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Quantum coherence is an invaluable physical resource for various quantum technologies. As a bona

fide measure in quantifying coherence, the robustness of coherence (RoC) is not only mathematically

rigorous, but also physically meaningful. We experimentally demonstrate the witness-observable

and operational feature of the RoC in a multi-qubit nuclear magnetic resonance system. We realize

witness measurements by detecting the populations of quantum systems in one trial. The approach

may also apply to physical systems compatible with ensemble or nondemolition measurements.

Moreover, we experimentally show that the RoC quantifies the advantage enabled by a quantum

state in a phase discrimination task.

As an essential feature of quantum mechanics, quan-

tum coherence is regarded as a precious resource that

is not present in the classical world. It characterizes

the quantumness and underpins quantum correlations in

quantum systems. As quantum technologies are devel-

oping rapidly, quantum coherence is found to play a key

role in many novel quantum phenomena and has been

widely studied and applied in many quantum informa-

tion processing tasks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18].

The degree of coherence may quantify the capability

of a quantum state in quantum-enhanced application-

s. To quantify the coherence, a set of quantifiers have

been presented, which greatly enriches our understand-

ing of coherence. The relative entropy and l1-norm coher-

ence measures are two well-known measures of coherence

[1]. Other coherence measures like distillable coherence

[19, 20], coherence of formation [19, 20, 21], coherence

measures based on entanglement [10], and coherence con-

currence [22, 23] have been also proposed and investigat-

ed. Moreover, the relations between coherence and path

information [24, 25], the distribution of quantum coher-

ence in multipartite systems [18], the complementarity

between coherence and mixedness [26, 27] have also been

studied.

To be a proper measure of coherence, the quantifier

should meet a rigorous framework [1], such as monotonic-

ity under incoherent operations. The relative entropy

coherence [11] is a canonical measure. However, its ex-

perimental determination requires full state tomography,

which is unfeasible for large systems. Recently, a bona

fide measure, named robustness of coherence (RoC) [8],

has been put forward. The RoC is a full monotone under

all the sets of operations used in resource theories of co-

herence. It is observable and provides an alternative to

the tomographic technique. Moreover, the RoC has a di-

rect operational meaning that it quantifies the advantage

enabled by a quantum state in a phase discrimination
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task [8]. These characteristics make RoC attractive.

Let D be the convex set of density operators acting on

a d-dimensional Hilbert space, and S the subset of inco-

herent states whose density matrices are diagonal in the

reference basis. Defined by the minimal mixing required

to destroy all the coherence in a quantum state ρ, the

RoC is given by

C (ρ) = min
τ∈D

{

s ≥ 0

∣

∣

∣

∣

ρ+ sτ

1 + s
= δ ∈ S

}

, (1)

which is the minimum weight of another state τ such

that its convex mixture with ρ yields an incoherent state.

Interestingly, for RoC one can introduce the coherence

witness, which makes the RoC an observable quantity.

For a given state, one can find its optimal witness W ∗

by a simple semidefinite program, making use of the free

CVX package [8, 28]. The optimal witness saturates the

inequality max {0,−Tr [ρW ]} ≤ C (ρ). Therefore, the

RoC of the state can be quantified by the expected value

of W ∗, C (ρ) = −Tr (W ∗ρ). In [29] the authors have

presented a beautiful way in experimentally measuring

the RoC of a one-qubit photon system via the interference

fringes.

Most attractively, the RoC shows its operational in-

terpretation in the following phase discrimination (PD)

task. Alice prepares a two-qubit quantum state ρ which

then enters into a black box. The black box encodes

a phase on the input state ρ by implementing a uni-

tary operation Uφ = exp (iNφ), where N is designed as

N =
∑3

j=0 j |j〉 〈j|. The phase φ is the ‘black’ param-

eter, which maybe one of {φk = 2πk/4}
3

k=0, each with

a prior equal probability 1/4. The receiver’s task is to

guess correctly which phase φ was actually encoded in

the state. For this purpose, one can perform a general-

ized measurement given by the measurement operators

Mk (
∑4

k=1Mk = I) on the output state ρout = UφρU
†
φ.

