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Experimental demonstration of graph-state
quantum secret sharing
B.A. Bell1, D. Markham2, D.A. Herrera-Martı́3, A. Marin2, W.J. Wadsworth4, J.G. Rarity1 & M.S. Tame5,6

Quantum communication and computing offer many new opportunities for information

processing in a connected world. Networks using quantum resources with tailor-made

entanglement structures have been proposed for a variety of tasks, including distributing,

sharing and processing information. Recently, a class of states known as graph states has

emerged, providing versatile quantum resources for such networking tasks. Here we report an

experimental demonstration of graph state-based quantum secret sharing—an important

primitive for a quantum network with applications ranging from secure money transfer to

multiparty quantum computation. We use an all-optical setup, encoding quantum information

into photons representing a five-qubit graph state. We find that one can reliably encode,

distribute and share quantum information amongst four parties, with various access

structures based on the complex connectivity of the graph. Our results show that graph

states are a promising approach for realising sophisticated multi-layered communication

protocols in quantum networks.
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T
he potential benefits of using quantum mechanics to carry
out information processing in a connected world are now
well established1. While the algorithmic speedups offered

by quantum computers2 and the robust security provided by
quantum key distribution3 are outstanding improvements
over what is classically achievable, in recent years many new
protocols have emerged in the setting of quantum networks.
These protocols include quantum coin flipping4–7, blind
quantum computation8,9 and distributed and secure quantum
computation10,11. One of the most useful protocols for distributed
quantum information processing is quantum secret sharing12,13.
In this protocol, one player is able to distribute a secret (classical
or quantum information) to a network of players, such that only
authorized sets of players can access the secret and unauthorized
sets obtain no information. Secret sharing has many useful
applications in network-based scenarios, such as auctioning,
remote voting, secure money transfer and multiparty secure
computation. The first classical protocols for secret sharing of
information, in the form of a bit string, were introduced in 1979
by Shamir14 and Blakely15, with quantum versions later
developed12,13 for sharing classical and quantum secrets using
quantum bits, or qubits. Most recently, secret sharing protocols
have been unified under the framework of graph states16–18—
highly nonlocal quantum resources made from a network of
entangled qubits that can be used to share both classical
and quantum secrets. One of the most promising features
of graph state-based quantum secret sharing is the natural
capacity of the entangled resource states to be integrated into
more complex networking protocols and their entanglement
exploited for extended functionality19–21. Indeed, graph states are

also the basis for universal measurement-based quantum
computation22–27, error correction28–35 and blind quantum
computation8,9, making them versatile resources for distributed
quantum information processing.

In this work, we report an experimental demonstration of
graph state-based secret sharing of classical and quantum
information using photons in a linear optics setup. We first
show how a five-qubit graph state can be used for sharing a
classical secret amongst four players using quantum channels
(CQ)—secure against a distrusted channel between the dealer (the
party that shares the secret) and the four players. We then show
how the same five-qubit graph state can be used to share a
quantum secret with quantum channels (QQ). Finally, we
demonstrate secret sharing of quantum information which is
verified as secure against distrusted channels between the dealer
and the other players (SQQ). This is achieved by combining
classical Shamir–Blakely protocols14,15 with CQ and schemes for
sharing quantum secrets recently introduced in refs 16,17,36.
With our results we therefore demonstrate the practical potential
of graph state quantum secret sharing, as well as the capacity for
integrating several cryptographic protocols in this setting. The
results and their analysis show some of the key advantages of
using graph states for quantum communication protocols in
future quantum networks.

Results
Resource characterization. The setup used to demonstrate
graph-state quantum secret sharing is shown in Fig. 1a and
generates the five-qubit graph state shown in Fig. 1b, which acted

BS

S-B

HWPsPCF1

PBS
DM

i1 i2
s1

s1

s2

s2

HWP

DM
PBS

PCF2

Player 2

Player 3Player 4

Player 1

3

30

0

4

1

Dealer

2

PBS

Path

interferometers

PBS-H
W

P-Q
W

P Q
W

P-H
W

P-PBS

2
QWP

HWP

PBS

41

Detectors

LASER

Figure 1 | Experimental setup. (a) Setup used to generate the graph state resource for secret sharing. Two photonic crystal fibre (PCF) sources are

pumped using a Ti:Sapphire laser producing picosecond pulses at 724 nm. The first source produces a pair of photons in the state Hj ii1 Hj is1 and the second

produces photons in the state 1
ffiffi

2
p ð Hj ii2 Hj is2 þ Vj ii2 Vj is2 Þ. The signal photons from the first pair are rotated to the state |þi using a half wave plate (HWP)

and both signal photons are then fused using a polarizing beam splitter (PBS). The polarizations of the signal photons are then rotated using HWPs to form

the three-qubit linear cluster state 1
ffiffi

2
p ð þj is1 Hj ii2 þj is2 þ �j is1 Vj ii2 �j is2 Þ, where the first idler photon i1 is used as a trigger to verify a fourfold coincidence

signifying the generation of the state. The path degree of freedom of the signal photons is then used to expand the resource to a five-qubit linear cluster

state using a Sagnac interferometer, as shown in the dashed boxes and explained in the main text. Local complementation operations are then carried out

to rotate the linear cluster into the graph state shown in b, as detailed in ref. 35. (b) Diagram of the secret sharing scenario. Here the vertices correspond to

qubits initialized in the state |þi and edges correspond to controlled-phase gates, CZ¼diag(1, 1, 1, � 1), applied to the qubits.
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as a resource state for carrying out the protocols. In the graph
state, there is an initial entanglement between the dealer’s qubit
(centre qubit) and that of each of the four players (the outer
qubits). The state was generated using the method described in
ref. 35, where a birefringent photonic crystal fibre (PCF)
generates a polarization-entangled pair of photons in the state
1
ffiffi

2
p Hj i Hj i þ Vj i Vj ið Þ, with H and V referring to horizontal and
vertical polarization. The entangled photons are generated at
non-degenerate signal and idler wavelengths of 625 and 860 nm.
A second PCF generates heralded single photons at the signal
wavelength (see Methods). Both PCF sources were pumped by the
same pulsed laser. The signal photons from the two PCF sources
were then overlapped at a polarizing beamsplitter (PBS) to
perform a postselected fusion operation37, leaving a three-photon
entangled GHZ state 1

ffiffi

2
p HHHj i þ VVVj ið Þ. This state can be

converted by local operations to a linear graph state
1
ffiffi

2
p þ 0þj iþ � 1�j ið Þ, where the single-qubit computational
basis states |0i and |1i are encoded as horizontal and vertical
polarizations, and therefore �j i ¼ 1

ffiffi

2
p 0j i � 1j ið Þ are encoded as

diagonal and antidiagonal plane polarizations. These 45�
rotations are applied to the two signal photons emerging from
the PBS fusion operation using half-wave plates (HWPs).

