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Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found appli-
cation as a resource for cryptographic tasks where not all devices are trusted, for example in settings with a
highly secure central hub, such as a bank or government department, and less secure satellite stations which are
inherently more vulnerable to hardware “hacking” attacks. The asymmetric phenomena of Einstein-Podolsky-
Rosen steering plays a key role in one-sided device-independent quantum key distribution (1sDI-QKD) proto-
cols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we
identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol
that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and
the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and
device independence. We experimentally implement both entanglement-based and coherent-state protocols, and
measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 km and 3.5
km of optical fiber transmission respectively. We also engage in detailed modelling to understand the limits of
our current experiment and the potential for further improvements. The new protocols we uncover apply the
cheap and efficient hardware of CVQKD systems in a significantly more secure setting.

I. INTRODUCTION

Quantum mechanics promises many new opportunities for
the design of communication networks, providing highly cor-
related resources such as entangled or even nonlocal states as
well as stringent restrictions on the possible knowledge of ob-
servables, as exemplified by Heisenberg’s uncertainty princi-
ple. By considering entropic versions of these uncertainty re-
lations [1, 2] the intimate connection between entanglement
and uncertainty, first uncovered in the seminal work of Ein-
stein, Podolsky and Rosen (EPR) [3], has since begun to be
formalised and quantified [4].

Both these features are of value to the would-be cryptog-
rapher as they enable protocols in which security is grounded
in the laws of quantum physics, with the most celebrated ex-
ample being quantum key distribution (QKD) [5]. The ear-
liest, and most conceptually simple, QKD schemes encode a
discrete variable (DV) key in a 2-dimensional Hilbert space
[6, 7]. As the optical implementation involves sophisticated
techniques such as the generation and detection of single pho-
tons, considerable attention has also been devoted to schemes
that instead utilise the quadratures of the optical field [8–12]
where one has access to deterministic, high efficiency broad-
band sources and detectors. This approach is more theoreti-
cally involved however, as the secret key is now a continuous
variable (CV) that is encoded in states living in an infinite di-
mensional Hilbert space.

The challenge of realising the full promise of QKD - phys-

ically guaranteed security with minimal additional assump-
tions - has crystallised into two fronts. In the first place, we
desire a lower bound on the extractable secret key length, in-
cluding the effects of a finite number of transmitted symbols,
that allows for an arbitrarily powerful eavesdropper (Eve)
[13–16]. In the second place, we would like to close any
gaps that may exist between a theoretical QKD protocol and
its practical realisation. Essentially, this is the problem of
whether or not the honest parties (Alice and Bob) have cor-
rectly characterised their experimental devices. One might ex-
pect that these gaps must simply be closed on a case-by-case
basis. Indeed, as various loopholes due to mischaracterised
devices have been pointed out, they have usually been fol-
lowed by straightforward methods for their closure. Remark-
ably, however, it is in-principle possible to rigorously sur-
mount even this challenge by harnessing non-local quantum
correlations, and it is this second problem we tackle for the
entire Gaussian family of CVQKD protocols. We identify all
protocols which can be proven secure in a one-sided device-
independent (1sDI) setting, i.e. independent of the devices of
either Alice or Bob (but not both), and provide a proof-of-
principle experimental demonstration some of the most prac-
tical of such protocols

Fully device-independent (DI) protocols allow Eve control
over all experimental devices and are closely related to the
concept of Bell non-locality and the exclusion of local hid-
den variable (LHV) models [17–22]. These schemes are ex-
tremely experimentally challenging as they require the imple-
mentation of a detection-loophole-free Bell test [23–25]. As
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such they are also out of reach for purely Gaussian proto-
cols as it is impossible to violate a Bell inequality utilising
only Gaussian resources [26]. More recently, an intermedi-
ate, asymmetric form of non-locality known as EPR-steering
has been classified, which allows Alice or Bob to rule out an
LHV explanation of the other parties correlations [27]. A nat-
ural question to ask is whether there exist analogous crypto-
graphic results, where only one parties’ devices are untrusted.
This possibility, first noted in Ref. [28] was subsequently de-
veloped to prove the security of experimentally difficult, but
feasible, proposals for one-sided device-independent (1sDI)
DVQKD protocols which were explicitly linked to the corre-
sponding EPR steering inequality [29]. Note that this should
not be confused with the distinct concepts of measurement-
device-independent QKD, in which both Alice and Bob use
trusted sources to generate a key via an untrusted measure-
ment in the middle [30–34] and semi-device independence
in which all devices are untrusted but assumptions are made
about the Hilbert space dimension[35].

As with Bell tests, closure of the steering detection-
loophole has only recently been achieved in state-of-the-art
single photon experiments [36–38]. This is in stark contrast to
the CV case where detection-loophole free tests have been ex-
perimentally feasible for over 20 years [39] and very strong vi-
olations of steering inequalities have been demonstrated [40].
Protocols motivated by these hardware advantages have be-
gun to appear. A direct extension Ref. [28] to the infinite-
dimensional Hilbert spaces relevant for CV-QKD [41] has
been applied to propose a discretised 1sDI-CVQKD proto-
col that also accounted for finite-size effects [15, 16] and a
scheme independent of Bob’s devices only, has recently been
demonstrated [42].

In this paper we utilise further advances in entropic uncer-
tainty relations [43, 44] to theoretically and experimentally
investigate the security of the entire family of 16 Gaussian
CVQKD protocols against arbitrary attacks in the asymptotic
setting. We identify the 6 protocols, including 2 prepare-and-
measure (P&M) schemes, which can be proven 1sDI and com-
pactly calculate their secret key rates. Remarkably, we show
that 1sDI-CVQKD is possible with the cheapest and most
practical resource in quantum optics - coherent states. We
calculate the ultimate limits for all protocols under realistic
decoherence channels and show that while reasonably robust
to losses, and hence more practical than their discrete vari-
able counterparts over short to medium distances, all the 1sDI-
CVQKD protocols are inherently loss-limited. We also make
explicit the connection between the asymmetric forms of non-
locality and device-independent cryptography, with the 1sDI-
CVQKD key rates displaying an elegant connection to the
relevant EPR-steering parameter, a result not known for the
DV protocols. Finally, we experimentally implement several
protocols including both P&M and entanglement-based (EB)
schemes, finding varying degrees of robustness to losses and
experimental imperfections. The best performing protocols
allow equivalent losses of up to 7.5 km of optical fibre trans-
mission. Notably, the coherent state protocol has the poorest
theoretical loss tolerance, but its experimental performance
lies closest to the theoretical limits, indicating it could well be

the most practical candidate for short range 1sDI metropolitan
networks.

II. RESULTS

A. Entropic uncertainty relations and CVQKD

The most common CVQKD protocols are the Gaussian pro-
tocols which encode information in the quadratures of the op-

tical field, described by operators like x̂ =
√

�

2 (â + â†) and

p̂ =
√

�

2 i(â
† − â), where â and â† are bosonic annihilation

and creation operators. One can prepare squeezed [8, 9] or co-
herent [12] states, and measure with either homodyne detec-
tion (switching between quadratures) or heterodyne detection
[45] (where both quadratures are measured simultaneously).
One could also use EB schemes where two-mode squeezing
is used to create Gaussian EPR-correlated states (EPR states)
[10]. An equivalence between these EB schemes and the
P&M approaches has been established in a device dependent
scenario [46]. The communicating parties, Alice and Bob, can
also use either a direct reconciliation (DR) scheme where Al-
ice sends corrections to Bob or a reverse reconciliation (RR)
[11] where Bob sends corrections to Alice. This makes for a
total of 16 protocols. Only the RR protocols allow for losses
above 50%, although one can also achieve this loss-tolerance
via post-selection, which discards some of the keys in order to
retain a more correlated subset [47].