The success probability is then given by

p (ρ) =
∑4

k=1
Tr

[

Uφk
ρU†

φk
Mk

]/

4. (2)

The optimal measurement which gives rise to the

maximal success probability is of the form Mk =
1
4
Uφk

(1−W ∗)U†
φk

[8], where W ∗ is the optimal witness

associated with the input state ρ. For incoherent states

δ, the black box encodes nothing, since Uφ (δ) = δ, and

the success probability is just 1/4. The advantage achiev-

able by introducing coherence can be quantified exactly

by the RoC of the input state ρ,

A (ρ) ≡
psucc (ρ)

psucc (δ)
= 1 + C (ρ) . (3)

In the following we experimentally present the opera-

tional and observable meaning of RoC in a nuclear mag-

netic resonance (NMR) quantum system, and show the

power of RoC in the above phase discrimination game

by demonstrating the relation Eq.(3). For practical sig-

nificance, we also quantify the lower bound of RoC from

limited information of the system. The method adopt-

ed in our experiments is applicable to general quantum

systems.

We employ the nuclear spin system, operated on a 400

MHz nuclear magnetic resonance (NMR) spectrometer,

and use diethyl fluoromalonate as the sample dissolved

in 2H-labeled chloroform at 304 K. The 13C nucleus is

used as the probe qubit (labeled as qubit 1), serving as

an information extractor of the measured system. The

measured system consists of one 19F nucleus and one 1H

nucleus (labeled as qubits 2 and 3). The Hamiltonian of

the three-qubit system in the triple resonance rotating

frame is given by H= 2π
∑

1≤i≤j≤3

JijI
i
zI

j
z , where Iz is the

spin angular momentum operator of the z-component,

Jij is the scalar coupling strength between spins i and

j. The relevant parameters along with the molecular

structure are shown in Ref. [30].

In the high temperature approximation, the state

of a two-qubit NMR system can be written as ρs =

(1− ε) I4/4 + ε∆ρs, where ε ∼ 10−5 denotes the polar-

ization of the NMR system in our experimental condition

and I4 denotes the 4× 4 identity matrix. In many proof-

of-principle experiments, the part of deviation density

matrix ∆ρs is usually used for NMR quantum informa-

tion processing, because all measurements and transfor-

mations don’t affect the identity matrix. Quantum corre-

lation has been proven to exist in NMR system at room

temperature [31, 32, 33]. The purpose of this paper is

to quantify another quantum resource, i.e., quantum co-

herence. The RoC of a genuine NMR mixed state can be

determined from the experimentally detectable deviation

density matrix in the leading order in ε, by the following
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FIG. 1. Experimental methods and pulse sequences. (a) Quantum circuit for measuring Tr (Wρs) in one trial. H: Hardmard

gate, FID: free induction decay under the natural Hamiltonian, FFT : fast Fourier Transform. (b) 13C spectra as examples

for PPS state (left) and measured RoC (right). The area of each peak Pij equals to the population of the spin state |ij〉. (c)

An optimal quantum circuit for a general two-qubit gate in U(4). The circuit consists of 3 controlled-NOT (CNOT) gates and

15 elementary one-qubit gates. The 15 angles can be determined by a simple optimal search algorithm, making the circuit of

almost perfect fidelity with the desired two-qubit operator. (d) Experimental process for the witness measurement of RoC. All

the square pulses are hard pulses with negligible duration compared to the free evolution time τ= 1

4|J23|
.

equation [30]

C (ρs) = εC (∆ρs) . (4)

Starting from the thermal equilibrium state, we first-

ly initialize the system in the pseudo-pure state ∆ρs =

|00〉 〈00| by using the line-selective method [34, 35], where

|0〉, |1〉 represent the eigenvectors of the Pauli matrix σz.

