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Non-Gaussian states with Wigner negativity are of particular interest in quantum technology due to their

potential applications in quantum computing and quantum metrology. However, how to create such states

at a remote location remains a challenge, which is important for efficiently distributing quantum resource

between distant nodes in a network. Here, we experimentally prepare optical non-Gaussian state with negative

Wigner function at a remote node via local non-Gaussian operation and shared Gaussian entangled state existing

quantum steering. By performing photon subtraction on one mode, Wigner negativity is created in the remote

target mode. We show that the Wigner negativity is sensitive to loss on the target mode, but robust to loss on the

mode performing photon subtraction. This experiment confirms the connection between the remotely created

Wigner negativity and quantum steering. As an application, we present that the generated non-Gaussian state

exhibits metrological power in quantum phase estimation.

Generation and manipulation of quantum states are crucial

preconditions underlying various quantum information tasks.

Gaussian states which can be generated deterministically have

been widely applied in continuous variable (CV) quantum

information [1–5]. On the other hand, CV non-Gaussian

states are attracting increasing interests due to the increasing

entanglement contributed from higher-order correlations [6–

8], and especially, the Wigner negativity of the non-

Gaussian states has been identified as an essential resource

for reaching a quantum computation advantage [9, 10] and

for error correction [11, 12]. Substantial progress has been

made in controllable generation of Wigner-negative states by

performing non-Gaussian operations, e.g., photon addition or

subtraction on the previously prepared Gaussian modes [13–

19], or directly by a higher-order interaction such as three-

photon spontaneous parametric down-conversion [20, 21] or

four-wave mixing with Kerr nonlinearity [22].

Beyond above local preparation methods, remote state

preparation (RSP) based on the shared entanglement between

distant nodes offers intrinsic security and efficiency for

creating desired quantum resources at a remote location [23–

26]. Compared to the well-known quantum teleportation,

which transmits an unknown state by sharing entanglement

and performing joint Bell measurement, RSP protocol only

requires measurements acting on each individual mode. This

promises RSP various potential applications in quantum

information processing, such as on-demand preparation of

single-photon states [27, 28], creating two-qubit hybrid

entangled states [29], generating and manipulating atomic

quantum memories remotely [30, 31]. Toward networked

quantum technology it is, thus, crucial to find a way to prepare

a remote quantum state with a negative Wigner function.

Recently, it has been theoretically shown that a special kind

of entanglement known as Einstein-Podolsky-Rosen (EPR)

steering [32–36] is a necessary requirement for remotely

preparing Wigner-negative states [37–39]. EPR steering is

a directional form of nonlocality, related to the Einstein

“spooky” paradox, that after performing local measurements

on one of the systems, it can apparently steer the state of the

other distant system. Based on this kind of nonlocal effect

existing between distant systems, one can remotely create a

Wigner-negative state in the steering mode by subtracting a

photon from the steered mode [37]. At the same time, the

shared entanglement still maintains as the photon subtraction

is a non-destructive non-Gaussian operation. This connection

has not been experimentally verified yet, especially the

quantitative relation when taking the practical channel loss

between spatially separated nodes into account. Thus, it is

still quite an open area for further investigations.

In this Letter, we experimentally demonstrate remote

creation of non-Gaussian state with negative Wigner function

via local single-photon operation and shared Gaussian EPR

steering. Two optical modes A and B in a CV EPR

entangled state are sent to two distant stations controlled

by Alice and Bob respectively [Fig. 5(a)]. Once Alice

successfully subtracts a photon from the steered mode A,

the Wigner function of the steering mode B shows negative

values. We quantify the Wigner negativity by performing

quantum tomography on the conditional state of mode B, and

validate the relation between the initially shared Gaussian

EPR steering and the remotely created Wigner negativity.

The dependence of Wigner negativity on channel loss is

investigated by transmitting Alice’s and Bob’s states through

lossy channels, respectively. The results show that the

generated Wigner negativity is sensitive to the loss in Bob’s

channel but robust to the loss in Alice’s channel. As an

application, we show that the generated non-Gaussian state

exhibits metrological power in quantum phase estimation.