Previous works have proved the security of Gaussian
CVQKD in the asymptotic limit up to the level of collec-
tive attacks, via the Gaussian extremality of relevant quanti-
ties [48, 49]. Finally the proofs were raised to the level of
the most general coherent attacks by use of the de Finetti the-
orem adapted to infinite dimensions [50], which shows that
collective attacks are in fact optimal. Consequently, one can
asymptotically lower bound the secret key rate by consider-
ing only Gaussian collective attacks. For concreteness, we
first consider an RR protocol with EPR states and a secret key
extracted from Alice and Bob’s homodyne measurements de-
noted by the random variables XA(B) with outcomes xA(B)

which follow probability distributions p(xA(B)). Neglecting
detector and reconciliation efficiencies for simplicity (we shall
include these effects in our final calculations) the asymptotic
RR secret key rate is lower bounded by [48, 49],

K� ≥ I(XA : XB)− χ(XB : E) (1)

where the left-pointing white triangle denotes the direction of
information flow during reconciliation from Bob to Alice. A
right pointing triangle would signify direct reconciliation from
Alice to Bob. Here I(XA : XB) = H(XA) − H(XA|XB)
denotes the classical mutual information between Alice and
Bob, with H(X) = − ∫ dx p(x) log p(x) being the continu-
ous Shannon entropy of the measurement strings and χ(XB :
E) = S(E) − ∫ dxB p(xB)S(E|xB) denotes the Holevo
bound with S(E) = −tr (ρE log ρE) the von Neumann en-
tropy and S(E|B) = S(EB) − S(B) the conditional von
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Neumann entropy of E given B. In the case that systems are
classical, e.g. B = XB , the von Neumann entropies may be
replaced by Shannon entropies.

One can alternatively analyse the security in terms of the
conditional entropy of the observable x̂B from the perspective
of a quantum eavesdropper E,

S(XB |E) = H(XB) +

∫
dxB p(xB)S(ρ

xB

E )− S(E) (2)

where ρxB

E is the conditional state of E given measurement
outcome xB .

Writing out the key rate in equation (1) in full and compar-
ing with equation (2) we have,

K� ≥ H(XB) +

∫
dxB p(xB)S(ρ

xB

E )

− S(E)−H(XB |XA)

= S(XB |E)−H(XB |XA) (3)

Bounding the conditional entropy of an observable is the
longstanding goal of the study of entropic uncertainty rela-
tions [1, 2]. For our purposes we require a general tripar-
tite relation, encompassing Alice, Bob and Eve, that holds for
continuous quadrature observables in an infinite dimensional
Hilbert space (see Supplement 1 for details). Very recently,
an appropriate relation bounding the entropy of Bob and Eve
regarding the conjugate quadratures of Alice has been derived
[43, 44, 51]

S(XA|E) + S(PA|B) ≥ log 2π� (4)

This entropic uncertainty relation now allows us to
bound the eavesdroppers information on the relevant observ-
able. Substituting from equation (A4) and recalling that
S(PA|B) ≤ S(PA|PB) = H(PA|PB) we can write,

K� ≥ log 4π −H(XA|XB)− S(PB |A)
≥ log 4π −H(XA|XB)−H(PA|PB). (5)

where we have explicitly set our vacuum noise to equal to one
(this corresponds to setting � = 2).

Thus we have bounded the secret key by an expression that
depends only upon the conditional Shannon entropies which
are directly accessible to Alice and Bob. Furthermore one
can show via a variational calculation that for any proba-
bility distribution p(x), the corresponding Shannon entropy
is maximised for a Gaussian distribution of the same vari-
ance. In other words, Alice and Bob can bound their se-
cret key rate for this protocol by measuring Bob’s condi-
tional variances. Substituting the Shannon entropy for a Gaus-
sian distribution HG(xB |xA) = log

√
2πeVXB |XA

, where

VXB |XA
= VXB

− 〈XAXB〉2
VXA

is Bob’s variance conditioned

on Alice’s measurement, we arrive at the final expression for
the RR key rate

K� ≥ log

(
2

e
√
VXB |XA

VPB |PA

)
(6)

FIG. 1: Conceptual picture of a 1sDI-CVQKD protocol. From the
perspective of Alice (Bob) the local devices are known and allow a
secret key to be extracted from a direct (reverse) reconciliation proto-
col, even though the other party exists only as an unknown red (blue)
box.

The DR expression is obtained by simply permuting the labels
of Alice and Bob. We note that this expression was also cal-
culated in Ref. [51], but the proof was incomplete as it relied
on the assumption of the applicability of the entropic uncer-
tainty relation. Moreover, it was incorrectly concluded that
this method would never predict positive key when applied to
coherent state or heterodyne protocols. In fact, the extension
of equation (6) to the other Gaussian protocols is straightfor-
ward and is given in Supplement 1.

B. One-sided device-independent CVQKD

An important benefit of utilising entropic uncertainty rela-
tions in QKD proofs is that they lend themselves towards one-
sided device-independent (1sDI) protocols [28, 29]. These are
relaxed versions of fully the DI schemes [18–20] in which
all devices are untrusted and the security is guaranteed via a
detection-loophole-free Bell violation. The only assumptions
that need to be made for DI schemes are the security of the sta-
tions, the causal independence of the measurement trials and a
trusted source of randomness for choosing measurement set-
tings. We adopt the same assumptions here, however it should
be noted that recently schemes have appeared that do not re-
quire causal independence [21, 22].

For 1sDI-QKD protocols only one side, Alice or Bob, is un-
trusted and regarded as a black box whilst the other is assumed
to involve a particular set of quantum operations (see Fig. 1).
Now, the security is linked to the steering inequalities [27] as-
sociated with the observables on the trusted side. The 1sDI
nature of these entropic proofs is manifest in expressions like
equation (6) in that it depends only upon measuring a known
observable upon one side. For example, in the derivation we
only need to know that Bob is measuring either x̂B or p̂B in
order to apply the entropic uncertainty relation. Although we
write expressions VXB |XA

, as this is what will be measured
in experiments, Alice could be making any measurement (not
necessarily a quadrature measurement) and the key rate given
by equation (6) would still hold.

Thus for EPR states and homodyne measurements any pos-
itive key predicted via the entropic uncertainty relation is by
definition 1sDI, independent of Alice for RR and Bob for DR
[15, 16]. However this device-independence does not nec-
essarily extend to the protocols involving heterodyne detec-
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tion. This is essentially because the proof to derive non-zero
key rates for the heterodyne protocols depends upon charac-
terising the devices used in the heterodyne detection. There-
fore, employing a heterodyne detection on the supposedly un-
trusted side immediately invalidates the device-independence.
Alternatively, recall that a steering demonstration requires a
measurement choice by the untrusted party [27] and no such
choice takes place if they heterodyne-detect. Nonetheless
the remaining protocols, with the heterodyne detection taking
place in the trusted station, are still implementable with high-
efficiency sources and detection opening the way to several
1sDI-CVQKD protocols with current technology. This means
that for EB protocols both DR and RR may be 1sDI provided
all parties are homodyning, while Bob may safely heterodyne
for an RR protocol and Alice may heterodyne for a DR proto-
col. Finally, for DR protocols where Alice (who controls the
source) is trusted, we may also safely make the equivalence
between P&M and EB schemes. Remarkably, this means that
for direct reconciliation it is possible to generate 1sDI key us-
ing only coherent states. We summarise which of the 16 pos-
sible Gaussian protocols are potentially 1sDI in Table inset in
Fig. 2.

Alice Hom Het

Bob Hom Het Hom Het

DR
P&M
EB

RR
P&M
EB

0.0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

FIG. 2: Secure regions for 1sDI-CVQKD protocols for a Gaussian
channel parameterised by a transmission T and excess noise ξ. Di-
rect reconciliation protocols are plotted in blue when Alice homo-
dynes (or equivalently sends squeezed states) and purple when Alice
heterodynes (or equivalently sends coherent states). Reverse recon-
ciliation schemes are plotted in red when Bob homodynes and orange
when Bob heterodynes. For each protocol secure communication is
possible for all channels above the corresponding line. Inset: Sum-
mary of 1sDI-CVQKD protocols where subscript A (B) indicates in-
dependence of Alice’s (Bob’s) devices.

