RÞg, a smooth parametric family

of density operators on a Hilbert space H having a one-

dimensional parameter �. Our aim is to estimate the true

value of � by means of a certain quantum estimation

scheme. An estimator is represented by a pair (M, ��), where
M ¼ fMðxÞ; x 2 Xg is a positive operator-valued measure

(POVM) that takes values on a set X, and ��:X ! � is a

map that gives the estimated value ��ðxÞ from each observed

data x 2 X. The observed data x 2 X have a probability

density

fðx; �;MÞ :¼ Tr��MðxÞ; (1)

which depends on both the parameter � and the measure-

mentM.

In traditional statistics, it is often the case to confine our

attention to unbiased estimators. An estimator (M, ��) is
called unbiased if

E�½M; ��� ¼ � (2)

is satisfied for all � 2 �, where E�½�� denotes the expec-

tation with respect to the density, Eq. (1). It is well-known

[16] that an unbiased estimator (M, ��) satisfies the quan-

tum Cramér–Rao inequality V�½M; ��� � ðJ�Þ�1, where

V�½�� denotes the variance, and J� is the quantum Fisher

information of the model S defined by J� :¼ Tr��L
2
�,

where L� is the symmetric logarithmic derivative defined

by the self-adjoint operator satisfying the equation
d��

d�
¼

1
2
ðL��� þ ��L�Þ.
In quantum statistics, however, it is regarded that un-

biasedness is too restrictive a requirement, and we usually

weaken the condition to a local one. An estimator (M, ��) is
called locally unbiased [17] at a given point �0 2 � if the

condition [Eq. (2)] is satisfied around � ¼ �0 up to the first

order of the Taylor expansion, that is, if E�0
½M; ��� ¼ �0

and d
d�
E�½M; ���j�¼�0

¼ 1 hold. Clearly, an estimator is

unbiased if and only if it is locally unbiased at all

� 2 �. A crucial observation is that an estimator (M, ��)
that is locally unbiased at �0, also satisfies the quantum

Cramér–Rao inequality
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V�0
½M; ��� � ðJ�0Þ�1 (3)

at � ¼ �0, and that the lower bound in Eq. (3) is achievable
for any one-dimensional quantum statistical model S. To

put it differently, the best locally unbiased estimator (LUE)

for the parameter � at � ¼ �0 is the one that satisfies

V�0
½M; ��� ¼ ðJ�0Þ�1.

Here, we encounter a difficulty which often becomes the

target of criticism: since the best LUE for estimating the

parameter � depends, in general, on the unknown parame-

ter � itself, the estimation strategy based on LUEs would

be infeasible. In a different yet analogous context, Cochran

[18] ingeniously described this kind of dilemma as follows:

‘‘You tell me the value of � and I promise to design the best

experiment for estimating �.’’
To surmount this difficulty, Nagaoka [11,12] advocated

an AQSE scheme as follows. Suppose that, by prior inves-

tigation of the quantum statistical model S, one has the list

of optimal LUEs ðMð�; �Þ; ��ð�;�ÞÞ for each � 2 �. One

begins with an arbitrary initial guess �̂0 2 �, and applies

the measurement Mð�; �̂0Þ that is optimal at �̂0. Suppose
the data x1 are observed, one then applies the maxi-

mum likelihood method to the likelihood function L1ð�Þ ¼
fðx1; �;Mð�; �̂0ÞÞ, to obtain the next guess �̂1. At stage

nð� 2Þ, one applies the measurement Mð�; �̂n�1Þ, where
�̂n�1 is the maximum likelihood estimator (MLE) obtained

at the previous stage. The likelihood function is then given

by Lnð�Þ :¼
Q

n
i¼1 fðxi; �;Mð�; �̂i�1ÞÞ, where xi is the ob-

served data at stage i, and one obtains the nth MLE �̂n that
maximizes Lnð�Þ. It is quite natural to expect that the

sequence �̂n of MLEs would converge to the true value

of the parameter �. In fact, under certain regularity con-

ditions, it can be shown that the sequence �̂n is strongly

consistent and asymptotically efficient [13,14].

Now, let us discuss the implementation of AQSE using

photons (Fig. 1). Here, the unknown parameter is the angle

� of HWP0, which determines the phase � between right

and left circularly polarizations of input photons by the

relation � ¼ 4�. An arbitrary linear polarization can be

described using right and left circular polarizations as

follows:

jc i¼ 1
ffiffiffi

2
p ðjRiþei�jLiÞ¼ cos

�

�

2

�

jHiþsin

�

�

2

�

jVi: (4)

By changing the angle of the half wave plate (HWP1), we

can adjust the measurement basis. For such measurements,

the POVM having optimal estimation capability is given by

Mð�Þ¼ ðMð1;�Þ; Mð2;�ÞÞ¼ðj�ih�j; I�j�ih�jÞ; (5)

where h�j ¼ ðcosð2�þ �
4
Þ; sinð2�þ �

4
ÞÞ. By applying the

POVM Mð�Þ to the input state jc ð�Þi :¼ jc i, one obtains
the probability distribution on X :¼ f1; 2g, which is iso-

morphic to the fair coin flipping.