Our work demonstrates the feasibility of remote preparation

of Wigner-negative state between spatially separated stations,

http://arxiv.org/abs/2204.11552v1
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FIG. 1. The principle and experimental setup. (a) Schematic

of the remote preparation of Wigner negativity. We first prepare

a Gaussian EPR entangled state and then transmit two entangled

optical fields to two distant nodes controlled by Alice and Bob, where

the lossy channels are characterized by ηA and ηB, respectively. Then

once Alice successfully performs a single-photon subtraction from

her mode, the remote Bob’s mode collapses to a Wigner-negative

state. (b) Experimental setup. Two acousto-optic modulators (AOM)

controlled by the periodically signals are used to chop the seed

beam. The NOPA is composed of a type-II KTP crystal and a

concave mirror with 50 mm radius. Lossy channel is simulated

by the combination of a half wave plate (HWP) and a polarization

beamsplitter (PBS). The optical isolators are used to avoid the

back scattered light to the NOPA cavity. SNSPD: superconducting

nanowire single-photon detector, LO: local oscillator, MC: mode

cleaner, OI: optical isolator, LS: laser shutter, IF: interference filter,

FPC: Fabry-Perot cavity.

and confirms the connection between remotely created

Wigner negativity and quantum steering.

The experimental setup is shown in Fig. 5(b). A

continuous laser generates 1080 nm and 540 nm laser beams

simultaneously, which are used as the seed and pump beams

of a nondegenerate optical parametric amplifier (NOPA). An

EPR entangled state is generated from the NOPA when it is

operated at the status of deamplification [40, 41]. Two modes

of the EPR entangled state are separated by a polarization

beam splitter (PBS), and transmitted to Alice and Bob through

lossy channels, characterized by ηA and ηB, respectively.

Alice then performs single-photon subtraction by splitting

her mode with a beamsplitter with around 4% reflectivity

and implementing single-photon detection on it. The filter

system used to select the degenerate mode is composed of

an interference filter with 0.6 nm bandwidth and a Fabry-

Perot cavity (FPC). When a photon is detected by the

superconducting nanowire single-photon detector (SNSPD),

Bob measures his conditional state with a homodyne detector.

The CV EPR entangled state shared between Alice and Bob

can be described by its covariance matrix with elements σi j =

〈β̂iβ̂ j + β̂ jβ̂i〉/2 − 〈β̂i〉〈β̂ j〉, where β̂ ≡ (x̂A, p̂A, x̂B, p̂B)⊤ is the

vector of the amplitude and phase quadratures of each mode.

The quadrature operators of Alice’s mode A are denoted by

x̂A = â
†
A
+ âA, p̂A = i

(

â
†
A
− âA

)

where â†, â are creation and

annihilation operators respectively. Same definition for Bob’s

mode B. Thus the covariance matrix is given by

σAB =

(

σA γAB

γ⊤
AB
σB

)

=





























n 0 c1 0

0 n 0 c2

c1 0 m 0

0 c2 0 m





























, (1)

where the submatrices σA and σB represent the statistical

features of the reduced states of subsystems A and B,

respectively; γAB provides cross correlations between the

output optical modes. In our experiment, the realized CV

EPR resources with c1 = −c2 = c. The CM elements of

Eq. (1) can be retrieved from single mode measurements,

i.e., by simultaneously measuring the amplitude and phase

quadratures of each of two output modes [42–48].

EPR steering in the direction from Bob to Alice is

quantified by the parameter GB→A = max{0, 1
2

ln Det σB

Det σAB
} [49],

a higher value means stronger steerability. Note that

GB→A > 0 has been theoretically proved as a sufficient

and necessary resource to remotely generate negative part

of Wigner function of the steering mode B by a conditional

operation applied on the steered mode A [37].

To confirm this connection, we then subtract a single

photon from the steered mode A and observe its nonlocal

effects on the steering mode B. After a successful single-

photon subtraction, the Wigner function of the reduced

quantum state of mode B is expressed as

WA−
B (βB) =

exp
{

− 1
2

(

βB, σ
−1
B
βB

)}

2π
√

DetσB [Tr (σA) − 2]

×
[

β⊤Bσ
−1⊤

B γ
⊤
ABγABσ

−1
B βB + Tr(VA|B) − 2

]

,

(2)

where βB = (xB, pB)⊤ is the vector of possible measurement

outcomes of the quadrature operators, and VA|B = σA −
γABσ

−1
B
γ⊤

AB
is the Schur complement of σA. The non-classical

features of the reduced quantum state can be characterized by

the negativity of the above Wigner function, defined as the

doubled volume of the integrated negative part [50],

NA−
B =

2c2e
m(n−1)

c2 −1

m(n − 1)
− 2. (3)

The derivation is detailed in [52], where we also express

the created Wigner negativity as a function of the local and

global purities of initial Gaussian EPR entangled state before

photon subtraction, confirming the quantitative relation given

in a recent theoretical work [39].