Although they allow for 1sDI keys, the entropic proofs re-
sult in different, and it turns out generically lower, secret key
rates than the standard proofs for Gaussian CVQKD schemes.
To map out the ultimate limits of these protocols we first con-
sider an idealised setup with perfect detectors and a highly
squeezed (10 dB) two-mode squeezed vacuum source. To
evaluate performance, we consider a Gaussian channel, an

excellent model for real fibre optic cable, characterised by a
transmission T and an excess noise parameter ξ given in units
of shot noise. The noise parameter can be thought of as the
noise input to the channel such that a pure state with unity
variance would have a variance 1 + Tξ after the channel. Ne-
glecting imperfections such as detector and reconciliation ef-
ficiency this is the chief factor that limits the range. In Fig. 2
we plot the 4 distinct secure regions (there are two redundan-
cies between P&M and EB schemes) for the 1sDI protocols.
The best performing scheme (in terms of loss tolerance) is the
RR EPR scheme where both parties homodyne. In the limit
of low excess noise this scheme is secure for up to 73% loss.
For very low noises the next best scheme is the RR protocol
where Bob heterodyne detects but for higher noises the DR
protocol with both parties homodyning (or alternatively with
Alice sending squeezed states) performs better. Finally, al-
though the DR coherent state scheme performs the poorest it
is still secure up to around 33% loss. These results show that
1sDI-CVQKD is reasonably robust to decoherence, but no-
ticeably less loss-tolerant than the standard CVQKD. In this
idealised case, the standard protocols tolerate arbitrarily large
amounts of loss provided the excess noise is sufficiently small,
whereas, our results show that all the Gaussian 1sDI CVQKD
protocols are inherently loss limited. Ultimately, this is due to
the fact that the uncertainty relations used to bound the secret
key rate are only tight when the parties involved, e.g. Bob and
Eve in equation (6), can be approximated as sharing a pure,
highly-squeezed EPR state [16, 43]. In reality, this is rarely
ever the case and the entropic proof method tends to give a
pessimistic bound on the eavesdroppers information. We will
discuss the prospects for extending the transmission range in
the final section.

C. Connection to EPR steering

In the earlier discrete variable work, a clear conceptual
link was made between device-independent protocols and Bell
non-locality [18]. Our intuition that the 1sDI-DVQKD proto-
cols should be analogously related to the corresponding asym-
metric form of non-locality, EPR steering, was confirmed by
Branciard et al. who showed that the condition for their pro-
tocol achieving a positive key was equivalent to a steering in-
equality [29].

For the Gaussian states and measurements relevant to
CVQKD, steering is traditionally demonstrated by a violation
of a condition on the conditional variances. In particular, we
must violate E� := VXB |XA

VPB |PA
≥ 1 for Alice to provably

steer Bob as indicated by the right black triangle and similarly
with A and B interchanged [27] and the arrow reversed. This
is precisely the same as the EPR paradox criteria derived long
ago by Reid [52]. Comparison with Eq. (6) shows that we can
write the key directly in terms of the steering parameter,

K� ≥ log

(
2

e
√E�

)
(7)

For the homodyne key rate K� > 0 if and only if E� <(
2
e

)2 ≈ 0.55, with the identical relation between the DR key
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rate and E� following straightforwardly. In other words, the
condition for a positive one-sided device-independent key is
more stringent than EPR steering, similarly to the case for
1sDI-DVQKD [29]. For the protocols where a trusted het-
erodyne detection takes place, the security of the protocol is
instead linked to the steerability of the outcome of the hetero-
dyne measurement which will be more challenging due to the
extra loss involved (see Supplement 1).

Consequently, this connection gives us an operational inter-
pretation for the Reid product of conditional variances [52] as
being directly related to the number of secure 1sDI bits ex-
tractable from Gaussian states with Gaussian measurements.
This is a particularly practical cryptographic interpretation,
in addition to previous work highlighting the links between
steering and one-sided device independence in quantum tele-
portation [53] and secret sharing [54]. Interestingly, the gap
between a steering violation and the generation of 1sDI key
tells us that Eve’s optimal attack (which we know to be Gaus-
sian) followed by a non-Gaussian collective measurement al-
lows her to more effectively steer the Gaussian measurement
results of Alice and Bob than any Gaussian measurement.

As a side note, we point out that in the situation where Eve
is restricted to individual attacks we would expect a perfect
correspondence between steering and key generation since the
optimal eavesdropping strategy is known to utilise Gaussian
measurements in this scenario. Recalling the secret key for-
mulae when Eve makes Gaussian measurements, KG [11], we
find this is indeed the case with ,

K
�(�)
G ≥ log

(
1

E�(�)

)
(8)

In short, one can also interpret the entropic EPR steering cri-
teria as precisely quantifying the number of secret, 1sDI bits,
extractable from a scenario where all parties are restricted to
individual measurements.

D. Experimental Results

As mentioned in the previous sections, 6 of the 16 possi-
ble Gaussian protocols are 1sDI. We implement 5 protocols
experimentally, 3 of which exhibit sufficient correlations to
allow for 1sDI-CVQKD. Two different experimental setups
were used, the first for the EB protocols based on EPR corre-
lations and the second for a coherent-state P&M protocol (see
Fig. 4). To perform the 1st and 2nd 1sDI protocols we used
the EPR source while both parties performed a homodyne de-
tection. The 3rd and 4th protocols were implemented using
the same EPR source while one party (Alice for the DR proto-
col and Bob for the RR protocol) heterodyned whilst the other
homodyned. Finally, the P&M scheme was implemented for
the DR protocol where Alice, who was trusted and controlled
the source, generated coherent states and Bob performed a ho-
modyne measurement.

In each protocol, Alice and Bob are connected by a lossy
channel of transmission T . The lossy channel is constructed
using a half wave plate and a polarizing beam splitter as de-
tailed in Fig. 4 (a)(ii). We express the applied loss as the

Heterodyne

Entanglement
        Based

Alice
Source

Bob

1

2

3

4

5

≈ 2.52

≈7.57

≈ 3.47
En

ta
ng

le
m

en
t-

ba
se

d
P&

M

0

0

Transmission distance
in fibre optics (km)

Positive KeyHom RRHetHomHet DR

Alice Bob

RR
DR

3 3

5 4

4

2 2

1 1

Homodyne

Prepare & Measure
 (Coherent States)

5

Homodyne

Heterodyne

FIG. 3: Schematic diagram of all the experimentally realised 1sDI
protocols. Alice and Bob can choose between homodyne and het-
erodyne measurements, using a source that generates either EPR or
coherent states. Direct (reverse) reconciliation protocols are demon-
strated using right (left) pointing arrows. The table summarizes each
performed protocol and the experimentally achieved results. The
same color scheme as Fig. 2 is used here to show the different per-
formed protocols.

equivalent transmission distance through a standard telecom
optical fibre with a loss of 0.2dB/km. Ideally, the secret key
rate could be computed directly from the expressions in Sup-
plement 1. However, in practice we must modify these ex-
pression, multiplying Alice and Bob’s mutual information by
a factor β < 1 to account for finite information reconcilia-
tion efficiency (see Supplement 1 for explicit calculations).
Reconciliation efficiencies for CVQKD have increased sub-
stantially in the last few years [55, 56], with efficiencies of
between 94 and 95.5 percent recently reported [42]. Here, we
choose β = 0.95. The inclusion of β < 1 will reduce the final
calculated key rate. This makes the condition E�(�) < 0.55
necessary but no longer sufficient for a positive key when β
is included. A schematic diagram of all the performed exper-
iments and the achieved results are summarized in Fig. 3.

Amongst the successful implementations, protocol 2 (EB
scheme RR protocol where both parties homodyned) shows
the best loss tolerance and protocol 1 (EB scheme DR pro-
tocol where both parties homodyned) shows the worst, with
protocol 5 (coherent state P&M scheme with homodyne de-
tection) being intermediate. This actually demonstrates a dif-
ferent hierarchy of loss tolerance than the theoretical results
calculated in the limit of very large squeezing and pure entan-
glement (Fig. 2). This difference is due to the fact that in our
experiment, we only had about -6 dB of squeezing and 10.7



6

dB of anti-squeezing which, along with other losses and im-
perfections, degraded the quality of the entangled source and
hence limits the range of the EB protocols. This is also the
reason why the heterodyne protocols (3 and 4) fail to produce
any positive key at all, as overcoming the shot noise penalty
requires extremely strong correlations. Our calculations show
that a perfect system with no losses of any kind and recon-
ciliation efficiency of 0.95 would still require at least 7dB
of perfectly pure squeezing (-7dB squeezing and 7dB anti-
squeezing) to get a positive key rate even over a perfect chan-
nel with the heterodyne protocols.