We first experimentally quantify the RoC of given states

by the optimal coherence witness detection. To this end,

we prepare the system (19F nucleus and 1H nucleus) in

the form

∆ρs=













0.25 b a a

b 0.25 b a

a b 0.25 b

a a b 0.25













. (5)

Here we constrain a, b to real numbers and insure ρ is

positive definite. The parameter region of a and b as

well as the theoretical RoC of states of Eq. (5) are

shown in Fig. 2(a). We can see that when a = b = 0

(∆ρs is the maximally mixed state I), C(ρs) is zero as

expected, while when a = b = 0.25 (∆ρs is the max-

imally coherent state M), C (ρs) reaches the maximal

value C(ρs) = 3ε. As unitary controls alone can not re-

alize the desired state transformation from the thermal

equilibrium state, here we need to take use of nonuni-

tary controls like gradient pulses to beforehand transform

the eigenvalues of the state into desired values. Then A

‘state-to-state’ shape pulse based on the gradient ascent

pulse engineering (GRAPE) algorithm [36] is utilized as

a shortcut for a nearly perfect preparation, avoiding er-

ror accumulation and decoherence effect in conventional

pulse sequence method.

Now we provide an experimental method to show the

observability of RoC. The witness observableW ∗, gained

by the CVX package, can be diagonalized as W ∗ =

V DV †, where D is the diagonal matrix with the eigen-
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FIG. 2. (a) Theoretical values of RoC for states with devia-

tion density matrices in the form of Eq. (5). (b) Experimen-

tally measured results, compared with the theoretical values

(solid curves). The coherences are displayed in units of ε.

values of W ∗ as diagonal elements, V is a unitary matrix

whose columns are the eigenvectors. We then have

C (ρs) = −Tr (W ∗ρs) = −

4
∑

i=1

ρ
′

iiDii, (6)

where ρ
′

= V †ρsV and ρ
′

ii is the spin population in the

ith energy level. Therefore, we can measure the expected

value of W ∗ by the circuit shown in Fig. 1b. That is,

we implement the operation V † on the system, and then

measure the population distribution of the system, i.e.

the diagonal elements of the density matrix. The RoC is

finally calculated by Eq. (6). To implement the operator

V †, an optimal quantum circuit for a general two-qubit

gate in U(4) as the form of Fig. 1d is used [37].

To avoid non-uniformity and uncertainty in preparing

copies of the state, here in our experiment, we utilize

one probe qubit to measure the population distribution

of the system directly in only one trial. As shown in Fig.

1(b), we firstly implement a Hardmard gate on 13C to

generate transverse polarization. Then the probe qubit

interacts with system qubits through the free evolution

under the natural Hamiltonian. During the evolution, we

do NMR signal detection on the 13C channel. Through

Fourier transformation, we get the NMR spectra of 13C,

one of which is shown in Fig. 1c. There are four peak-

s in one 13C spectrum and the area of each individual

peak is proportional to the diagonal element of the cor-

responding energy level. In the situation where peaks of

the spectrum are too dense to distinguish from each oth-

er, we can extract the desired information of peaks by

fitting the spectrum, with prior knowledge of peak po-

sitions and line profiles (Lorenz curve is the best option

for NMR spectra). We also can address this problem by

adding ancillary qubits. π echo pulses are inserted during

the free evolution, which significantly suppress the deco-

herence effect rooted in the inhomogeneity of the mag-

netic field. Hence the decoherence effect is depicted with

the characteristic relaxation time T2, rather than T
∗
2 . We

numerically simulate the dynamical process and estimate

the attenuation factors caused by decoherence effect in

the experiments. Rescaling the experimental results, we

obtain the measured RoC, see Fig. 2b, where the pulse

errors and data fitting errors are responsible for the error

bars.