When taking the dark counts of the single-photon detector

into account, the Wigner function given in Eq. (2) is then
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(a) (b) (c)

(d) (e) (f)= 0.012 ± 0.003

= 0.984 ± 0.003

= 0.048 ± 0.006

= 0.955 ± 0.004

= 0.101 ± 0.005

= 0.985 ± 0.004

= 0.000 ± 0.000

= 0.979 ± 0.002

= 0.012 ± 0.001

= 0.981 ± 0.002

= 0.045 ± 0.009

= 0.951 ± 0.032

= 0.7 = 0.8 = 0.9

FIG. 2. The reconstructed Wigner function of Bob’s state remotely created by performing single-photon subtraction from Alice’s field with

two sets of input squeezing levels: (a-c) −1.74/+2.08 dB and (d-f) −1.302/+1.407 dB, under different transmission efficiencies of mode B:

ηB = 0.7, 0.8, 0.9. Note that in our experiment, 10% detection loss is caused by the limited homodyne detection efficiency including the

quantum efficiency of the photo diode (98%), the mode matching efficiency (98%), and the clearance of homodyne detection (96%), which is

corrected in the above plot.

changed to WA−
B,s
= ξWA−

B
+ (1 − ξ)WB [51], where ξ is the

ratio of the true counts from single-photon subtraction on A

to the total detector clicks, WA−
B

is the ideal Wigner function

of photon-subtracted state and WB is the initial Gaussian

state which corresponds to the failure event of single-photon

subtraction. Thus, the negativityNA−
B,s of Wigner function WA−

B,s

when considering dark counts reads

NA−
B,s =

2c2ξe
m(n−1)

c2ξ
−1

m(n − 1)
− 2. (4)

The experimental details of the click rate (generation rate) and

ξ can be found in [52].

In the experiment, we first prepare a Gaussian entangled

state from a NOPA and retrieve its covariance matrix from

single mode measurements [52]. In particular, the amplitude

and phase quadratures of optical fields A and B are measured

by homodyne detectors in the time domain, where the signals

of detectors pass through two low-pass filters with bandwidth

of 60 MHz and are recorded simultaneously by a digital

storage oscilloscope at the sampling rate of 500 KS/s. Two

different entangled Gaussian states characterized by different

squeezing levels are generated at the source by injecting 50

mW and 30 mW pump beams into the NOPA respectively,

which results in different purities after a lossy evolution from

the crystal downward the detection [53–55].

To investigate the effects of squeezing level and purity

on the remote creation of Wigner negativity, we analyze the

elements of the measured CM in terms of V± = ∆
2(x̂A ±

x̂B)/2 = ∆2( p̂A ∓ p̂B)/2, which are the correlated variances

of the quadrature measurement statistics between two modes

of the EPR entangled states [56]. Thus, considering the

practical transmission efficiency, the CM elements of Eq. (1)

can be expressed as n = ηA(V+ + V−)/2 + (1 − ηA), m =

ηB(V+ + V−)/2 + (1 − ηB), c1 = −c2 = c = −√ηAηB(V− −
V+)/2 [52]. In our experiment, the entangled state generated

by 30 mW pump power shows lower squeezing but higher

purity −1.302/+ 1.407 dB (i.e., V+ = 0.74, V− = 1.38), while

by 50 mW pump power has higher squeezing but lower purity

−1.74/ + 2.08 dB (i.e., V+ = 0.67, V− = 1.61).

To perform the single-photon subtraction on the steered

mode A, around 4% energy of optical field A is reflected by a

beamsplitter and directed to SNSPD. When the SNSPD clicks

at Alice’s station, Bob measures his conditional state with a

homodyne detector and record the output signals by the digital

storage oscilloscope. Note that in case of no click at SNSPD,

the non-Gaussian operation fails and the Bob’s conditional

state remains Gaussian. We record over 30000 quadrature

values of Bob’s mode for each chosen transmission efficiency,

then reconstruct the Wigner functions of mode B by using the

maximum-likelihood algorithm [57].