We plot our measured secret key rates as a function of ef-
fective transmission distance in Fig. 5. Solid lines are calcu-
lated from a theoretical model based upon the characterisa-
tion of various imperfections in the experiment. Results for
the protocols where Alice and Bob performed the homodyne
measurements on a distributed EPR state, are given in Fig. 5
(a). Using the RR protocol we measured a positive key rate
independent of Alice’s devices up to an equivalent transmis-
sion distance of 7.57± 0.26 km (approximately 29% applied
loss). Using the DR protocol, we measured a secret key in-
dependent of Bob’s devices up to an equivalent transmission
distance of 2.52±0.21 km (approximately 11% applied loss).
Our theoretical model, which is in good agreement with the
experimental data, predicts a maximum transmission range of
8 km and 2.8 km for the RR and DR protocols respectively
(see Supplement 1).

Fig.5 (b) depicts the results of the DR coherent state proto-
col. We show that secure key remains possible after an equiv-
alent transmission distance of 3.47±0.46 km (approximately
15% applied loss). This is in good agreement with our theoret-
ical model, which predicts our current setup would be secure
up to a maximum of 4.5 km. With the P&M protocol, de-
scribed in Fig.4 (e), we have much more latitude to vary the
modulation variance and hence the virtual entanglement in or-
der to optimize the secret key rate for each loss setting (see
Supplement 1). As such, we achieve a loss tolerance superior
to the EB DR protocol, whilst using only the cheapest and
most readily available quantum optical resource states.

We also display the behaviour of the measured steering pa-
rameter with respect to the thresholds required for key genera-
tion and violation of the Reid EPR-steering criteria (see Fig.5
(c)). For each data point, we graphically represent the relevant
steering parameter with respect to these thresholds in Fig 5 (d)
& (e). In accordance with our earlier discussion we show that
a positive key is achieved with an EB RR (DR) protocol only

when E�(�) <
(
2
e

)2 ≈ 0.55. We note that for the P&M DR
protocol, since in the equivalent EB picture Alice performs a
heterodyne detection, E� = VXA1

|XB
VPA2

|PB
. Here, A1 and

A2 are the modes upon which Alice measured x̂ and p̂, re-
spectively. On the other hand, all plotted points demonstrate
EPR-steering through a violation of the Reid criteria. Conse-
quently, the negative data points would demonstrate sufficient
correlations for 1sDI key generation if we were able to restrict
Eve to individual attacks as per equation (8).

In order to better understand the limitations of, and po-
tential improvements to, our experiments, theoretical models
of both the EB and P&M were constructed. Modelling all

processes as Gaussian, allows for compact calculations and
matches the experimental data closely. As well as using these
models to determine the maximum range of our current ex-
periment, we also investigated the performance that could be
achieved with an improved implementation. For the EB pro-
tocols the dominant source of decoherence are losses in the
squeezing cavities. Modelling indicates that making chal-
lenging but reasonable improvements to the amount of avail-
able squeezing and the precision of locking could extend the
asymptotic range of the DR and RR homodyne protocols to
around 8 and 16 km respectively, again assuming a reconcil-
iation efficiency of β = 0.95. See Supplement 1 for detailed
explanation of the model for the EB protocols.

As mentioned previously, in contrast to the EB protocols
when using coherent states we have a great deal of flexibility
in tuning the virtual squeezing via an increase in the modula-
tion strength. In this protocol, the dominant source of noise is
the unwanted cross modulation between the quadratures that
worsens as the modulation strength increases. This can be
thought of as an unknown phase space rotation, and means
we cannot use the modulation variance that would otherwise
be optimal and depend only upon β and the channel loss. If
this cross modulation could be eliminated, our model shows
the asymptotic range of the coherent state scheme would in-
crease to around 4.5 km. Details of the P&M model and the
modulation optimisation can be found in Supplement 1.

III. DISCUSSION

To summarise, we have provided a complete taxonomy of
the Gaussian CVQKD protocols from the perspective of one-
sided device-independence. We also derived the asymptotic
secret key rate for all 6 such protocols, and made an explicit
connection to the EPR steering parameters for Gaussian states
and measurements. Using these derived rates we have char-
acterised an experimental implementation of 5 of the 6 pro-
tocols, achieving secure key under a lossy channel equivalent
of up to 7.5 km of optical fibre. Of particular interest was
the first demonstration of a 1sDI CVQKD protocol using only
coherent states. That such an exotic quantum communication
protocol is possible with these relatively mundane quantum
states is a surprising result in itself. Furthermore, the ease
with which they can be generated makes them an especially
attractive candidate for short range metropolitan networks.

Several comments on extensions and directions for future
work are in order, beginning with the prospect of extending
this security proof to include finite size effects and compari-
son with the results in Refs. [15, 16, 42]. In particular, in the
experiment in ref. [42], the authors follow a similar program
of applying entropic uncertainty relations, in this case to the
smooth min-entropies, allowing them to account for all finite
size effects while providing proof against completely general
attacks whilst implementing one of the protocols described
here (protocol 1). With squeezing level of 10 dB, the key rate
demonstrated was about 0.1 bit per sample at a distance of
2.7 km, whereby for our setup the range is about 1.6 km, or
up to 6 km with comparable squeezing level (see Supplement
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FIG. 4: Schematic diagram of all the experimental setups. (a)(i) EPR source: OPA1 and OPA2 are two similar optical parametric amplifiers
(OPAs) which produced amplitude-squeezed beams. A 1064nm Nd:YAG laser was used to seed both OPAs. They both generated -6.5 dB of
squeezing and 10.7 dB of anti-squeezing. PZT is a piezo-electric crystal and BS is a 50:50 beamsplitter. Two amplitude squeezed beams were
mixed on a beamsplitter with their relative phase locked in quadrature to produce an EPR state. (a)(ii) optical components used to simulate the
lossy channel, which consisted of a half wave plate and a polarizing beamsplitter (PBS). In (b), (c) and (d) one part of the entangled state is
sent to Alice locally and the other through a lossy channel to Bob. Here “Hom” refers to alternating homodyne measurements, and “Het” to a
heterodyne measurement. The measurements configurations for Alice and Bob are (b) Homodyne (Alice) - Homodyne (Bob), (c) Heterodyne
(Alice) - Homodyne (Bob) and (d) Homodyne (Alice) - Heterodyne (Bob). (e) P&M experiment: AM and PM are electro-optic modulators
(EOMs) driven by function generators (FG), which in turn provided a Gaussian distributed displacement of the vacuum state in amplitude and
phase quadratures. The resulting coherent states were then sent to Bob through a lossy channel where he performed a homodyne measurement.
Details of the experimental setups are presented in Supplement 1.

1). Nevertheless, this proof is only for DR homodyne pro-
tocols and limited to short distances (up to 5 km) even with
extremely high levels of squeezing. Very recently, an exten-
sion to RR homodyne protocols, for both the asymptotic and
finite-size regimes, secure up to 15 km has also appeared [16].
For a coherent state homodyne protocol like that discussed
here, a finite-size proof has also been developed [57]. It seems
very promising then, that these techniques could be adapted
to prove the finite-size security of all the other protocols pre-
sented here. Nonetheless, our asymptotic analysis shows that
even in the most ideal situations, 1sDI-CVQKD is presently
limited to transmission through urban networks.

An obvious avenue for future work is the investigation of

methods to improve long distance performance. One option
would be to revisit the restrictions, or lack thereof, made about
the eavesdropper including physical assumptions about the
quantum memory available to Eve [58–60], which has already
seen application in DI-DVQKD [61]. Another candidate to
further extend the range of these protocols would be the noise-
less linear amplifier [62, 63] which has already been proposed
for application to fully DI-DVQKD [64]. Even more appeal-
ing may be the measurement-based versions of these ampli-
fication schemes [65, 66] that have recently been experimen-
tally demonstrated [67] although this could only be applied to
RR protocols. In light of these results it appears that several
1sDI-CVQKD protocols are within the reach of current tech-
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nology and multiple possibilities exist to extend the secure
range of such schemes to long distances.
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Appendix A: Entropic uncertainty relations

Entropic relations have received a great deal of attention
as a convenient and powerful information theoretic tool for
investigating uncertainty in quantum systems. Originally, en-
tropic uncertainty relations were derived assuming one starts
without any additional information or at most only classical
information describing the system in question, i.e. the density
matrix [1, 2]. In either case, since classical information can
be shared perfectly amongst arbitrarily many parties, there is
little sense in thinking about these relations as applying from
the perspective of one observer or another. Conversely, if ob-
servers were to share quantum correlations with the measured
system, one expects the uncertainty relations to be strongly
observer dependent and potentially exhibit reduced levels of
uncertainty.