The drawback to realizing this measurement is that the

optimal POVMMð�Þ depends on the unknown value of the
parameter � [19]. We can avoid this drawback by adopting

an AQSE as follows. We begin by setting the initial log-

likelihood function to be l0ð�Þ ¼ 0, and then start inputting
and detecting photons one by one. For nth photon, we

apply the measurement Mð�̂n�1Þ which depends on the

latest MLE �̂n�1. Let xn 2 X be the outcome indicating

which detector has been lit. The log-likelihood function is

then updated by the formula

lnð�Þ :¼ ln�1ð�Þ þ loghc ð�ÞjMðxn; �̂n�1Þjc ð�Þi; (6)

and the nth MLE is given by �̂n ¼ argmax�lnð�Þ. Let us
denote the true value of the parameter � by �t. It is known

that the sequence �̂n of MLEs converges to the true value �t

with probability one (strong consistency) and that the

distributions of the random variables
ffiffiffi

n
p ð�̂n � �tÞ con-

verge to the normal distribution Nð0; J�1
�t Þ (asymptotic

efficiency), where J� denotes the quantum Fisher informa-

tion of the parameter � [13,14], which turns out to be 16 for

our model [Eq. (4)].

The experimental setup is shown in Fig. 2(a). Single

photons at 780 nm are generated from a heralded single

photon source [20], consisting of a CW diode pump laser

(wavelength: 402 nm) and a 3 mm long BBO crystal

(Type I). A pair of a signal photon (780 nm) and a trigger

photon (830 nm) is created via spontaneous parametric

down-conversion. The detector (DT, SPCM-AQR, Perkin

Elmer) after an interference filter (IF1, center wavelength

830 nm) outputs an electric pulse (width 30 ns) when it

detects a trigger photon and the electric pulse heralds the

generation of a signal photon, which is coupled to a polar-

ization maintaining fiber (PMF) after an interference

filter (IF2, center wavelength 780 nm, width 4 nm). The

FIG. 1 (color online). Schematic of adaptive quantum state

estimation. Photons are linearly polarized with a polarization

direction determined by HWP0. The polarization is analyzed by

HWP1 and the polarizing beam splitter (PBS). The controller

sets HWP1 to an angle calculated on the basis of the photon

measurement results.
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polarization of photons are then initialized to be horizontal

using a polarizer (extinction ratio 10�5). The target parame-

ter �t was set using HWP0. The polarization state of the

photon was analyzed by HWP1 and a polarizing beam

splitter (PBS). After passing through the PBS, photons are

guided to single photon detectors (D0 andD1, SPCM-AQR,

Perkin Elmer) on each PBS output port. The outputs of

single photon detectors are gated by the rise of the heralding

signal and connected to the first-come discriminator, con-

sisting of a homemade electric circuit. When the discrim-

inator receives the first signal from one of the detectors (D0

or D1) after the measurement for (n� 1)th photon starts,

the discriminator informs which detector has been clicked.

The minimum pulse interval of 2.5 ns can be discriminated.

Note that the discriminator ignores the casewhen it receives

the pulses from both the detectors within 2.5 ns. The angle

of HWP1 for measuring the nth photon is determined by

calculating the discretized MLE �̂n, the maximizer of the

log-likelihood function, Eq. (6), chosen from among the

10 000 points that divide the domain [0, �=2) of the pa-

rameter � into equal parts [Figs. 2(b) and 2(c)]. When the

change of HWP1 angle is completed, the measurement for

the next (nth) photon will be started. In a sequence of

AQSE, the above mentioned procedure is carried out up to

300 input photons (n ¼ 300). For four different HWP0

angles � ¼ 0, 30, 60, and 78.3 deg, we repeated the se-

quence for 500 times (r ¼ 500).
Let us first observe the strong consistency for the

sequence �̂n of MLEs for the parameter � of HWP0.

Figure 3(a) shows 500 trajectories of estimated HWP0

angle �̂n against the number n of photons when the true

value �t of the parameter is set to be 60 degrees. The curves

correspond to independent runs of adaptive estimation.

Evidently, each curve of �̂n approaches the true value

�t, which is in accord with the mathematical result that

�̂n ! �t almost surely as n ! 1, even though the curves

are dissimilar to each other, reflecting the genuine statisti-

cal nature of quantum system. The convergence to the true

value is clear in Fig. 3(b) where first 10 trajectories in

Fig. 3(a) are superposed.