Fig. 2 shows the reconstructed Wigner functions of mode

B conditioned on single-photon subtraction performed on

the distant mode A at different transmission efficiencies

ηB and fixed ηA = 0.9 for two sets of input squeezing

levels: −1.74/+2.08 dB (a-c) and −1.302/+1.407 dB (d-

f). The corresponding Wigner negativities N become
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FIG. 3. The steerability GB→A of the initial Gaussian entangled

states and the remotely created Wigner negativity in the steering

mode B after subtracting a single photon from the steered mode A

as functions of the transmission efficiency ηB shown in (a, b), or ηA

in (c, d), respectively. In (a, b), we also examine two sets of input

squeezing levels, −1.74/+2.08 dB (red lines) and −1.302/+1.407 dB

(blue lines). Error bars represent ± one standard deviation and are

obtained based on the statistics of the measured noise variances and

density matrices.

larger with the increase of ηB. The fidelity F(ρ, σ) =
(

Tr
√√
ρσ
√
ρ

)2

is a measure which quantifies the overlap

between the experimentally reconstructed reduced quantum

state of mode B (σ) after single-photon subtraction on mode

A and the theoretical result with ξ. They are all above

95% for the presented transmission efficiencies ηB, which

manifests high quality of the RSP process. The results

reveal that the case with lower squeezing −1.302/+1.407

dB indicated in Figs. 2(d-f) performs better than the other

case with −1.74/+2.08 dB given in Figs. 2(a-c), showing

more significant negative values as the transmission efficiency

increases. Especially, for the transmission efficiency ηB = 0.7,

Fig. 2(d) already presents nonzero Wigner negativity, while

Fig. 2(a) doesn’t.

Since this remote preparation of non-Gaussian state of

mode B is based on Gaussian EPR steering shared between

modes A and B, to understand the physics behind the results

given by Fig. 2, we investigate the connection between

the Wigner negativity and the Gaussian steerability from a

quantitative perspective, and establish the decisiveness factors

imposing constraints on the degree of Wigner negativity that

is remotely created by single-photon subtraction performed in

a distant station. Especially, we take into account the lossy

channels and examine the effects of loss in the protocol.

As shown in Fig. 3(a), Gaussian steerability from Bob

to Alice only exists (GB→A > 0) when ηB > 0.623 (the

case with lower squeezing but higher purity described in

blue) or ηB > 0.701 (the case with higher squeezing but

lower purity indicated in red) for a fixed value of ηA = 0.9.

(a)
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FIG. 4. The metrological power remotely created in mode B after

single-photon subtraction on mode A, varying with (a) transmission

efficiency ηB of Bob and (b) transmission efficiency ηA of Alice. The

squeezing levels are −1/+1 dB (blue) and −3/+3dB (red)

.

Correspondingly, the Wigner negativity of the reduced state

of mode B appears only when Gaussian steerability is larger

than zero, as shown in Fig. 3(b). The states produced with a

higher squeezing level possess stronger Gaussian steerability

as expected, while the created Wigner negativity in the

steering mode B is lower (red lines). This means there is a

one-to-one correspondence of nonzero Gaussian steerability

and Wigner negativity, but lack of a quantitative connection

between them. In fact, there is a tradeoff between the quality

of the initial EPR entanglement (the two-mode squeezing) and

the final Wigner negativity. For instance, if the entanglement

(squeezing) is too high the reduced single-mode state (by

tracing over the mode that was subject to photon subtraction)

has a “higher temperature” [58] which prevents (high) Wigner

negativity after photon subtraction. As indicated in [52], the

state purity plays main role instead of the squeezing level in

our experiment.

The Gaussian steerability enhances with the increase of

transmission efficiency in two channels, as shown in Figs. 3(a)

and (c), while the created Wigner negativity is only affected by

the channel loss existing in the steering mode B (b), but does

not vary with the loss in the channel of the steered mode (d).

This is because that Wigner function of the reduced state only

depends on ηB, as shown in Eq. (A.4) in the Appendix [52].

However, the transmission efficiency in Alice’s channel will

affect the generation rate of non-Gaussian state at Bob’s node.

For instance, for the case with lower squeezing, the generation

rate of creating Wigner negativity in mode B is decreased from

∼3 kHz to ∼500 Hz when ηA decreases from 0.9 to 0.3.