Additional qubits are then added to the linear graph state by
expanding the signal photons into two paths in displaced Sagnac
interferometers, with the extra degree of freedom associated with
the path of the photon corresponding to a qubit in each
interferometer. The beamsplitters used in the interferometers are
hybrids, with half of their surface a PBS and the other half a 50:50
beamsplitter (BS). The signal photons are input through the PBSs,
so that their paths are correlated with their polarizations and the
graph state is extended by a qubit at each end, creating a five-
qubit linear graph. This is equivalent to the resource state shown
in Fig. 1b up to local complementation operations35, which are
carried out using additional waveplates and a relabelling of the
interferometer paths to the Pauli X basis (see Methods). The five-
qubit graph state generated in the experiment and shown in
Fig. 1b is given explicitly by

Cj i ¼ 1

2
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where the eigenstates of the Pauli Y operator are
� y

�

�

�

¼ 1
ffiffi

2
p 0j i � i 1j ið Þ. To measure the path qubit in the Pauli

X basis, one path or the other is blocked inside the interferometer.
To measure in the Y or Z basis, the paths are allowed to
recombine at the BS surface with different relative phases. The
polarization qubits are then measured using quarter-wave plate–
HWP–PBS chains, followed by silicon avalanche photodiode
detectors, which enable any Pauli basis measurement to be
performed38.

Before demonstrating secret sharing with the graph state, we
first checked for the presence of entanglement using an
entanglement witness39. In this case, it is possible to detect
genuine multipartite entanglement in a linear cluster state using
the correlations from only two local measurement bases. Since the
five-qubit graph state is locally equivalent to a five-qubit linear
cluster state, by making corresponding changes to the reference
frames of the measurements we obtain the relevant witness (see
Methods). The measurements are X0X1X2X3X4 and Y0Z1Y2Y3Z4,
which lead to a witness value of hW i¼ � 0.15±0.03. The
error is calculated using a Monte Carlo method with Poissonian
noise on the count statistics38. The negative expectation value of
the witness reveals the presence of genuine multipartite
entanglement and confirms that all qubits are involved in the
generation of the graph state. We also obtain the fidelity of the

experimental graph state with respect to the ideal case using
seventeen measurement bases (see Methods) and find a fidelity of
F¼ 0.70±0.01.

Having characterized the resource state, we move onto testing
its performance in carrying out secret sharing protocols. We
consider qubit 0 to belong to the dealer, and qubits 1, 2, 3 and 4 to
players 1, 2, 3 and 4 respectively. It can be seen from equation (1)
that the graph state is a maximally entangled state between the
dealer and the players. Thus, its use for secret sharing can be
thought of as analogous to the way a maximally entangled state is
used for two player communication. When using it to share a
classical secret, a random key can be established between the
dealer and authorized sets of players, similar to entanglement-
based quantum key distribution (QKD)36. On the other hand,
when using it to share a quantum secret it can be thought of as
the entangled resource for teleporting a secret state from the
dealer to the players. In both cases, the shape of the graph state
imposes restrictions on which sets of players can access the secret,
giving the overall access structure for the secret sharing. The more
complex structure of our graph state resource compared to
previously used GHZ states40–44, for example, means that it can
achieve more general access structures. Indeed, all access
structures are possible using generalized graph states45.

Classical secret sharing. In the CQ protocol, the graph state in
equation (1) is used to establish a random bit string, or ‘key’,
which can be known only by the dealer and an authorized set of
players12,16. In this sense, it is similar to a secret key generation
protocol: once the key is established, it can be used to securely
communicate secret classical information between the dealer
and the authorised set of players, even in the presence of
eavesdroppers (making it an improvement on the Shamir–Blakely
schemes14,15, which require trusted channels). We will see later
that it also can be used as a subprotocol for secure quantum
secret sharing (SQQ). As in entanglement-based QKD, the
players both measure in randomly chosen complementary bases,
the correlations are then checked, and if sufficiently high the
shared key can be trusted.

The dealer starts by measuring their qubit either in the Pauli Y
or Z basis, chosen at random. Thus, the dealer’s measurement
projects the players’ state into one of four states r

i;j
1234, where

j¼ (Z, Y) represents the dealer’s basis choice and i¼ (0,1) the
dealer’s measurement result. The four possible states can easily be
calculated from equation (1). The dealer’s result is used as the
secret key and the task of the players is to make measurements to
discriminate the four states r

i;j
1234 and find i. They cannot do this

perfectly without knowledge of the basis choice j, so they make
choices based on a guess j0 for the basis used by the dealer. As in
standard QKD, after the players measure their qubit, the basis
choice j is announced by the dealer. If the players’ measurements
were chosen differently, that is, j0aj, the results are discarded. A
‘sifted’ key is built up using the cases where the bases of the dealer
and the players coincide. For a given basis choice j of the dealer, a
set of players is ‘unauthorized’ if there is no measurement they
can make to find i, and a set of players is ‘authorized’ if they are
able to perfectly find i using particular measurements. Further
details of this protocol and its proof of security can be found in
refs 16,36.

To check whether a set of players, B, that use the five-qubit
graph state generated in our experiment can access the secret, it is
necessary to look at their reduced states r

i;j
B given the dealer’s

result and basis choice. To quantify how well a set of players can
access the dealer’s results, we use the accessible information36,
wj ¼ SðrjBÞ�

P

i pi;jSðr
i;j
B Þ, where S(r) is the von Neuman

entropy of state r and r
j
B ¼ p0;jr

0;j
B þ p1;jr

1;j
B and pi,j is the
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probability the dealer obtains result i when measuring basis j.
This allows us to quantify the maximum possible information
that the players in set B can obtain about the dealer’s results for a
given basis choice j. When wj is zero, there is no information that
the players can obtain about the dealer’s result, no matter which
measurements they make. Indeed, it can be shown (see Methods)
that using the state in equation (1) a single player cannot obtain
any information about the dealer’s result. That is, their reduced
density matrix is independent of the dealer’s result i, for both
bases j. In Fig. 2, we have measured the reduced density matrices
for each player (for each of the dealer’s results) from our graph
state to obtain the accessible information w. One can see from
Fig. 2a,b that the accessible information about the dealer’s results
are very close to zero for both the Z and Y bases, confirming that
individual players have almost zero information about the
dealer’s results.