A generalised relation, allowing for this so-called quan-
tum side information, was derived in [4] although only for
finite dimensional Hilbert spaces and observables with a dis-
crete spectrum. Consider a pair of observables {x̂A, p̂A}
with a complementarity c = maxpA,xA

|〈xA|pA〉|2 where
{|xA〉 , |pA〉} are the eigenvectors of the observables. These
observables are to be measured on a state A which is poten-
tially entangled with another state, B, leading to the the fol-
lowing relation for the uncertainty in the pair of observables
given access to B [4],

S(XA|B) + S(PA|B) ≥ log
1

c
+ S(A|B). (A1)

Here S(A|B) = S(AB) − S(B) where S(X) =
−tr (ρX log ρX) is the conditional von Neumann entropy of
the state ρAB whereas S(XA|B) is the conditional von Neu-
mann entropy of the random variable, XA, corresponding to
the measurement of the observable x̂A on system A given
knowledge of system B. This is defined as,

S(XA|B) = H(XA) +
∑
xA

p(xA)S(ρ
xA

B )− S(B) (A2)

with H(XA) = −∑xA
p(xA) log p(xA) the Shannon en-

tropy and ρxA

B describing Bob’s state conditional on Alice ob-
taining outcome xA. The presence of the conditional entropy
S(A|B) in Eq. A1, which is negative for entangled states,
demonstrates both the observer dependence and effect of en-
tanglement in reducing uncertainty.

Preempting applications to quantum key distribution
(QKD), one can also consider that the state ρAB could
have suffered some decoherence which is purified by
an environment, or eavesdropper, such that ρAB =
trE (|ABE〉 〈ABE|). Using the purity of the overall state
(i.e. S(AB) = S(E)) one can recast equation (A1) to find
[4],

S(XA|B) + S(PA|E) ≥ log
1

c
. (A3)

However, these results are only valid for measurements with
a finite number of discrete outcomes made on states living
in a finite-dimensional Hilbert space. For the purposes of

continuous variable (CV) QKD we will require an uncer-
tainty relation valid for infinite-dimensional Hilbert spaces
and continuous-valued measurements. In particular, we are
interested in homodyne measurements of the canonically con-

jugate quadratures x̂ =
√

�

2 (â+ â†), p̂ =
√

�

2 i(â
† − â) satis-

fying [x̂, p̂] = i� where â and â† are bosonic annihilation and
creation operators.

Just such a relation has been recently developed, building
on an earlier result for discrete and finite measurements on in-
finite dimensional Hilbert spaces [41]. This was first extended
to countably infinite measurements which could then be ap-
plied to a discretised version of a homodyne detection [43].
Deriving results for continuous spectra, by taking infinite pre-
cision limits of these coarse-grained POVM’s, had previously
been extensively studied for the Shannon entropies, and an
analogous procedure for the quantum conditional von Neu-
mann entropy was utilised by Ferenczi [51] and Berta et al.
[43] although the former proof is incomplete. An alternative
derivation was also provided by Frank and Lieb [44]. The final
result is the following relation for homodyne detection upon
infinite dimensional Hilbert spaces [43, 44, 51],

S(XA|B) + S(PA|E) ≥ log 2π� (A4)

Appendix B: Secret key rates for Gaussian protocols

We will now derive bounds upon the secret key rate for
all members of the Gaussian family of CVQKD protocols.
In the P&M setting, one could consider Alice sending either
squeezed [8, 9] or coherent states [12] and Bob measuring
with either homodyne or heterodyne [45? ] detection. Each
permutation can in turn be used to have Bob try and guess Al-
ice’s encoding, called direct reconciliation [11] (DR), or Alice
trying to guess Bob’s measurement [12], called reverse rec-
onciliation (RR). One can also consider entanglement based
(EB) schemes, in which Alice distributes one arm of a two-
mode squeezed vacuum to Bob [10]. In fact, with appropriate
rescaling of Alice’s data, the EB and P&M schemes can be
seen as equivalent since having Alice heterodyne detect one
arm of a two-mode squeezed vacuum corresponds to prepar-
ing a coherent state, while a homodyne detection corresponds
to squeezed state preparation [46]. In the following, we con-
duct our analysis in the EB picture, and the variances appear-
ing are those that would be directly measured in an EB im-
plementation. We will calculate the key rate encoded in the
x̂ basis on a particular run. Overall, the total key rate will
be the average of the quantities derived here and the analo-
gous expression for encoding in the p̂ basis (the exception is
the heterodyne-heterodyne protocol where both bases are al-
ways simultaneously utilised). Although we calculate all the
key rates for completeness, for the protocols involving hetero-
dyne detection only one reconciliation direction will allow for
a 1sDI protocol as per the main text.
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1. Homodyne-Homodyne (Squeezed states and Homodyne
Detection)

First we turn to the protocols where both Alice and Bob ho-
modyne detect. Here Alice and Bob randomly choose whether
they measure the x̂ or p̂ basis and only keep those times
where they agree. To obtain effective EB data from a P&M
scheme Alice will rescale her modulation signal by dividing

αx(p) = +(−)
√

1− 1/V 2
x(p) where Vx(p) = VSx(p)

+ 1 and

VSx(p)
is the modulation variance of the signal encoded in the

respective quadratures. We work in the asymptotic regime
n → ∞ where the optimal attacks are known to be the col-
lective attacks. Considering the case where Bob makes an x̂
measurement, we can write the secret key rate for the DR pro-
tocol as [48, 49],

K� ≥ I(XA : XB)− χ(XA : E) (B1)

where

I(XA : XB) = H(XB)−H(XB |XA)

= H(XA)−H(XA|XB) (B2)

denotes the classical mutual information between Alice and
Bob, with H(X) = − ∫ dx p(x) log p(x) being the continu-
ous Shannon entropy of the measurement strings and

χ(XA : E) = S(E)−
∫

dxA p(xA)S(E|xA) (B3)

is the Holevo bound.
Substituting equations (B2) and (B3) into (B1) and compar-

ing with the continuous conditional von Neumann entropy

S(XA|B) = H(XA)+

∫
dxA p(xA)S(ρ

xA

B )−S(B) (B4)

we have,

K� ≥ H(XA) +

∫
dxA p(xA) S(ρxA

E )− S(E)−H(XA|XB)

= S(XA|E)−H(XA|XB) (B5)

which is what one would expect from the Devetak-Winter re-
lations [? ]. Using the entropic uncertainty relation we can
bound the eavesdropper’s information on the relevant observ-
able. Substituting from (A4) and recalling that S(PA|B) ≤
S(PA|PB) = H(PB |PA), we can write,

K� ≥ log 4π −H(XA|XB)− S(PA|B)

= log 4π −H(XA|XB)−H(PA|PB). (B6)

As discussed in the main text, Alice and Bob can bound
their secret key rate for this protocol by measuring Bob’s
conditional variance. Substituting the Shannon entropy for
a Gaussian distribution HG(XB |XA) = log

√
2πeVXB |XA

,

where VXB |XA
= VXB

− 〈XAXB〉2 /VXA
, we arrive at a fi-

nal expression for the key rate of

K� ≥ log 4π − log 2eπ
√

VXA|XB
VPA|PB

= log

(
2

e
√

VXA|XB
VPA|PB

)
(B7)

The RR expression is obtained by simply permuting the la-
bels of Alice and Bob. That this result is pessimistic is im-
plied by consideration of the predictions for a perfect chan-
nel. Under the security proofs presented in [48? , 49] if Al-
ice and Bob share a pure EPR state (real or effective) with
variance V = cosh(2s) then the key rate given in (B5) is al-
ways positive provided the squeezing parameter is non-zero
(s > 0). On the contrary, the result in (B7) is only positive

for VXA|XB
VPA|PB

= E� ≤ (
2
e

)2 ≈ 0.55 which implies a
squeezing parameter of s ≥ .15 or about -1.3 dB of squeezing.
This result was also calculated in [51], however as mentioned
before the proof relied on the assumption of the applicabil-
ity of the entropic uncertainty relation to infinite dimensional
Hilbert spaces. Furthermore, Ferenczi argued that since for
coherent states the directly measured conditional variances
are always greater than 1, the above procedure would never
predict a positive key rate for coherent state protocols [51].
However, this conclusion comes from a mistaken application
of the key rate formulae as we now demonstrate.