As an application of the remotely prepared non-Gaussian

state with Wigner negativity, we examine its metrological

power in quantum precision measurement, as demonstrated

in Fig. 4. The metrological power is defined as M(ρ) =

1/4 max[Fx(ρ) − 2, 0] [59–61], where M(ρ) quantifies the

metrological advantage beyond the standard quantum limit,

and Fx(ρ) is the optimized quantum Fisher information

over all possible quadratures x̂ [62, 63]. Similar with the

Wigner negativity, the metrological power of the reduced state

becomes stronger with a lower level of input squeezing (blue

lines), and sensitive to the loss existing in Bob’s channel but
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robust to the loss in Alice’s channel.

In summary, we experimentally prepare non-Gaussian state

with negative Wigner function in a remote mode (hold

by Bob) by performing local single-photon subtraction on

the steered mode (hold by Alice) of the previously shared

Gaussian EPR entangled state. We demonstrate that the

appearance of Wigner negativity at Bob’s node depends on the

presence of the steerability from Bob to Alice, confirming the

connection between the remotely created Wigner negativity

and quantum steering. To further examine the quantitative

relation we take the channel loss between two distant nodes,

and find that the created Wigner negativity is sensitive to

the loss in channel head to Bob, but robust to the loss

in channel head to Alice who performs photon subtraction.

We also show a potential application of the prepared non-

Gaussian state in quantum phase estimation, where less

initial squeezing produces higher Wigner negativity and thus

stronger metrological power in the steering mode. Our

results present a significant advance in a concrete in-depth

understanding of the connection between remotely creating

Wigner negativity and the Gaussian EPR steering, and pave

the way for remote preparation of multimode non-Gaussian

states for reaching further quantum advantage.
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APPENDIX I: THE DERIVATION OF REMOTELY

CREATED WIGNER NEGATIVITY

In our experiment, an EPR entangled state was directly

generated from the nondegenerate optical parametric

amplifier, which is fully described by its covariance matrix

(CM)

σAB =

(

σA γAB

γ⊤
AB
σB

)

=





























n 0 c1 0

0 n 0 c2

c1 0 m 0

0 c2 0 m





























, (A.1)

where n = ∆2 x̂A = ∆
2 p̂A, m = ∆2 x̂B = ∆

2 p̂B represent the

variances of amplitude and phase quadratures of the output

optical modes, c1 = Cov(x̂A, x̂B) and c2 = Cov( p̂A, p̂B)

indicate their cross correlations. The CM elements of

Eq. (A.1) can be retrieved from single mode measurements

as detailed in APPENDIX II-B [42–48].

We can define the correlated variances of the quadrature

measurement statistics between two modes of the EPR

entangled states by V+ = ∆
2(x̂A + x̂B)/2 = ∆2( p̂A − p̂B)/2 and

V− = ∆
2(x̂A−x̂B)/2 = ∆2( p̂A+ p̂B)/2. Considering the practical

losses characterized by transmission efficiency ηA and ηB, the

CM elements become n = ηA(V+ + V−)/2 + (1 − ηA), m =

ηB(V++V−)/2+(1−ηB), c1 = −c2 = c = −√ηAηB(V−−V+)/2.

The local purities µA,B of modes A, B and the global purity

µAB are then given by

µA =
1

√
detσA

=
2

2 + (V− + V+ − 2)ηA

,

µB =
1

√
detσB

=
2

2 + (V− + V+ − 2)ηB

, (A.2)

µAB =
1

√
detσAB

=
2

2ηAηB(V− − 1)(V+ − 1) + ηA(V− + V+ − 2) + ηB(V− + V+ − 2) + 2
.

The Gaussian steerability GB→A in such system can be also

quantified from its CM [64],

GB→A = max

{

0,
1

2
ln

detσB

detσAB

}

= max

{

0, ln
µAB

µB

}

= max

{

0,− ln

∣

∣

∣

∣

∣

∣

[

V− + V+ + 2(V− − 1)(V+ − 1)ηB − 2
]

ηA

(V− + V+ − 2)ηB + 2
+ 1

∣

∣

∣

∣

∣

∣

}

.