We have also checked the density matrices of the individual
players. Before the dealer makes a measurement, the fidelities of
the single-player reduced density matrices with respect to a
maximally mixed state I/2 are F¼ 0.961±0.005, 0.996±0.002,
0.998±0.001 and 0.996±0.002 for players 1, 2, 3 and 4,
respectively. Once the dealer makes a measurement, the four
different states for each player (two for when the dealer measures
in the Z basis and two for the Y basis) remain close to the
maximally mixed state, leading to the low values of measured
accessible information shown in Fig. 2.

When pairs of players try to work together to recover the secret
key, there are two cases, with the amount of information
accessible different if the pair are adjacent: {1, 3}, {1, 4}, {2, 3} and
{2, 4} or diagonally opposite: {1, 2} and {3, 4}. It can easily be
shown that a given pair of adjacent players cannot obtain any
information about the dealer’s result from the state in
equation (1) (see Methods). One can see from Fig. 3a,b that the
accessible information about the dealer’s results are very close to
zero for both the Z and Y bases, confirming that adjacent pairs of
players have almost zero information about the dealer’s results.
On the other hand, when a pair of players are at opposite corners,
it can be shown using equations (1) and (8) that when the dealer
measures in the Z basis they obtain no information, but when
they measure in the Y basis they obtain full information. For
example, the pair {3, 4} could do this by measuring their qubits in
the bases Z3 and Y4. If the results are correlated, the dealer’s result
would be 1, if they are anticorrelated it would be 0. Similar
conclusions can be found for the pair {1, 2}. In Fig. 3c,d, one can
see that the measured accessible information about the dealer’s
results is very close to zero for the Z basis, but significantly larger
for the Y basis, confirming that opposite pairs of players can
access information about the dealer’s results.

Finally, if three players work together, then it can be shown
that in the ideal case they can access the dealer’s measurement
result perfectly for both the Z and Y bases. For example, if the
dealer measures in the Y basis, the triplet of players {1, 2, 4} can
retrieve the result by measuring their qubits in the bases Z2 and
X4, with the result of the dealer’s outcome obtained from the
measurement of designated player 1 in the Y basis after
feedforward operations Xs2 XZð Þs4Z are applied (where si¼ (0,1)
represents the outcome of the measurement of qubit i). This
scenario also holds for the Z basis of the dealer. The above results
can easily be checked by inspection of equation (1). The same
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retrieval process of the dealer’s measurement result holds for
any triplet of players by symmetry. The correlations within the
graph state can therefore be used to establish a shared random
key between the dealer and any set of three players. In Fig. 4, we
show the measured quantum bit error rates (QBERs) for
generating a shared random key for the four possible triplets
of players: {1, 2, 3}, {1, 2, 4}, {2, 3, 4} and {1, 3, 4}. The result of
the dealer is obtained from the measurement of a designated
player’s qubit.

We can also check what happens to the accessible information
from the QBER values. Once the measurement basis is
chosen by the players and the dealer, a non-zero QBER with
value p represents the action of the superoperator

EðjÞðri;jB Þ ¼ pr
i� 1;j
B þð1� pÞri;jB . It is not difficult to see that

for p¼ 50% the accessible information will be zero, irrespective of

r
i;j
B . In Fig. 4, one can see that the QBERs are low when the dealer

and designated player measure in the same basis and close to 50%
when they use a different basis—corresponding to completely
uncorrelated results with no accessible information for the
players. By taking the QBERs from both the Z and Y bases,
when the dealer and designated player measure in the same bases,
we almost reach the 11% bound needed to establish a secure
random key3. We obtain 14±2, 16±2, 18±2 and 15±2% for
the triplets {1, 2, 3}, {1, 2, 4}, {2, 3, 4} and {1, 3, 4}, respectively.
Although these QBERs are just above the secure bound, the
results demonstrate a first implementation of QKD with the
access structure of the graph state. Note also that in our
experiment, the players do not receive separate photons as we are
making use of hyperentanglement19–21. This means that qubits 1
and 2 are embodied by one photon, and qubits 3 and 4 by
another. Thus, one photon would belong to players 1 and 2, while
the other to players 3 and 4. For a pair of players that share a
single photon, one can split up the access sets into their original

form by allowing one player to control the measurement setting
and readout of the path qubit, and the other to control the setting
and readout of the polarization qubit. In this way, the
hyperentangled state can in principle be shared out to four
players at spatially separate locations. To do this, the dealer would
send one of the photons to the first player of a pair, who measures
the path qubit using a quantum non-demolition measurement46

and then forwards the photon to the second player at a separate
location to measure the polarization qubit. To check for any
eavesdropping by the first player, the dealer could at random
intervals send a decoy qubit (in the polarization basis) to the
players of a pair and together with the second player check for
eavesdropping using standard BB84 methods3. From a practical
point-of-view, it may therefore be more straightforward for each
player to receive a separate photon (each encoding one qubit of
the graph state), although this would require modifying the
present experimental setup.

In summary, using the graph state generated in our setup to
share classical information via quantum channels (CQ), we have
demonstrated a secret sharing scheme where a secret is
distributed across four players such that any three can access
the secret and any single player obtains no information. This is
known as a ramp scheme with parameters (3, 1, 4). Here a ramp
scheme (k,k0,n) enables the parameterizing of any secret sharing
scheme over n players such that any set of k or more players have
perfect access to the secret and any set of k0 or fewer players have
no access to the secret. If k0 ¼ k� 1, then the scheme is called a
(k,n) threshold scheme.

Quantum secret sharing. We now show how our generated
graph state can also be used to implement a (3, 1, 4) ramp scheme
for sharing a quantum secret using the method described in
ref. 16. We then show how this ramp scheme can be upgraded to
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a (3, 4) threshold scheme via hybrid quantum secret sharing
(using both classical and quantum secret sharing)47,48. That is,
any three players can access the quantum secret, but any fewer
cannot. This is known to be impossible using a qubit pure
quantum secret sharing protocol alone, that is, without some
classical mixing16,36.

In the QQ protocol, a quantum state cj i ¼ a j 0iþb j 1i (the
quantum secret) is encoded by the dealer onto the following four-
qubit state shared by the players

Fj i ¼ a j fi1234 þ b j f0i1234; ð2Þ

where |fi1234¼ (1/2)(|þ þ 00iþ |þ þ 11iþ |� � 01iþ |�
� 10i)1234 is a square graph state and |f0i1234¼Z1Z2Z3Z4|fi1234.
The dealer achieves this encoding by teleporting in their secret
state cj i via a Bell measurement of the joint state of cj i and qubit
0 of the graph given in equation (1)36,49. Alternatively, the dealer
can directly prepare qubit 0 of the graph in the secret state cj i0¼
a 0j i0 þ b 1j i0 and measure it in the X basis with the feedforward
operation Z1Z2X3I4ð Þs0 applied. In our experiment, we implement
this latter more compact approach for encoding the secret. The
task of a set of players is then to access the secret quantum
information.

