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Experimental demonstration of reservoir computing
on a silicon photonics chip
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In today’s age, companies employ machine learning to extract information from large

quantities of data. One of those techniques, reservoir computing (RC), is a decade old and

has achieved state-of-the-art performance for processing sequential data. Dedicated

hardware realizations of RC could enable speed gains and power savings. Here we propose

the first integrated passive silicon photonics reservoir. We demonstrate experimentally and

through simulations that, thanks to the RC paradigm, this generic chip can be used to perform

arbitrary Boolean logic operations with memory as well as 5-bit header recognition up to

12.5 Gbit s� 1, without power consumption in the reservoir. It can also perform isolated spoken

digit recognition. Our realization exploits optical phase for computing. It is scalable to larger

networks and much higher bitrates, up to speeds 4100 Gbit s� 1. These results pave the way

for the application of integrated photonic RC for a wide range of applications.
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C
urrently, we are swamped with data and the relevant
question is often no longer how to get data, but how to
extract the most relevant information from it. Reservoir

computing1,2 (RC) is a decade old and increasingly popular
paradigm from the field of machine learning. Although it was
originally defined as a way to easily train recurrent neural
networks, it has now evolved to a method for using dynamical
systems for computation on sequential data. In RC, a dynamical
system, henceforth called reservoir, is excited by the input
signal(s). The desired computation can either be the classification
of consecutive sections of the input signal into one of several
categories (classification tasks), or it can be a mapping of the
input sequence onto a real-valued output sequence (regression
tasks). In either case, this desired output is obtained by observing
the system’s states for many examples of input sequences and
learning the combination of the observed states (the readout) that
best approximates the desired output, often simply using linear
regression. In this procedure, the reservoir itself is left unchanged.
This is in contrast to traditional recurrent neural networks, which
are notoriously difficult to train3,4. For RC to work well, the
reservoir needs to be in the proper dynamical regime, usually at
the edge of instability, to ensure that it has sufficient memory of
past inputs and responds well to new inputs (in practice, the
valley around this ‘edge of instability’ optimum is often rather
broad). In short, the system has to be dynamic enough but not
unstable5. For the original software implementations of RC (echo
state networks and liquid state machines) it has been proven that
a sufficiently large reservoir with a trained external feedback
connection can perform any continuous digital or analogue
computation on time-varying inputs (in the idealized case
without noise)6. Without the trained feedback, any continuous
problem that requires only fading memory (a broad class of real-
world problems) can be solved under some general and mild
conditions2. The popularity of RC stems from its ease of use,
combined with its computational capabilities that match or
exceed the state-of-the-art for a broad range of applications such
as speech recognition, time series prediction, pattern classification
and robotics1,7–10. Its lenient requirements for the reservoir have
led to implementations on several hardware platforms ranging
from a basin of water to cellular neural networks and bacteria11–13.

A photonics-based hardware implementation of RC allows to
fully exploit light’s advantages (low-power, high-bandwidth,
inherent parallelism and so on) for computational purposes.
This is particularly attractive when the information is already in
the optical domain as in the case of many telecom and image
processing applications. Optical reservoirs based on a fibre and
one dynamical node14–18 as well as reservoirs based on ring
resonators19 have been demonstrated. In our own previous work
we have shown through reservoir simulations that integrated
optical chips with a network of coupled semiconductor optical
amplifiers can also be used, with the advantage of a much smaller
footprint20. In addition, compared with fibre-based solutions,
the mechanical stability of integrated solutions allows the
straightforward use of coherent light, which yields a significant
performance improvement over real-valued networks (lacking
phase) that are traditionally used in software-based and optical
fibre-based RC. Indeed, having a reservoir operate on complex
numbers essentially doubles the internal degrees of freedom in
the system compared with real-valued networks, leading to an
effective reservoir size that is roughly twice as large as the same
device operated with incoherent light.