(A.3)

After a single-photon subtraction applied on the steered mode

A, the Wigner function of the steering mode B becomes [37]

WA−
B (xB, pB) =

exp[− x2
B
+p2

B

2m
]
[

−2c2m + c2
(

x2
B
+ p2

B

)

+ 2m2(n − 1)
]

4πm3(n − 1)

=
exp[− x2

B
+p2

B

ηB(V−+V+−2)+2
]

π(V− + V+ − 2)
[

ηB(V− + V+ − 2) + 2
]3

{

ηB(x2
B + p2

B)(V− − V+)2

+ 2
[

2ηB(V− − 1)(V+ − 1) + V− + V+ − 2
] [

ηB(V− + V+ − 2) + 2
]

}

.

(A.4)

It is clearly seen that the above Wigner function only depends

on the channel loss existing in the steering mode B, i.e.,

ηB, but does not vary with the loss in the channel of the

steered mode A. It is straightforward to calculate the Wigner

negativity possessed in mode B which is defined as the

doubled volume of the integrated negative part of the above

Wigner function [50]

NA−
B =

2c2e
m(n−1)

c2 −1

m(n − 1)
− 2. (A.5)

Since the Wigner negativity is calculated based on Eq. (A.4),

it should be irrelevant to ηA.

When taking dark counts of the single-photon detector into

account, we have WA−
B,s
= ξWA−

B
+ (1 − ξ)WB, where ξ is the

ratio of the true counts from single-photon subtraction on A

to the total detector clicks, and WB is the initial Gaussian

Wigner function of mode B corresponding to the failure event

of single-photon subtraction [51]. Thus, the negativity of the

Wigner function WA−
B,s accounting for dark counts is expressed
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as

NA−
B,s =

2c2ξe
m(n−1)

c2ξ
−1

m(n − 1)
− 2. (A.6)

We can also express it by the local and global purities of the

initial Gaussian EPR entangled state,

NA−
B,s =

2ξ(µAµB − µAB)e
µAB−µAµAB
µABξ−µAµBξ

−1

(µA − 1)µAB

− 2. (A.7)

It is clearly that the Wigner negativity NA−
B,s

is determined by

the purities of initial Gaussian state.

APPENDIX II: DETAILS OF EXPERIMENT

A. Generation of EPR entangled state

The detailed experimental setup is shown in Fig. 5. The

laser used in our experiment is a continuous wave intracavity

frequency-doubled and frequency-stabilized Nd:YAP-LBO

(Nd-doped YAlO3 perovskite-lithium triborate) laser which

generates 1080 nm and 540 nm light simultaneously. The

1080 nm and 540 nm lasers are filtered by mode cleaners

(MC 1 and MC 2) respectively and then used as the seed

and pump beams of the non-degenerate optical parametric

amplifier (NOPA). Two acousto-optic modulators (AOM) are

used to chop the seed beam into a cyclic form: 50 ms for

each locking and hold period. During the locking period, the

seed beam is injected into the NOPA for the cavity locking.

When the seed beam is chopped off, the cavity length of

NOPA is holding and the EPR entangled state is generated.

The measurement is performed during the hold period.

The NOPA is composed of an α-cut type-II KTiOPO4

(KTP) crystal (3 × 3 × 10 mm3) and a concave mirror with

curvature 50 mm. The front face of the KTP crystal is used as

the input coupler, of which the transmittances at 540 nm and

1080 nm are 40% and 0.04%, respectively. The end face of

the KTP crystal is antireflection coated for both 1080 nm and

540 nm. The transmittances of the output coupler are 12.5%

and 0.5% at 1080 nm and 540 nm, respectively. Two modes of

the EPR entangled state are separated by a polarization beam

splitter (PBS) placed behind the NOPA.

B. Measurement of Gaussian covariance matrix

As shown in Fig. 5, mode A is totally reflected by a variable

beam splitter (VBS) and directed to homodyne detector 1

(HD 1), and mode B is transmitted through a lossy channel

simulated by a half wave plate (HWP) and a PBS. The optical

isolators (OI) placed before homodyne detectors are used to

avoid the back-scattered light from the local oscillators. The

output signals of HDs are filtered by two 60 MHz low-pass

filters (LPFs) and recorded by a digital storage oscilloscope

(OSC, TELEDNE LECROY, HDO8108A). Quadrature values

of two modes in the time domain are sampled with the

sampling rate of 500 MS/s. The relative phase of HD is locked

to 0(90) degrees to measure the amplitude(phase) quadrature.