To quantify the amount of information that can be accessed by
a set of players B in this quantum version of secret sharing, we use
the quantum mutual information of the reduced state shared by
the dealer and the set of players49, r0,B, which is given by
I(r0,B)¼ S(r0)þ S(rB)� S(r0,B), where r0 and rB are the reduced
states of the dealer and players, respectively. If I(r0,B) is zero, the
players obtain no information about the quantum secret. For any
single player, it can be shown that the encoding in equation (2)
leads to a reduced density matrix that is maximally mixed,
independent of the secret input qubit. In Fig. 5, we have used
quantum process tomography and treated the communication
between the dealer and each player as a quantum channel for the
secret qubit to be transferred over. Here four probe states are used
for the dealer’s secret qubit, |0i, |1i, |þi and |þ yi, which enable
the reconstruction of the final Bloch sphere obtained by each of
the players. One can see from Fig. 5 that all of the dealer’s secret
qubit states are transferred to states close to the maximally mixed
state for the players. Furthermore, the measured mutual
information between the dealer and each player, given in the
caption, is consistently close to zero. Thus, a single player acting

alone cannot obtain any information about the shared quantum
secret.

For pairs of players, the situation changes with regards to the
amount of accessible information. When the players are adjacent,
they obtain no information in the Z–Y plane of the secret qubit’s
Bloch sphere, but they can obtain information in the Z–X and
X–Y planes (see Methods). In Fig. 6a–c, we show the
experimental results from the player pair {1, 4}. Here we plot
the fidelity between the players’ two-qubit state and fixed states as
the dealer varies the angles in the respective planes of the Bloch
sphere for their secret qubit. This fidelity gives us an indication of
how the state of the pair changes based on the dealer’s input state.
In Fig. 6a, the fixed state is I/4 for the Z–Y plane. In Fig. 6b,c, the
fixed states are the orthogonal states 1

4 ðIþX � XÞ and
1
4 ðI�X � XÞ for both the Z–X and X–Y planes. Essentially,
the oscillations between the fixed orthogonal states show that
some information about the dealer’s qubit remains in the joint
state of the two players and depends on the plane in which the
qubit is encoded into. We quantify the amount of secret
information in the adjacent pair of player’s qubits using the
mutual information of the state shared by the dealer and the pair,
measuring a value of I¼ 0.29±0.02, obtained from a three-qubit
state tomography. This shows that some of the secret quantum
information is shared between the dealer and adjacent pairs of
players.

On the other hand, when the players are opposite, they obtain
no information in the Z–X plane, but can extract information in
the Z–Y and X–Y planes. In Fig. 6g–i, we show the experimental
results from the player pair {1, 2}. In Fig. 6h, the fixed state is
1
4 ðIþX � XÞ for the Z–X plane, while in Fig. 6g,i, the fixed states
are the orthogonal states 1

4 ðIþX � XþðZ � Y þY � ZÞÞ and
1
4 ðIþX � X�ðZ � Y þY � ZÞÞ=4 for both the Z–Y and X–Y
planes. Again, the oscillations between the fixed orthogonal states
show that some information about the dealer’s qubit remains in
the joint state of two players. In this case, the mutual information
of the state shared by the dealer and the pair is measured to be
I¼ 0.62±0.02, obtained from three-qubit state tomography.

To elevate this secret sharing QQ scenario to a threshold
scheme, that is, one where no two players can obtain any
quantum information, we use a hybrid protocol47,48. In this class
of protocols, any (k,k0,n) ramp scheme can be elevated to a (k,n)
threshold scheme, and in fact all intermediate ramp schemes
(k,k00,n) for any k0 r k00 r k � 1 can be achieved. In our case, we
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Figure 5 | Accessible information for single players in quantum secret sharing using the graph state. Single-qubit Bloch spheres for individual players.

Here each Bloch sphere represents the output qubit states for an arbitrary state encoded by the dealer. (a) Original Bloch sphere of states encoded by the

dealer. (b) Player 1 Bloch sphere. (c) Player 2 Bloch sphere. (d) Player 3 Bloch sphere. (e) Player 4 Bloch sphere. One can see the Bloch spheres all

correspond to an almost completely mixed state I/2 for the dealer’s input states. The corresponding mutual information shared between the dealer and

players 1, 2, 3 and 4 is I¼0.005±0.001, 0.009±0.002, 0.013±0.003 and 0.009±0.003. The process fidelity of the channel describing the mapping of

the dealer’s states to the players states is given by58 Fp ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi

wexp
p

wid
ffiffiffiffiffiffiffiffi

wexp
pp

� �2

, where wid is an ideal maximally mixed channel and wexp is the

experimentally reconstructed one. From this definition, we obtain process fidelities of 0.989±0.002, 0.973±0.043, 0.980±0.005 and 0.975±0.056

for players 1, 2, 3 and 4, respectively. Thus, in the one-player case, the players have almost no information about the state the dealer has shared

using the graph state. Error bars are calculated using a Monte Carlo method with Poissonian noise on the count statistics.
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can elevate the (3, 1, 4) ramp scheme to a (3, 4) threshold scheme.
The hybrid scheme uses, in addition to the QQ ramp
scheme (already described and characterized), a quantum one-
time pad and classical secret sharing. That is, before the encoding,
the dealer applies a randomly chosen Pauli operation so that the
state encoded is XxZz cj i, where x, z are randomly chosen bits by
the dealer. This state is then encoded and distributed, and the
classical information x,z is shared using classical secret sharing
with ramp scheme parameters (k,k00,n). Without the classical
information no players will be able to retrieve cj i, but with the
classical information, any k can still access the information
perfectly. In the present case, if the classical information is
distributed using a classical (3, 4) secret sharing scheme, no two
players can know its value and therefore they will not be able to

retrieve cj i. We check the performance of the hybrid protocol
experimentally by applying randomly the operators I, X, Z and
XZ to the dealer’s qubit and measuring the resulting state of the
pairs of players. In Fig. 6d–f, we show the fidelity of the adjacent
player’s shared state with respect to the fixed state I/4 and in
Fig. 6j–l we show the fidelity of the opposite player’s shared state
with respect to the fixed state 1

4 ðIþX � XÞ. One can see that
when the dealer applies the hybrid encoding protocol, any shared
information is almost completely removed from the state
corresponding to pairs of players, as shown by the fidelities
remaining constant over the angles of the planes.