2. Heterodyne-Homodyne (Coherent States and Homodyne
Detection)

Consider a DR coherent state protocol, which in the EB
picture involves Alice making a heterodyne detection upon
her arm of an EPR pair. Thus she first mixes her mode with
vacuum resulting in two modes A1 and A2 upon which she
measured x̂ and p̂ respectively. To obtain effective EB data
from a P&M scheme Alice will rescale her modulation signal
by dividing αx(p) = +(−)

√
2(Vx(p) − 1)/(Vx(p) + 1) where

Vx(p) = VSx(p)
+ 1 and VSx(p)

is the modulation variance of
the signal encoded in the respective quadratures. Bob then
makes a homodyne detection, randomly switching between
the quadratures. The DR key rate is then bounded by,

K� ≥ S(XA1
|E)−H(XA1

|XB) (B8)

After Alice’s projective measurement upon A1 the state
ρA1BE is pure and we can again apply the entropic uncer-
tainty relation to write,

K� ≥ log 4π − S(PA1
|B)−H(XA1

|xB)

≥ log 4π −H(PA1
|PB)−H(XA1

|XB) (B9)

Now this formula might pose a problem, in that we do not
measure p̂ upon mode A1. Nevertheless, this can be circum-
vented if we trust the devices, specifically the beamsplitter in
Alice’s station. As noted earlier, we may safely bound the
Shannon entropy by assuming that the statistics are Gaussian
and therefore only dependent upon the conditional variance

i.e. H(PA1
|PB) = log

√
2πeVPA1

|PB
. Then, if we trust Al-

ice’s beamsplitter we know that VPA1
|PB

= VPA2
|PB

and thus

H(PA1
|PB) = H(PA2

|PB) which is directly measured. We
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therefore have,

K� ≥ log 4π − log
√

2πeVPA2
|PB

− log
√

2πeVXA1
|XB

= log
2

e
√

VXA1
|XB

VPA2
|PB

(B10)

Note that for positive key we now require the condition
VXA1

|XB
VPA2

|PB
≤ 0.55. To illustrate how correlated a

state we now require respect to the purely homodyne pro-
tocols we rewrite this as a condition on the homodyne vari-
ances. Assuming quadrature symmetry (VXA|XB

= VPA|PB
)

and using the relationship 2VXA1
|XB

= VXA|XB
+ 1 (sim-

ilarly for p̂ quadrature), we find the requirement on the
heterodyne-homodyne conditional variance is equivalent to
the homodyne-homodyne condition VXA|XB

VPA|PB
≤ 0.22.

For RR the key rate is bounded by,

K� ≥ S(XB |E)−H(XB |XA1
)

≥ log 4π − S(PB |A)−H(XB |XA1
)

≥ log 4π −H(PB |PA)−H(XB |XA1)

≥ log
2

e
√

VPB |PA
VXB |XA1

(B11)

Once again, the quantity VPB |PA
is not measured directly,

but provided we trust Alice’s beamsplitter we have VPB |PA
=

VPB
− 2 〈PA2

PB〉2 /(2VPA2
− 1) allowing us to evaluate the

bound. However, since we must trust Bob’s devices in order
to apply the entropic uncertainty relation we explicitly may
not trust Alice’s devices. Therefore, this RR protocol could
never be 1sDI.

3. Homodyne-Heterodyne (Squeezed States and Heterodyne
Detection)

These protocols are essentially mirror images of the coher-
ent state homodyne schemes since, in the EB picture, we now
have Alice making homodyne measurements and Bob mak-
ing heterodyne measurements. We now have Alice swapping
between x̂ and p̂ measurements while Bob splits up his mode
measuring x̂ upon B1 and p̂ upon B2. As per the previous
squeezed state case, to obtain effective EB data from a P&M
scheme Alice will rescale her modulation signal by dividing

αx(p) = +(−)
√

1− 1/V 2
x(p). The DR key rate is bounded

by,

K� ≥ S(xA|E)−H(XA|XB1
)

≥ log 4π − S(PA|B)−H(XA|XB1
)

≥ log 4π −H(PA|PB)−H(XA|XB1
)

≥ log
2

e
√

VPA|PB
VXA|XB1

(B12)

where we will have to trust the beamsplitter in Bob’s station

to obtain VPA|PB
= VPA

− 2 〈PB2
PA〉2 /(2VPB2

− 1) from
the directly measured conditional variance.

The RR key rate is bounded by,

K� ≥ S(XB1 |E)−H(XB1 |XA)

≥ log 4π − S(PB1
|A)−H(XB1

|XA)

≥ log 4π −H(PB1
|PA)−H(XB1

|XA)

≥ log
2

e
√

VPB2
|PA

VXB1
|XA

(B13)

where we have again used the known action of Bob’s beam-
splitter to write VPB1

|PA
= VPB2

|PA
. Similarly to previous

section, only the RR protocol is 1sDI.

4. Heterodyne-Heterodyne (Coherent States and Heterodyne
Detection)

The final protocols involve Bob making a heterodyne mea-
surement upon coherent states, or alternatively both parties
making heterodyne measurements upon a two-mode squeezed
vacuum. We include this for completeness, however none of
these protocols could be 1sDI because devices on both sides
must always be trusted. Thus there are now four modes in-
volved A1 and B1 upon which x̂ is measured and A2 and
B2 upon which p̂ is measured. We can consider the x̂ and
p̂ channels separately. Note that this is actually an under-
estimation of the key rate as it essentially allowing Eve to
devote all her resources to estimating either the x̂ or p̂ mea-
surements separately, whereas in reality she must in fact esti-
mate both simultaneously. As per the previous coherent state
case, to obtain effective EB data from a P&M scheme Al-
ice will rescale her modulation signal by dividing αx(p) =

+(−)
√

2(Vx(p) − 1)/(Vx(p) + 1). The DR key rate for x̂ is
bounded by,

K� ≥ S(XA1
|E)−H(XA1

|XB1
)

≥ log 4π − S(PA1 |B)−H(XA1 |XB1)

≥ log 4π −H(PA1
|PB)−H(XA1

|XB1
)

≥ log
2

e
√
VPA1

|PB
VXA1

|XB1

(B14)

Provided we trust the beamsplitter in Bob’s station we can

have VPA1
|PB

= VPA2
|PB

= VPA2
−2 〈PA2PB2〉2 /(2VPB2

−
1).