The OI together with mirrors in the signal path to each HD

lead to around 10% transmission loss. In addition to this,

the detection efficiency of each HD is around 90% which

includes the quantum efficiency of the photo diode (98%),

the mode matching efficiency (98%), and the clearance of HD

(96%). So, our reconstructed CMs are all corrected with 90%

detection efficiency.

All Gaussian properties can be determined from the CM

defined in Eq. (A.1). The variances ∆2 x̂A(B) and ∆2 p̂A(B)

are obtained by calculating the variances of the measured

quadrature values xA(B) and pA(B). The variances of the cross

correlations are obtained by ∆2(x̂A x̂B) = [∆2 x̂A+∆
2 x̂B−∆2(x̂A−

x̂B)]/2 and ∆2( p̂A p̂B) = [∆2 p̂A + ∆
2 p̂B − ∆2( p̂A − p̂B)]/2,

where ∆2(x̂A − x̂B)/2 and ∆2( p̂A − p̂B)/2 are obtained from the

simultaneously measured amplitude and phase quadratures of

two modes.

To generate two sets of entangled Gaussian states with

different squeezing levels, we inject 30 mW and 50 mW

pump beams into the NOPA respectively. In the case of 30

mW pump power, the entangled state with lower squeezing

(−1.302/ + 1.407 dB) but higher purity is prepared. This can

be derived by measuring CM of the prepared entangled state.

For instance, for the transmission efficiencies ηA = ηB = 0.9,

the experimentally measured CM is





























1.056 ± 0.004 0 −0.287 ± 0.004 0

0 1.055 ± 0.003 0 0.287 ± 0.002

−0.287 ± 0.004 0 1.056 ± 0.002 0

0 0.287 ± 0.002 0 1.056 ± 0.004





























.

(A.8)

Based on this CM and the values of efficiencies, we can

derive the corresponding variances of sum and difference in

Eq. (A.1) V+ = 0.74 and V− = 1.38 (−1.302/+ 1.407 dB).

In the case of 50 mW pump power, the entangled Gaussian

state with higher squeezing (−1.74/ + 2.08 dB) but lower

purity is prepared. The CM at the transmission efficiencies

ηA = ηB = 0.9 is





























1.130 ± 0.002 0 −0.421 ± 0.004 0

0 1.127 ± 0.004 0 0.420 ± 0.004

−0.421 ± 0.004 0 1.127 ± 0.004 0

0 0.420 ± 0.004 0 1.128 ± 0.004





























.

(A.9)

Similarly, we have V+ = 0.67 and V− = 1.61 (−1.74/ + 2.08

dB).

C. Remote preparation of the Wigner-negative state at Bob’s

node

To generate the Wigner-negative state at Bob’s node, we

need to subtract a single photon from mode A. As shown

in Fig. 5, around 4% of the energy from mode A is tapped
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FIG. 5. Experimental setup. MC 1: mode cleaner for the 1080 nm light, MC 2: mode cleaner for the 540 nm light, EOM: electro-optic

modulator, AOM: acousto-optic modulator, ID: iris diaphragm, Det: detector, NOPA: non-degenerate optical parametric amplifier, PBS:

polarization beam splitter, VBS: variable beam splitter which is composed of a half wave plate (HWP) and a PBS, OI: optical isolator, IF:

interference filter, FPC: Fabry-Perot cavity, LS: laser shutters, LPF: low-pass filter, SNSPD: superconducting nanowire single-photon detector,

LO: local oscillator, HD 1: homodyne detector at Alice’s station, HD 2: homodyne detector at Bob’s station, OSC: oscilloscope.

by VBS and directed to the superconducting nanowire single-

photon detector (SNSPD). An OI with transmission efficiency

∼ 95% is used to avoid the reflection from the Fabry-Perot

cavity (FPC). An interference filter (IF) of 0.6 nm bandwidth

together with a FPC of around 400 MHz bandwidth are used to

filter out the non-degenerate modes. A laser shutter (SR475)

is used to match the detection period of the SNSPD with

the hold time period of NOPA. Then, the subtracted photon

is coupled to the optical fiber by a five-axis fiber aligner

and detected by the SNSPD with ∼ 70% detection efficiency

whose temperature is cooled to 3 Kelvin. The output signal

of the SNSPD driver (Single quantum, Argos410) is used to

trigger the OSC. The OSC with sampling rate of 2.5 GS/s is

used to record the electrical signal of HD 2.