On the other hand, for any set of three players the encoding in
equation (2) allows them to access the quantum secret perfectly.
For example, if players 2 and 4 measure in Z2 and X4, respectively,
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Figure 6 | Accessible information for two players in quantum secret sharing using the graph state. The fidelities with respect to fixed reference

states for the two-qubit states shared by two players as the dealer encodes qubit states into the graph along three orthogonal Bloch sphere planes Z–Y, Z–X

and X–Y (parameterized by the canonical angles y and f). (a–f) Fidelities for adjacent players (1 and 4), as shown in the illustrations on the left hand side,

with panels a–c showing the standard encoding scheme, where the mutual information between the dealer and the pair of players is I¼0.29±0.02.

d–f show the hybrid encoding scheme used to remove information in all three planes. g–l, fidelities for opposite players (1 and 2), as shown in the

illustrations on the left hand side, with a–c showing the standard encoding scheme, where the mutual information between the dealer and the pair of

players is I¼0.62±0.02 and d–f showing the hybrid encoding scheme. The fixed reference states in the panels are as follows: In (a,d–f), the fixed state is

I/4. In b,c, the fixed states are the orthogonal states 1
4
IþX � Xð Þ (red) and 1

4
I�X � Xð Þ (blue). In h,j–l, the fixed state is 1

4
IþX � Xð Þ. In g,i, the fixed

states are the orthogonal states 1
4
IþX � Xþ Z � YþY � Zð Þð Þ (red) and 1

4
IþX � X� Z � YþY � Zð Þð Þ=4 (blue). The oscillations between the

fixed orthogonal states show that some information about the dealer’s qubit remains in the joint state of two players—depending on the plane the qubit is

encoded into and quantified by the mutual information values I. However, when the dealer applies the hybrid encoding, the information is almost

completely removed as shown by the fidelities remaining constant over the angles of the planes. Error bars are calculated using a Monte Carlo method with

Poissonian noise on the count statistics.
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the graph state is projected to one where the secret quantum state
resides on the qubit of player 1, up to a byproduct operation
Xs2 ZXð Þs4Z. The same holds for any three players by symmetry.
Thus, for the QQ protocol, all sets of three players can access the
secret. When the hybrid protocol is used to remove quantum
information from pairs of players, since the classical information
of the one-time pad will be known by any set of three players it
can easily be undone, allowing any three players to obtain the
secret quantum information. In Fig. 7, we show the results from
our generated graph state when the set of players {1, 2, 4} and {2,
3, 4} work to uncover the secret qubit shared by the dealer. Here
the designated player who retrieves the secret qubit is player 1 in
Fig. 7a and player 4 in Fig. 7b. We again treat the communication
from the dealer to the designated player as a quantum channel
and carry out quantum process tomography. One can see that in
both sets of three players, the secret quantum information is
retrieved, although with some deformation of the Bloch sphere
caused by the non-ideal graph state used in our experiment.
However, the fidelity for an arbitrary qubit shared between the
dealer and the set of players {1, 2, 4} averaged over the Bloch
sphere remains high with �F1 ¼ 0:82 � 0:01 (qubit retrieved by
player 1). For the qubit shared between the dealer and the set of
players {2, 3, 4}, we have �F4 ¼ 0:81 � 0:01 (qubit retrieved by
player 4).

Secure quantum secret sharing. Finally, we introduce and
demonstrate a new protocol for sharing a quantum secret over
untrusted channels between the dealer and the players, which we
denote by SQQ (for secure QQ). This is performed here for a
(3, 4) threshold scheme, its extension to general access structures
is presented in ref. 45. The QQ protocol (and its hybrid version)
detailed previously work as long as the state used for encoding is
the same as (or close to) that given in equation (1). However, if
the channel from the dealer to the players is noisy or untrusted,

this may not be the case. Thus, without knowing the initial secret
that was sent, an authorized set of players cannot know if they
received it correctly or not. The SQQ protocol rectifies this pro-
blem by verifying that the state used is indeed that in
equation (1), or close to it. Here CQ measurements are used as a
subprotocol to test the resource state (in a similar way to how a
GHZ state can be tested using the verification protocol recently
presented in ref. 50).

The protocol works as follows: after generating and distributing
the graph state, the dealer decides either to test it, or to use it for
quantum secret sharing, with probability 1-s and s, respectively.
Here s acts as a security parameter. The dealer announces the
choice about whether to test or use it publicly, and the dealer and
players carry out their part of the test or the secret sharing
scheme, respectively. The test is essentially an adapted version of
the CQ protocol, which by checking the correlations of the graph
state verifies it is close to the one desired. In the test, the dealer
measures in either X, Y or Z, or does not make any measurement,
all with equal probability. They then announce their choice and
the results publicly. A set of players B who are checking the state
then perform measurements depending on the dealer’s measure-
ment choice. The measurements used by the sets of three players
are explicitly detailed below, along with a description of how the
level of security is quantified.

It can be shown (see Methods) that if a given resource state r
shared between the dealer and players is used for quantum secret
sharing and the qubit state o retrieved by an authorized set of
players has fidelity f¼hc|o|ci with respect to the secret state cj i,
then the probability P that the resource state r passes the CQ test
is related to the fidelity by

f � 2P� 1: ð3Þ

In other words, a resource state which passes the test with high
probability will give a high fidelity when used for secret sharing.

Furthermore, if we let Cf be the event that the protocol has not
aborted and that the state r was used for QQ, then the probability

P(Cf) of this event occurring satisfies f � 1� 2s
P Cfð Þ

	 


(see

Methods). Thus, if the test is passed in the cases when the dealer
announces they should test, then the players can be confident that
when the dealer announces they should instead use the state, the
secret quantum information retrieved will be of high fidelity.

As an example of this protocol using our experimental graph
state, we consider the set of players {1, 2, 3}. The same holds for
all sets by symmetry. The measurements for the test correspond
to randomly measuring one of the following operators Z0Z1Z2X3,
Y0Y1Z2I3, Y0Z1Y2I3, X0X1I2X3, X0I1X2X3, I0X1X2I3 or Z0Y1Y2X3

(see Methods). The test is passed if the measurement results for
these operators are þ 1, þ 1, þ 1, � 1, � 1, þ 1 and � 1,
respectively. Using the measured expectation values for these
operator settings, in Fig. 8a, we show the probability that our
experimental state passes the test and in Fig. 8b we show the
corresponding lower bounds on the fidelity, which are consistent
with the fidelities measured previously in Fig. 7. Thus, using the
verified protocol, we find that the probability of the experimental
resource state passing the test is fully consistent with the
previously measured fidelity of the retrieved secret qubit states
obtained by the three players.