The RR key rate is bounded by,

K� ≥ S(XB1 |E)−H(XB1 |XA1)

≥ log 4π − S(PB1
|A)−H(XB1

|XA1
)

≥ log 4π −H(PB1
|PA)−H(XB1

|XA1
)

≥ log
2

e
√

VPB1
|PA

VXB1
|XA1

(B15)

By trusting the beamsplitter in Alice and Bob’s station we get

VPB1
|PA

= VPB2
|PA

= VPB2
− 2 〈PB2

PA2
〉2 /(2VPA2

− 1).
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Appendix C: Security proof with imperfect reconciliation
efficiency

In the main text we derived secret key rates assuming that
Alice and Bob achieve the Shannon capacity for their Gaus-
sian encoding. Thus the key rate is bounded by,

K� ≥ I(XA : XB)− χ(XA : E) (C1)

Here we now use XA to denote that fact that depending upon
the particular protocol we could be referring to quadrature
measurements with or without a shot noise penalty and also
that these quantities must be averaged over the x̂ and p̂ quadra-
tures in the case that the two are not perfectly symmetric. In
reality we won’t be able to perfectly achieve this capacity and
the key rate will instead be bounded by,

K� ≥ βI(XA : XB)− χ(XA : E) (C2)

where β < 1 is the reconciliation efficiency. In this case, in-
stead of using the entropic uncertainty relation to lower bound
the secret key rate, we will use it to upper bound Eve’s infor-
mation and then independently measure βI(XA : XB) to ob-
tain the actual key rate. Eve’s information is upper bounded
by the Holevo quantity thus,

χ(XA : E) ≤ S(E)−
∫

dXA p(XA)S(ρ
XA

E ) (C3)

The conditional von Neuman entropy of the observable XA is
given by

S(XA|E) = H(XA) +

∫
dXA p(XA)S(ρ

XA

E )− S(E)(C4)

Thus we can rewrite Eve’s information as,

χ(XA : E) ≤ H(XA)− S(XA|E) (C5)

We now make use of our CV entropic uncertainty relation,

S(XA|E) + S(PA|B) ≥ log 4π (C6)

to obtain,

χ(XA : E) ≤ H(XA) + S(PA|B)− log 4π (C7)

Using the fact that S(PA|B) ≤ S(PA|PB) = H(PA|PB) and
that the Shannon entropy is maximised by a Gaussian distribu-
tion for a fixed variance such that H(XA) ≤ log

√
2πeVXA

we arrive finally at,

χ(XA : E) ≤ log 2πe
√

VXA
VPA|PB

− log 4π (C8)

Thus the secret key rate for an arbitrary β is ,

K� ≥ β log

√
VXA

VXA|XB

+ log
2

e
√

VXA
VPA|PB

(C9)

The RR key rate is given by interchanging Alice and Bob to
obtain,

K� ≥ β log

√
VXB

VXB |XA

+ log
2

e
√
VXB

VPB |PA

(C10)

Finally, the key rate for the RR protocol where Bob hetero-
dynes is given by

K� ≥ β log

√
VXB1

VXB1
|XA

+ log
2

e
√

VXB1
VPB2

|PA

(C11)

and the DR protocol where Alice heterodynes (or alternatively
prepares coherent states) is given by

K� ≥ β log

√
VXA1

VXA1
|XB

+ log
2

e
√

VXA1
VPA2

|PB

(C12)

Appendix D: Experimental Details and modeling of EB scheme
with Homodyne-Homodyne detection

In this section, we discuss the experimental details, the
imperfections and the modelling of the experiment with EB
source and homodyne-homodyne measurements. A 1064 nm
Nd:YAG laser source which was frequency doubled to 532
nm was used in the experiment. Both light fields were passed
through mode cleaning cavities for spatial filtering and also to
provide quantum noise limited coherent beams. Two similar
degenerate bow-tie optical parametric amplifiers were used to
produce two amplitude squeezed states. The 1064 nm field
was used as the seed field for the OPAs and also as the lo-
cal oscillator for homodyne detections. The 532 nm field was
used to pump the OPAs. Here, we used PPKTP crystal to
produce nonlinear effects. The estimated values of squeez-
ing and anti-squeezing generated from both OPAs were -6 dB
and 10.7 dB at 3 MHz. A simple model was used to in-
fer the pure squeezing produced inside the cavity and also
the effective loss of the system. According to this model,
the OPAs were assumed to produce pure squeezed states and
the effective loss, the combination OPA’s propagation and de-
tectors’ losses, was modelled with a beam splitter after the
squeezer. Using this model and the measured values of the
squeezing and anti-squeezing, we predicted that each OPA
produced 11.5 dB of pure squeezing (-11.5 dB of squeezing
and 11.5 dB of anti-squeezing), and the effective loss of this
system was calculated to be around 20% with 14% loss due to
each squeezer’s cavity and also the propagation of the optical
beams through the optical components and nearly 6% loss due
to each detection station.

Four identical photodiodes were used in the detection sta-
tions. The detection efficiency of Alice and Bob’s stations
were estimated to be 94% and 92% respectively, with fringe
visibility of 99% and the photodiodes’ quantum efficiency of
around 96% for all the detectors. We estimated 2% extra loss
on Bob’s side due to the loss introduced by the half wave
plate and polarizing beamsplitter that were used to simulate
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FIG. 6: Predicted improvement of secure transmission distance through optical fibre for the EB protocols with an improved experimental setup
(red curve) for the (a) RR protocol and (b) DR protocol. The model for the current system (blue curve) is plotted along with experimental data
(blue points) for comparison. The two OPAs in our system each produced -6 dB of squeezing and 10.7 dB of anti-squeezing and suffered from
13% combined loss due to the squeezers’ cavities and the propagation through the optical components. A further loss of 6% and 8% was due to
the inefficiency of Alice and Bob’s homodyne detections respectively. The value of the unknown rotation, θ, was estimated to be 3π/180. The
improved system consists of two squeezers each producing -10 dB of measurable squeezing and 16 dB of anti-squeezing, 5% loss due to the
cavities and propagation of the optical beams through the optical components with 4% and 5% loss for Alice and Bob’s stations respectively
and a rotation of π/120. Reconciliation efficiency is chosen to be 0.95 for both cases. These theoretical lines are produced using the model
described in the section D and equations (C9) and (C10).

the lossy channel. Each pair of detectors were balanced elec-
tronically, providing 30 dB of common mode rejection. Each
detector had at least 16 dB of dark noise clearance.

For each separate homodyne detection 5 × 107 data points
are sampled at 14× 106 samples per second. In order to pro-
vide sufficient statistics for each data point, this process is re-
peated ten times. These data were then digitally filtered to 2.5-
3.5 MHz and then resampled. After this process, the number
of data points was reduced to 4 × 106 which is sufficient to
extract the key rates.

Other experimental imperfections, such as the the imperfect
locking points and the unbalanced beamsplitter ratios, were
also captured in the model. Since all the states and operators
were assumed to be Gaussian in this experiment, the states can
be easily described by their mean values and covariance ma-
trices (CM’s). The effect of Gaussian operations on Gaussian
states can be compactly calculated via symplectic transforma-
tions [? ]. Under an arbitrary symplectic operation, S, an
input CM, γin transforms via

γout = SγinS
T (D1)

The CM of a two mode squeezed vacuum with squeezing in
quadrature in modes i and j is given by applying the following
symplectic operator,

SQi,j(s1, s2) =

⎛
⎜⎝
es1 0 0 0
0 e−s1 0 0
0 0 e−s2 0
0 0 0 es2

⎞
⎟⎠

where s1 and s2 are squeezing parameters applied on the ith

and jth second mode respectively. Implicit in this notation

is the fact that when applied to a multi-mode CM one should
appropriately pad out the above matrix such that the identity
is applied to all modes other than i and j.

The loss of each squeezer is modelled by introducing a vac-
uum mode, and then applying a beamsplitter of transmittance
ηA(B) on each squeezed mode and a vacuum mode to mix
them together. The beamsplitter transformation between the
modes i and j is:

BSi,j(η) =

⎛
⎜⎝

√
η 0 −√

1− η 0
0

√
η 0 −√

1− η√
1− η 0

√
η 0

0
√
1− η 0

√
η

⎞
⎟⎠

In order to create an EPR state two squeezed states are
locked in quadrature and mixed on a 50:50 beamsplitter. To
model the imperfect locking point a phase shift θ is applied
to one mode before they mix on a beamsplitter. The applied
operator is as follows:

RTi(θ) =

(
cos θ − sin θ
sin θ cos θ

)

To model the loss of the transmission channel, a vacuum
state was introduced and mixed with the second mode on
a beamsplitter with transmittance T . The loss of each ho-
modyne station was modelled by a beamsplitter of transmit-
tance ηDA(B)

, equal to the efficiency of the homodyne sta-
tion, with the other mode being in a thermal state of variance
VΔA(B)

= 1 + ΔA(B)/(1 − ηDA(B)
) to model the detector

dark noise of magnitude ΔA(B). Thus the final CM is given
by (D1) with,

S = BS2,7(ηDB
)BS2,6(T )BS1,5(ηDA

)BS1,2(1/2)RT2(θ)

BS2,4(ηB)BS1,3(ηA)SQ1,2(s1, s2) (D2)
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with

γin = diag(1, 1, 1, 1, 1, 1, 1, 1, VΔA
, VΔA

, 1, 1, VΔB
, VΔB)(D3)

a 14x14 diagonal matrix. To determine the value of the ap-
plied loss, T , from the measured correlations it is sufficient
to consider the ratio of the correlation between Alice and Bob
at particular loss setting with the case where the channel is
set to full transmission. Using equations (C9) and (C10), key
rates were calculated from both the simulated covariance ma-
trix and experimentally measured conditional variances. We
plotted them as a function of the effective transmission dis-
tance, showing excellent agreement with the experimental re-
sults as shown in Fig 6.