We have experimentally demonstrated that it is feasi-

ble to measure the RoC via an optimal witness. How-

ever, one needs some particular knowledge of the state

to determine the optimal witness. Actually, given the

expectation values of a set of measured observables, one

can get an optimal lower bound of RoC (LRoC) [8]. This

is meaningful for witnessing coherence effects in actu-

al quantum processing, especially in large-scale quantum

systems. In the experiment, by firstly initializing the

purity of the system to a random value and then im-

plementing a random unitary operation, we prepare six

random states. We choose the following sixteen complete

base operators o0 ∼ o15: I ⊗ I, Ix ⊗ I, I ⊗ Ix, Ix ⊗ Ix,

Iy ⊗ I, I ⊗ Iy, Iy ⊗ Iy, Ix ⊗ Iz, Iz ⊗ Ix, Iy ⊗ Iz, Iz ⊗ Iy,

Ix⊗Iy, Iy⊗Ix, Iz⊗I, I⊗Iz, Iz⊗Iz. For a subset of the

base operators Oi = {oj}
i

j=0
, i = 1, ..., 15, we consider

the coherence witness of the formWi =
∑i

n=1 cnon +mI,

cn,m ∈ R. Depending on the expectation values of Oi,

we optimize the values of cn, m by a semidefinite pro-

gram and get the coherence witness for a lower bound

of RoC, LCi (ρs) = −Tr (Wiρs), which is experimentally
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measured by the circuit shown in Fig. 1. The experi-

mental results are presented in Fig. 3. We can see that

the LRoC is improved when more expectation values of

observables are taken into account. The gap between the

lower bound and the exact value of RoC vanishes when

all the base operators are considered.
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FIG. 3. Experimentally measured lower bound of RoC for

random states, with different numbers of observables. Solid

lines are theoretical values. The coherences are displayed in

units of ε.

Having experimentally measured the RoC, we are now

ready to show that RoC also plays roles in a metrology

context via the previously described PD game. To ex-

perimentally verify it, we prepare a series of input states

in the form,

ρg = (1 + p)
I

4
− pρm. (7)

They are mixtures of the state ρm (p = −1) and the max-

imally mixed state I (p = 0) with the weight p, where

ρm is the NMR state with ∆ρm = |ψm〉 〈ψm|, |ψm〉 is

the maximally coherent state, i.e., |ψm〉 = 1
2

∑3

j=0 |j〉.

Then each Uφk
is implemented by a GRAPE shape pulse.

The probability with respect to the measurement oper-

ator Mk, i.e., pk = Tr
(

UφρinU
†
φMk

)

, is measured by

the similar circuit in Fig. 1(b). By Eq. (2), we obtain

the success probability corresponding to the related in-

put state in the game. The experimental results of the

advantage against the incoherent case are shown in Fig.

4. As expected, the advantage vanishes when RoC is ze-

ro. The advantages coincide well with the RoC of the

investigated states and the practical meaning of the RoC

is well verified in the quantum game experiment.
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FIG. 4. Advantage gained in PD quantum game against the

incoherent case. The data are displayed in units of ε.

In conclusion,the operational and observable meaning

of RoC have been experimentally demonstrated by us-

ing an NMR quantum system. By experimentally veri-

fying the relation between RoC and the maximal success

probability given from coherent and incoherent states in

PD games, the power of RoC in phase discrimination

processing has been explicitly displayed. In the exper-

iment, we extracted the expectation value of the wit-

ness observable from the population distribution of the

quantum system. We utilized one ancillary qubit as a

probe qubit to measure the population distribution di-

rectly in one trial, avoiding full state tomography, as well

as the non-uniformity and uncertainty in state prepar-

ing. By using this method, we can simplify observable

measurements for the systems compatible with ensemble

measurements (where the population distribution can be

measured in one trial) or nondemolition measurements

(where the population distribution can be repeatedly

measured without state re-preparation) [38]. In addition,

we have also quantified the lower bound of RoC from

limited information of the system. Many experimental

investigations in many-body quantum systems may ben-

efit from this technique for coherence estimation. The

witness operators of quantum coherence are found by a

semidefinite program at present. In following study, we

expect to find unified forms of witness observables, as well

as the related circuits for states with specific forms, such

as X-shaped density matrix (which contain in particular

Bell diagonal states of two qubits).
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