Discussion
While previous experiments on quantum secret sharing focused
on sharing classical secrets40–44, with some work regarding the
sharing of quantum secrets amongst three players51–55, our work
goes beyond these studies in two crucial aspects. First, the secret
sharing is performed using graph states, which are of great
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Figure 7 | Fidelity of recovered quantum secret for three players in

quantum secret sharing using the graph state. (a) Bloch sphere of an

arbitrary qubit shared by the dealer to players 1, 2 and 4, with the secret

residing on the qubit of player 1, as shown in the illustrations on the left

hand side with player 1 in red. The average fidelity for a shared qubit is
�F ¼ 0:82 � 0:01. (b) Bloch sphere for players 2, 3 and 4, with the secret

residing on the qubit of player 4, as shown in the illustrations on the left

hand side with player 4 in red. The average fidelity for a shared qubit in this

case is �F ¼ 0:81 � 0:01. In both, the spheres are slightly squashed due to

the non-ideal graph state resource used in the experiment. Error bars are

calculated using a Monte Carlo method with Poissonian noise on the count

statistics.
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importance for the integration of secret sharing with a wide range
of quantum networking protocols via the measurement-based
paradigm26. In our experiment, we demonstrated the use of graph
states for both classical (CQ) and quantum (QQ) secret sharing.
We used a photonic setup to generate a five-qubit graph state and
carried out the encoding, sharing and retrieval of classical and
quantum secrets. In the CQ protocol we demonstrated the ability
of the graph to share a classical random key, which can be used to
securely share classical secrets, with an access structure of a (3, 1,
4) ramp scheme. Here the secret is shared between four players,
such that any three can perfectly access the secret, yet no single
player obtains any information at all. The QQ protocol achieves
the same access structure for a quantum secret. However, the
second crucial aspect of our work that puts it beyond previous
studies is that with the integration of several different
cryptographic sub-protocols (one classical and two quantum),
the (3, 1, 4) access structure for the QQ protocol is elevated to a
(3, 4) threshold scheme, that is, any three players can access the
quantum secret, but fewer have no information. This hybrid QQ
protocol is a combination of classical secret sharing and the QQ
protocol, which allows us to achieve an access structure known to
be impossible with QQ alone. We then introduced and
demonstrated a new protocol for sharing a quantum secret over
untrusted channels, which we call SQQ. Taken together with the
hybrid QQ protocol, this highlights the power of integrating tasks
via the hybridization of classical and quantum protocols using the
graph state approach, and enables us to achieve protocol
parameters and security not possible with any single protocol.
In terms of a real world use of graph states for quantum secret
sharing, practical security considerations will need to be taken
into account, such as imperfections in the generation of the
resource, as well as noise and loss effects during the transfer of the
photons over communication networks. All these factors will
reduce the security of the scheme and this is an important topic
for future studies of graph state quantum secret sharing. As more
sophisticated ways of using graph states emerge, combining and
demonstrating different sub-protocols in the way we have done
here will become increasingly more relevant. The facility and
flexibility of graph states for different quantum information
processing tasks clearly propels them forward as a technology
with great potential for future quantum networks.

Methods
Experimental setup. The PCF sources used in the experiment are similar to those
described in refs 56,57. When pumped by picosecond pulses from a Ti:Sapphire
laser at 724 nm on the slow birefringent axis of the PCF, spontaneous four-wave
mixing produces signal–idler photon pairs at 625 and 860 nm, polarized on the fast

axis of the fibre. The cross-polarized phase-matching scheme takes advantage of a
turning point in the signal wavelength where it is locally independent of the pump
wavelength, which has the effect of avoiding correlations between the signal and
idler’s spectra. This allows quantum interference to take place between photons
from separate sources without the need for tight spectral filtering, which would
reduce the collection efficiency.

To produce signal–idler pairs in a polarization Bell state, the PCF is set up in a
Sagnac loop around a PBS and pumped in both directions. The axes of the fibre are
twisted so that in the clockwise direction around the loop, the photon pairs polarized
on the fast axis emerge horizontally polarized, while for the counter-clockwise
direction, photon pairs emerge vertically polarized. When the two directions are
recombined at the PBS, all the photon pairs exit through the same output, so that the
state of a single pair in this beam is in a superposition 1

ffiffi

2
p ð HHj is1;i1 þ eiy VVj is1;i1Þ,

where the phase y between the two directions can be tuned to zero using a
birefringent compensator placed in the pump beam before the loop.

The other PCF source is pumped in a single direction so as to produce pairs
without polarization entanglement. The idler is detected as a heralding photon,
while the signal photon is rotated to diagonal polarization 1

ffiffi

2
p ð Hj is2 þ Vj is2Þ. This

is then overlapped at the fusion PBS with the signal photon from the other source
and we postselect events for the cases where one signal emerges from each PBS
output. This implies that the two signal photons have the same polarization, or are
in an even parity state, so that they have either both been transmitted or both been
reflected at the PBS. The conditioned state is a three-photon GHZ state
1
ffiffi

2
p ð HHHj is1;i1;s2 þ VVVj is1;i1;s2Þ, which is converted to a linear graph state
1
ffiffi

2
p þ 0þj iþ � 1�j ið Þ by waveplate rotations applied to the signal modes.

Each signal photon is then launched into a displaced Sagnac interferometer.
Here they are split at the PBS surface of the hybrid beamsplitters, and we label the
transmitted paths the |0i states of the path qubits, and the reflected paths the |1i
states. This results in the five-qubit state:

1
2
ffiffi

2
p 00j ipol;path þ 11j ipol;path

� �

s1
0j ii1 00j ipath;pol þ 11j ipath;pol

� �

s2

þ 1
2
ffiffi

2
p 00j ipol;path � 11j ipol;path

� �

s1
1j ii1 00j ipath;pol � 11j ipath;pol

� �

s2

ð4Þ

which is locally equivalent to a linear graph state and the target resource state,
which can be written as:

1

2
ffiffiffi

2
p þ þj i12 þ i � �j i12

� �

� yj i0 þ þj i34 þ i � �j i34
� �

þ 1

2
ffiffiffi

2
p þ þj i12 � i � �j i12

� �

þ yj i0 þ þj i34 þ i � �j i34
� �

;

ð5Þ

where the eigenstates of the Pauli Y operator are � yj i ¼ 1
ffiffi

2
p 0j i � i 1j ið Þ. The

required local rotations are implemented by relabelling the transmitted and
reflected interferometer paths to |þi and |�i, applying HWP rotations to the
signal polarizations, and a quarter-wave plate rotation to the idler. Tilted glass
plates in each path are used for the relative phase-shifts in the interferometers.