We next test the hypothesis that the MLE �̂n follows

a normal distribution for large n. More concretely, we

will investigate if the random variable
ffiffiffiffiffiffiffiffi

nJ�
p ð�̂n � ��Þ fol-

lows the standard normal distribution Nð0; 1Þ, i.e.,
ffiffiffiffiffiffiffiffi

nJ�
p ð�̂n � ��Þ � Nð0; 1Þ, where �� is the sample average

of MLEs �̂n over sufficiently many independent trials. A

goodness of fit test [21] was carried out as follows: (1) The

real axis was divided into 23 intervals (bins) fIbg22b¼0, where

I1; . . . ; I21 are disjoint partitions of the interval [� 3:5, 3.5]
of equal width, and I0 ¼ ð�1;�3:5Þ, I22 ¼ ð3:5;þ1Þ. In
reality, these bins were slightly shifted by �=10 000, where
� :¼ ffiffiffiffiffiffiffiffi

nJ�
p

�=20 000 is the scaled resolution of the estima-

tor �̂n, so that the data
ffiffiffiffiffiffiffiffi

nJ�
p ð�̂n � ��Þ did not fall on the

boundaries of the bins. (2) The test-statistic X2 :¼
P

22
b¼0

ðNb�rpbÞ2
rpb

was calculated, where Nb is the number of

observed data which fell into bth bin, pb the theoretical

probability of falling a datum into bth bin under the null

hypothesis Nð0; 1Þ, and r the number of repetitions of

adaptive estimation procedure. (3) The test-statistic X2

FIG. 3 (color online). (a) Trajectories of estimated HWP0

angles against the number n of photons for r ¼ 500 repetitions

is shown in a three-dimensional plot. (b) The first 10 curves are

superposed in a two-dimensional graph.

FIG. 2 (color online). (a) Schematic of the experimental setup.

(b)(c) An example showing the update of a log-likelihood

function. The second term loghc ð�ÞjMðxn; �̂n�1Þjc ð�Þi in

Eq. (6) is shown in panel (b), and the updated lnð�Þ is shown

in panel (c). The (blue) arrows in (b) and (c) indicate the true

value �t.
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was analyzed using the chi-square distribution �2
23-p of

degree 23-p, where p ¼ 2 degrees of freedom ought to

be subtracted because of the normalization and the use of

sample average ��.
Figure 4 shows the histogram of the observed data

obtained by r ¼ 500 independent experiments of adaptive

estimation scheme, each using n ¼ 300 photons. The true

values �t of the parameter � of HWP0 are set to be 0, 30,

60, and 78.3 degrees. The density function of the standard

normal distribution Nð0; 1Þ is also plotted as the solid

curve. All the experimental data agree with the standard

normal distribution. To be precise, the values of the test

statistic X2 are (a) 16.8 (b) 15.7 (c) 12.8 (d) 16.2, and the

null hypothesis is accepted with 10% significance level in

each case.

Having obtained the strong evidence that the distribution

of the MLE has converged quite well to a normal distribu-

tion at n ¼ 300, we finally proceed to the estimation of

confidence intervals [21] for the mean � and variance v,

assuming that
ffiffiffi

n
p ð�̂n ��Þ � Nð0; vÞ. The confidence in-

tervals for � and v are obtained by the standard procedure

based on the statistical laws that
ffiffiffi

r
V

q

ð ����Þ � Tr�1 and

r�1
ðv=nÞ

�V � �2
r�1: Here

�V is the unbiased variance of MLEs

�̂n over r trials, and Tr�1 the t-distribution of degree r� 1.
Table I summarizes the results for r ¼ 500 with 90%

confidence level. Recall that the asymptotic efficiency

asserts that � ’ �t and v ’ J�1
�t ð¼ 0:0625Þ. Since the pre-

cision of the present experiment is about �0:2 degrees

[22], we conclude that the estimated values of � and v
listed in Table I are in excellent agreement with the theo-

retical values.

It should be noted that the purpose of our AQSE is

completely different from ‘‘adaptive measurements’’ pro-

posed by Berry and Wiseman [23]. Their scheme was

devised to estimate the phase difference between the two

arms of an interferometer using a special N-photon two-

mode state, approximating the canonical measurement

proposed by Sanders and Milburn [24], and is not appli-

cable to general quantum state estimation problems. By

contrast, our AQSE is a general purpose estimation scheme

applicable to any quantum statistical model using n iden-

tical copies of an unknown state. AQSE may also be used

in verifying the achievability of the Cramér–Rao version of

the Heisenberg limitOð1=N2Þ [25] by applying the scheme

to the n-i.i.d. extension ��n
� of an N-photon phase-shift

model �� onH ’ ðC2Þ�N . (See also Ref. [26] for estimat-

ing a unitary channel under noise.) Incidentally, AQSE is

based on the Cramér–Rao type point estimation theory and

is free from the choice of a priori distribution which

matters in Bayesian statistics such as adaptive Bayesian

quantum tomography [27].

In summary, we have verified both the strong consis-

tency and asymptotic efficiency of AQSE by experimen-

tally estimating the angle of linear polarization of photons.

Since AQSE has been mathematically proven to outper-

form the conventional estimation scheme such as the state

tomography [15], we plan to apply AQSE to multi-

parameter cases and compare the performance with other

protocols using a fixed measurement basis [28]. It will also

be intriguing to apply AQSE to enhance the performance of

quantum metrological experiments beating the standard

quantum limit [6–9].
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