The model was also used to estimate the performance of a
more efficient system with two squeezers each producing -10
dB of squeezing and 16 dB of anti-squeezing and detection
efficiency for Alice and Bob’s stations of 96% and 95% re-
spectively. Using these parameters, our model shows that the
range of the secure communication would extend from 7.5 km
to 15 km for the RR protocol and from 2.5 km to more than
6 km for DR protocol. If the phase shift, θ, which was used
to model the imperfect locking point of the EPR state reduced
from 3π/180 to π/120, our model predicts that the range of
the secure communication would extend further to 17 km for
the RR protocol (Fig. 6(a)) and to more than 8 km for DR pro-
tocol (Fig. 6(b)). Achieving this level of quadrature squeezing
and phase stability are experimentally challenging but feasible
as up to -12 dB of squeezing was reported previously [? ].

Appendix E: Experimental Details and modeling of P&M with
coherent states and homodyne detection

In this section, we discuss the experimental details, imper-
fections and modelling of the experiment with coherent states
and homodyne measurements. A quantum noise limited 1064
nm laser was used in the experiment. A small portion of it was
passed through a pair of phase and amplitude electro-optic
modulators (EOMs). EOMs were used to provide a Gaus-
sian distributed modulation on each quadrature. Each EOM
was driven by an independent function generator, providing a
broadband white noise signal up to 10 MHz. The magnitude
of white noise was set to provide almost the same displace-
ment on each quadrature. Outputs of function generators were
divided into two. One part was sent to drive the EOMs and the
other was recorded. This modulation record, after calibration,
was Alice’s data since she had control over the source. Here,
calibration means determining the relationship between the
function generator output and the phase space displacement
as measured before transmission. We denote the variance of
this phase space modulation VS . The modulated beam was
then sent through a lossy channel to Bob. To model the lossy
channel, a vacuum state was introduced to the system and was
mixed with the Bob’s mode on a beamsplitter of transmission
T . Upon receiving his mode, Bob performed a homodyne
measurement, alternating between conjugate quadratures. An
electronic delay was introduced to Alice’s and Bob’s data to
gain the maximum correlation between them at 3.5-4.5 MHz.

When the homodyne detector was locked to the phase
quadrature there was 30 dB suppression of cross correlation
between orthogonal quadratures and when it was locked to
the amplitude quadrature the suppression was around 37 dB.
Our pair of detectors, both with dark noise clearance of 18
dB, were balanced electronically, providing 30 dB of com-
mon mode rejection. Our homodyne efficiency was around
95% with fringe visibility of 98%, limited by the mode dis-
tortions introduced by the EOMs. The photodiode’s quantum
efficiency was estimated to be around 98.5%. 4 × 106 data
points were sampled at 25× 106 samples per second utilizing
a digital data acquisition system. The process was repeated
five times in order to provide sufficient statistics for each data
points. These data were then digitally filtered to 3.5-4.5 MHz.

In order to find the maximum range over which the protocol
provides secure communication, we wish to find the optimal
modulation variance for each value of the channel transmis-
sion. We scanned the modulation variance over a range of 2
to 19 times the shot noise. As discussed in section B 2, by
rescaling Alice’s recorded signal, the key rates can be calcu-
lated using (C12) with reconciliation coefficient set to 0.95.

To highlight the relative advantages of the coherent state
source, consider the CM of the equivalent two mode EPR
state:

EPR(s) =

⎛
⎜⎝
cosh(2s) 0 sinh(2s) 0

0 cosh(2s) 0 − sinh(2s)
sinh(2s) 0 cosh(2s) 0

0 − sinh(2s) 0 cosh(2s)

⎞
⎟⎠ (E1)

where s is the squeezing parameter which is related to the
modulation variance via cosh(2s) = VS + 1. To model the
prepare & measure experiment, we remain in the equivalent
EB picture and begin with γin = EPR(s). Recall that one
part of the equivalent EPR state was sent to Bob through a
lossy channel where he performed a homodyne detection, and
on the other part Alice performed a heterodyne detection. Al-
though much more flexible, the coherent state setup naturally
still suffers from imperfections which in turn effect the opti-
mum modulation. These imperfect correlations arise partly
from cross correlation between orthogonal quadratures and
partly from our limited ability to maximize the correlation be-
tween Alice and Bob’s modes using electronic delay. Both
phenomena can be thought of as an unknown rotation in the
system. A rotation operator with small angles is applied to
the X and P quadratures of the second mode (Bob’s mode)
to model the imperfect correlation between Alice’s and Bob’s
modes.

The channel transmission, T , can again be determined di-
rectly by taking the ratio of the correlation at a particular set-
ting with the correlation at full transmission. Technically, the
experimental channel would also introduce a small amount of
excess noise, however this is negligible compared to the ex-
cess noise coming from the effects described above. The final
simulated covariance matrix hence is

γout = S[γin ⊕ Vχ(B)⊕ diag(1, 1)]ST , (E2)

where S is given by

S = RT (θx, θp)BS1,4(1/2)BS2,3(T ). (E3)
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FIG. 7: (a) Variation of key rates versus effective modulation squeezing parameter for 5 different transmissions. A theory line with the average
transmission of the channel is fitted on the experimental data points with 1 s.d. error bars. Data points surrounded by dashed circles correspond
to the optimum modulation squeezing parameters which result in the highest key rate for each transmission. The key rates resulting from these
optimum modulation variances are shown separately in (c). Inset (b) demonstrates the gap between the theoretical cross-talk free model and
the realistic model which captures the experimental imperfections. (c) Predicted improvement of secure transmission distance through the
optical fibre for the coherent state protocol with an improved experimental setup (red curve). The model for the current system (blue curve) is
plotted along with experimental data (blue points) for comparison. In the actual experiment, the optimal modulation variance is reduced due to
unwanted cross-quadrature correlations. In the improved setup, the cross-talk has been eliminated and the optimal modulation variance is now
determined by the reconciliation efficiency, which is chosen to be 0.95 for both cases. These theoretical lines are produced using the model
described in section E, where the value of the unknown rotation, (θx, θp), was estimated to be about ≈ (6π/180, 3π/180) and equation (C12).

Here, Vχ = diag(1 + χx, 1 + χp), where χx(p) is the excess
noise in x̂(p̂) quadrature. The rotation matrix,

RT (θx, θp) =

(
cos θx sin θx
− sin θp cos θp

)
(E4)

serves as the fitting parameter to model the unknown rotation
due to aforementioned experimental imperfection.

To evaluate the key rate (C12), we neglect the excess noise
in the channel by setting χx(p) = 0. The variation of key
rates versus the equivalent modulation squeezing parameter
for 5 different transmissions is shown in Fig. 7(a). As the

modulation is increased, so too is the detrimental effect on the
correlations, leading to a smaller value for the optimal modu-
lation parameter, whereas for an ideal experiment, this would
depend only upon β. In inset(b) of Fig. 7 the gap between
the ideal case without cross correlation and the realistic case
is shown for the case of perfect transmission. For each trans-
mission value, the modulation squeezing parameters that pro-
vide the highest key rate are chosen and plotted in Fig. 7(c).
These optimum variances match well with what our theoreti-
cal model predicts. As is clear from Fig. 7(a), using coherent
states provides a much greater range over which to tune the
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equivalent squeezing. When using actual EPR states the max-
imum achievable value for s is around 0.8, well short of the
optimum. Our model also predicts that if the cross correlation

between Alice and Bob’s modes was zero, the range of secure
communication for this protocol would extend from 4.5 km to
6.5 km as depicted in Fig. 7(c).
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