To experimentally implement the removal or tracing out of a path qubit
(corresponding player does not take part in the secret sharing), the glass plate was
removed from one path, so that the two path lengths would differ by more than a
coherence length. Hence, the paths are incoherently recombined at the BS surface
before going to polarization analysis. This allowed the photon’s polarization to still
be detected, but no information was gained about the path. On the other hand, to
remove a polarization qubit, the PBS was taken away from the polarization
analysis, so that the path information was still detected, but no polarization
information was measured.

The twofold coincidence rates collected from individual sources were around
9,000 s� 1. Fourfold coincidences where the fusion succeeded, between the three
entangled photons and the one herald photon, were B0.25 s� 1. Generating
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entanglement relies on the signal photons from separate sources being
indistinguishable when they are overlapped at the PBS, otherwise the fusion can
only leave an incoherent mix of possibilities37. When the relative arrival time of the
signal photons was varied, with the measurement bases set appropriately, an anti-
dip was seen at zero-delay with visibility B62%. This indicates there are some
distinguishability issues, which will degrade the quality of the state, which mainly
result from inhomogeneity along the length of the PCF sources.

Resource characterization. For the five-qubit graph state, we use the following
entanglement witness on qubits 0, 1, 2, 3 and 4

W ¼ 9

4
I� 1

8
ð~X~XII~Xþ ~X~XI~XIþ I~X~X~X~Xþ I~X~XIIþ ~XI~XI~Xþ ~XI~X~XI

þ III~X~XÞ� 1

4
ðIZ~Y ~YZþ ~YZ~YIIþ ~YII~YZÞ;

ð6Þ

where Õ corresponds to measurements in the O basis with the eigenstates swapped.
This is a locally rotated version of the witness given in ref. 39 for a five-qubit linear
cluster state and takes into account the required local complementation
operations35.

To obtain the fidelity for the five-qubit graph state, we decompose the fidelity
operator into a summation of products of Pauli matrices as

F ¼ j CihC j ¼ 1

32
ð1þ IXXII�XXIXI�XIXXI�XXIIX�XIXIX

þ IIIXXþ IXXXXþXYYYY þYZYIIþYZYXXþYYZII

þYYZXX�XZZYY �ZYYXI�ZYYIX�ZXIYY �ZIXYY

þZZZXIþZZZIXþYIIZY þYXXZY þ IZYZY þ IYZZY

þYIIYZþYXXYZþ IZYYZþ IYZYZ�XYYZZþXZZZZ

þZXIZZþZIXZZÞ:

ð7Þ

Calculating the expectation value of this operator requires 17 unique measurement
bases: XXXXX, YXXYZ, YXXZY, ZXXYY, ZXXZZ, XYYYY, XYYZZ, ZYYXX,
YYZYZ, XYZZY, YYZXX, YZYYZ, ZZYZY, YZYXX, XZZYY, XZZZZ and ZZZXX.

Classical secret sharing. To begin, it is useful to rewrite the state the state in
equation (1) in an alternative form with the dealer’s qubit in the Z basis,

Cj i ¼ 1

2
ffiffiffi

2
p 0j i0 þ þ 0j i 0j i þ þ þ 1j i 1j i þ � � 0j i 1j i þ � � 1j i 0j ið Þ1234

�

þ 1j i0 þ þ 0j i 1j i þ þ þ 1j i 0j i � � � 0j i 0j i þ � � 1j i 1j ið Þ1234
�

:

ð8Þ
It can be seen by inspection of equations (1) and (8) that the reduced density

matrix of any player a is r
i;j
a ¼ I=2 for all basis choices j and results i of the dealer’s

measurements. From this it can easily be checked that wj¼ 0 for all bases j. Hence,
no single party can obtain any information.

For a pair of players (a, b) that are adjacent, one can easily check from
equation (1) that r

i;j
a;b ¼ I=4, j¼Z, Y. Hence, no information can be extracted and

wj¼ 0 for all bases j. For a pair of players (a, b) that are opposite it can easily be
seen from equation (1) that for j¼Y they can access the result by measuring one
qubit in Y and the other in Z. Hence, wY¼ 1. It can also be shown that ri;Za;b ¼
1=2ð Þ þ þ ihþ þ þj j� � ih� � jjð Þ for both results i, so that no information
can be extracted and wZ¼ 0.

Any triplet of players can access the secret, as discussed in the Results section,
which can be seen by inspection of equations (1) and (8).

Quantum secret sharing. Here we show which players can and which cannot
access the secret in the QQ protocol. The first step in the protocol is that the dealer
generates and distributes the state in equation (1). We rewrite the state as follows

1
ffiffiffi

2
p 0i0

�

�

�

�fi1234 þ 1i0
�

�

�

�f0i1234
� �

: ð9Þ

This is used to teleport a secret state cj i ¼ a 0j iþ b 1j i to the players. The dealer
measures the secret qubit and their part of the state in equation (9) in the Bell basis
and announces the results publicly. In the retrieval step, the authorized sets then
apply the appropriate correction and the decoding operations. To study the
accessibility of the quantum information, we ignore the correction step and assume
it is always the good result where no correction is required—if a set of players
cannot access the secret for the corrected state, then they cannot access it for the
uncorrected state. Similarly, if they can, knowing the results of the dealer’s
measurement allows them to do the correction afterwards. Thus, consider the
secret teleported to the players, giving the state

a jfi1234 þb jf0i1234 ¼ ð j þ i1 j þ i2 j0i3ða j0i4 �b j1i4Þþ
jþ i1 j þ i2 j1i3ða j1i4 � b j0i4Þþ j � i1 j � i2 j0i3ða j1i4 þ b j0i4Þ
þ j � i1 j � i2 j1i3ða j0i4 þ b j1i4ÞÞ=4:

ð10Þ

Note that this state is cyclically symmetric amongst the four players, according to
the symmetry of the graph, in this case a square. It can be seen from equation (10)
that any single player a has the reduced density matrix ra¼ I/2, thus they cannot

access any information. This is quantified by considering the reduced state of
equation (9) for r0a¼ I/4, so that the mutual information I(r0a)¼ 0.