The dark count in our experiment represents the click of

the SNSPD when no down-converted light is incident which

comes from the insufficient chopping of the locking beam and

the back-scattered light from the LO. When the transmission

efficiency of mode A is ηA = 0.9, the dark count rate Rd is

around 60 Hz, considering the total counting rate Rt of around

3 kHz when the pump power is 30 mW, ξ ≈ 98% (calculated

by 1 − Rd/Rt). When the pump power is 50 mW, the total

counting rate Rt is around 7 kHz, leading to ξ ≈ 99%. In

our experiment, the total photon counting rate will decrease

with the decrease of transmission efficiency ηA, and so will the

dark count rate, thus the value of ξ is almost unchanged as it

depends on the ratio between them. However, the generation

rate of non-Gaussian state at Bob’s node is decreased, e.g.,

for the case with 30 mW pump power, the generation rate is

decreased from ∼3 kHz to ∼500 Hz when ηA decreases from

0.9 to 0.3.

APPENDIX III: RELATION BETWEEN WIGNER

NEGATIVITY AND PURITIES OF INITIAL EPR STATE

In the main text Fig. 3, we have shown that the generated

Wigner negativity in mode B only exists when mode B can

steer mode A, while the amount of negativity is not determined

by the Gaussian steerability. As shown in Eq. (A.7), the
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FIG. 6. Local purities µA (short-dashed lines) and µB (solid lines) and global purity µAB (long-dashed lines) of the initial Gaussian EPR state as

functions of transmission efficiency of mode B for two sets of squeezing levels (a) −1.302/+1.407dB and (b) −1.74/+2.08dB. The parameters

are the same as those in Fig. 3 in the main text.
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FIG. 7. (a) Steerability GB→A of the initial EPR state as a function of transmission efficiency ηA = ηB = η. (b) The Wigner negativity remotely

created in steering mode B by a single-photon subtraction on the steered mode A. (c) Local purities µA (short-dashed lines), µB (solid lines),

and global purity µAB (long-dashed lines) of the initial EPR state. In order to facilitate comparison, the same two sets of squeezing levels are

used: −1.74/ + 2.08dB (red lines) and −1.302/ + 1.407dB (blue lines).

negativity is quantified by the purities of the prepared EPR

state [39]. To complement the results, Fig. 6 shows the

purities of the prepared EPR state versus the transmission

efficiency ηB corresponding to Fig. 3.

In this case, the transmission efficiency of Alice’s channel

is fixed at ηA = 0.9. As transmission efficiency ηB increases,

the local purity of mode A (µA) remains invariant because the

loss in Bob’s channel does not affect Alice’s state. While

both the local purity of mode B (µB) and the global purity

(µAB) change with Bob’s transmission efficiency, and they

become more sensitive to ηB with higher squeezing levels.

Since the remotely created Wigner negativity is determined by

the purities, it explains why the negativity created by higher

squeezing level (red) is less robust to channel loss, indicated

by Fig. 3(b) in the main text.

Then we consider another scheme where both Alice

and Bob’s channels suffer from transmission losses. For

simplicity, we suppose the degrees of two transmission

efficiencies are the same ηA = ηB = η. As shown in Fig. 7(a),

Gaussian steerability GB→A > 0 requires the transmission

efficiency η > 0.701 in the case with higher squeezing but

lower purity (red line), and requires η > 0.623 in the case with

lower squeezing but higher purity (blue line). The Wigner

negativity shown in Fig. 7(b) appears when η > 0.709 and

η > 0.637 for two cases, respectively, which are slightly

higher due to the imperfect photon subtraction. Similar to the

case shown in Fig. 3 in main text, the EPR state produced

by a higher level of squeezing possesses stronger Gaussian

steerability as expected, but the Wigner negativity created in

the steering mode B is lower instead. This means that the

Gaussian steerability is not directly related to the amount of

Wigner negativity. As indicated in Eq. (A.7), the amount

of Wigner negativity depends on the purity of the initially

shared EPR state between two modes. Comparing Fig. 7(b)

and Fig. 7(c), we find that the case with lower squeezing level

but higher purities (blue) remotely generates larger amount of

Wigner negativity.
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