For two adjacent players a and b, we have from equation (10)

rab ¼
1

2
0j ia 0h j �

�

XZ cj ib ch jZXþZ cj ib ch jZ
� �

þ 1j ia 1h j � X cj ib ch jXþ cj ib ch j
� ��

:

From this we find that they can obtain some information as follows: player a
measures in the Z basis (the result of which we denote sa), and then tells player b
the outcome. Player b then performs the correction Z1� sa and we are left with the
state on player b as rb ¼ X cj ib ch jXþ cj ib ch j

� �

=2. Thus, in some cases, the full
information can be retrieved and in other cases only partially, depending on the
secret shared. For example, if the secret state is |±i then full information can be
retrieved.

On the other hand, after teleportation, two opposite players a and b share the
state

rab ¼ Aj iab Ah j þ Bj iab Bh j þ i sinðyÞsinðfÞ Aj iab Bh j � Bj iab Ah j
� �

; ð12Þ
where Aj i ¼ ð þ þj iab þ � �j iabÞ=

ffiffiffi

2
p

, Bj i ¼ ð þ þj iab � � �j iabÞ=
ffiffiffi

2
p

, and
we take the standard Bloch sphere parameterization of the input qubit a¼ cos(y/2)
and b¼ eif sin(y/2). The players can retrieve information as follows: player a
measures in the Z basis, obtaining result sa, and player b performs the correction
operation Zsa � 1

b . The resulting state is rb ¼ ZX cj ib ch jXZþ cj ib ch j
� �

=2. Thus, in
some cases the full information can be retrieved and in other cases only partially,
depending on the secret shared. For example, if the secret state is |±yS then full
information can be retrieved.

For three players, it can easily be seen from the decomposition of equation (9)
that if player 2 measures Z2 and player 4 measures X4, the secret can be retrieved on
the qubit of player 1 up to feedforward operations Xs2 XZð Þs4Z. Similar results hold
for all sets of three players by symmetry of the graph state.

Hybrid quantum secret sharing. After the random application of the operators I,
X, Z and XZ based on the results of a one-time pad, as well as the QQ encoding
teleportation stage, the state of the players is

1
ffiffiffi

2
p Xx

LZ
z
L a j fi1234 þ b j f0i1234
� �

; ð13Þ

where XL¼Z1Z2X3I4 and ZL¼Z1Z2Z3Z4. From the arguments in the previous
section, players who cannot access the quantum secret in the QQ case cannot
access it in this case too. However, players also cannot access anything when they
do not know the values x and z. This can be checked by looking at the reduced
density matrices mixed over the values of x and z. Thus, any two players not
knowing x and z obtain no information, but any three knowing x and z can access
the secret state perfectly. Sharing the classical information of x and z via a (3, 4)
Shamir–Blakely14,15 classical secret sharing scheme achieves this exactly. Note, we
are assuming authenticated classical channels, as in all our schemes. However, to
use the Shamir–Blakely14,15 secret sharing scheme one also requires a trusted
channel. If one does not trust the classical channels, one could use a CQ scheme to
send this information, or indeed the Shamir–Blakely scheme plus multiple standard
two party QKD.

Secure quantum secret sharing. We now present the verified SQQ protocol and
its proof in more detail. We exemplify the protocol for our state with accessing set
B¼ {1, 2, 3}. The same steps can be performed by symmetry for all sets of three
players.

1. The dealer distributes the players’ qubits of the entangled graph state, that is, the
channel state in equation (1).

2. The dealer randomly decides that they will carry out: (a) the protocol CQB
test or

(b) the QQ protocol, with probabilities 1-s and s, respectively, and announces
the choice to all players.

The protocol CQB
test defined for an authorized set B¼ {1, 2, 3}:

1. The dealer chooses randomly which of the seven measurements below should be
performed for the test, announcing the choice and results of their part of the
measurement (in the case where they are asked to measure I0 they output the
result þ 1).

M1 ¼ Z0Z1Z2X3

M2 ¼ Y0Y1Z2I3

M3 ¼ Y0Z1Y2I3

M4 ¼ �X0X1I2X3

M5 ¼ �X0I1X2X3

M6 ¼ I0X1X2I3

M7 ¼ �Z0Y1Y2X3
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The minus signs can be interpreted as meaning that the product of outputs
should ideally be minus one.

2. To comply, players in B perform their parts of the measurement chosen by the
dealer. They then check their correlations by communicating amongst
themselves. If the product of outcomes of the dealer and all B is 1 (or � 1
according to the sign of the measurement), they give the response ‘pass’,
otherwise ‘fail’.

3. If ‘pass’ is returned, proceed to the start of the protocol again, otherwise abort.

The QQ protocol defined for the authorised set B¼ {1, 2, 3}:

1. The dealer measures the quantum secret and their part of the shared channel
state in the Bell basis and announces the result.

2. Players B perform the corrections and decoding operation.

We now give a proof of the security for the QSS protocol, that is, we prove the
fidelity bounds with respect to passing the test. Carrying out the protocol CQB

test as
defined above for players {1, 2, 3} is equivalent to performing a POVM {Mpass,
Mfail}, where Mpass is the sum of all the þ 1 projections for the measurements
performed in the CQB

test , which can easily be seen to give

Mpass ¼
X

i

Mi þ I

2
¼ IþG

2
; ð14Þ

where G¼ (|g i0123h g|þ I0Z1Z2Z3|g i0123h g|I0Z1Z2Z3) is the projection onto a space
where the QQ protocol works perfectly, and |g i0123 is the graph state of the
subgraph of qubits 0, 1, 2 and 3. The probability P of passing the CQtest, given a
state r, is then given by

P ¼ TrðrMpassÞ ¼
1þTr rGð Þ

2
: ð15Þ

Consider r is now used instead to share a quantum secret |c i via the QQ
protocol. If we denote f ¼ ch jo cj i the fidelity of the decoded state o, then it
follows that fZTr(rG), since any state in the subspace G perfectly transports the
secret, so the final fidelity can only be higher than the overlap with this space,
giving equation (3).

Following the logic in ref. 50, if we denote Cf the event that the certified protocol
has not aborted and that the state r was used for QQ such that it returns a decoded
state with fidelity f with the original secret, then it can be shown that the probability
P(Cf) of this event satisfies

P Cf

� �

� 2s

1� fð Þ : ð16Þ

This implies that if the test passes, then the fidelity of the output state is high. This
relationship is demonstrated in the results section. A generalization of this
protocol, with a more detailed and general proof can be found in ref. 45.
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