A photonic chip containing optical amplifiers is, however, not a
very power-efficient solution and its speed is fundamentally
limited by the carrier lifetime. Here, we propose an alternative
architecture that circumvents these problems completely. As a
reservoir, we use a passive silicon photonics chip that only

contains waveguides, splitters and combiners, that is, we
eliminate the amplifiers we used in our previous work19. As a
consequence, the required nonlinearity is no longer present in the
reservoir itself, and the signals in the output waveguides of each
node are linear superpositions of the complex amplitudes of the
input waveguides of that node. Instead, the nonlinearity is
implemented at the readout, where the complex amplitudes of the
reservoir nodes are converted into real-valued power levels, which
are then used as inputs for a linear classifier. In this way, the
reservoir processing itself does not consume any power in the
nodes, that is, all the necessary power is provided by the input
signals. As the network is passive, the only timescales that matter
are the speed of the signal itself and the interconnection delays, so
that eventually the reservoir time scale is only determined by the
interconnection delay between the nodes.

In this paper, we show for the first time that such a passive
photonic silicon reservoir can be used as a generic computational
platform for diverse tasks, both digital and analogue. We
experimentally demonstrate that the chip is capable of perform-
ing arbitrary Boolean logic operations with memory on a time
stream, like x[� 2] XOR x[� 3], or x[� 1] NAND x[� 2], where
x[–n] is the input n bits in the past. Furthermore, we achieve
good correspondence between simulated and experimentally
measured results. Similarly, we experimentally and theoretically
show the performance of this chip on 5-bit header recognition.
Finally, we also show through simulations that the same chip is
capable of performing an analogue task, that is, a high-speed
version of isolated spoken digit recognition.

Results
Chip layout. The layout of our chip can be seen in Fig. 1, showing
a 16-node square mesh reservoir that contains multiple feedback
loops in the network20. Underneath, the actual chip design is
visible. The connections consist of 2 cm length low-loss spirals
(1.2 dB loss per spiral) corresponding to an interconnection delay
of around 280 ps. These delay lines have the sole purpose of
bringing the reservoir time scale down to the range that can be
addressed by our measurement equipment, that is, sample rates
between 125 Mbit s� 1 and 12.5 Gbit s� 1. A crucial advantage of
our design is that by trivially eliminating these delay lines, speeds
of up to several hundreds of Gbit s� 1 are possible at extremely
compact footprints (for example, a 40 times reduction in
interconnection lengths down to 500mm, is trivially possible
with the current design. A further reduction to allow for even
higher speeds (for example, with interconnections of 200 mm)
requires some redesigning of the reservoir.) This is obviously far
beyond the bandwidth of for example, the currently available
modulators and detectors, but illustrates the way in which this
approach is future-proof.

The footprint of the reservoir is 16 mm2, mostly because of the
size of the spirals. To ensure low losses, these spirals were
shallow-etched waveguides with a bending radius of 40 mm. A
chip with shorter interconnections for higher speeds would allow
the use of spirals with deep-etched waveguides, which show
higher losses (1.36 dB cm� 1) but have smaller footprint as the
bending radius is around 5mm21. This could further reduce the
size. Coupling and splitting between the nodes is done with a
combination of 1� 2 and 2� 2 multimode interferometers with
very low insertion loss and broadband operation over the
wavelength range of the grating couplers used to couple light
on and off chip. Note that these MMIs are again purely passive
components and only serve to split or combine the light. The loss
per grating coupler is 5–6 dB22. The chip is made on a Silicon-on-
Insulator (SOI) platform, (through http://www.epixfab.eu), which
uses the manufacturing tools from the semiconductor electronics
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industry. This holds the promise for mass production at low cost.
Also, the high index contrast of SOI allows for a much smaller
footprint than what is possible in other material platforms21.
Making active components in SOI is a topic of ongoing research
as silicon has an indirect bandgap23,24, but as our reservoir is
passive we can take full advantage of the maturity of silicon
processing technology. Also, since the reservoir is passive, the
magnitude of the eigenvalues of the weight matrix is smaller
than unity.

Boolean operations with memory. In our experiments, we have
sent an optical stream of 10,000 bits (modulated on a wavelength
of 1,531 nm at the maximum transmission of the grating cou-
plers) into one node of our chip (indicated by the thick black
arrow in Fig. 1), and we measure the response at the 11 nodes
marked with a red dot. The other five nodes had output powers
below the noise floor (around 40 dBm or 100 nW) of our erbium-
doped fibre amplifier. More nodes could be measured by ampli-
fying the input signal and by using more efficient couplers to and
from the chip. The amplified responses were measured using an
optical sampling scope and saved to a computer where they were
used for offline training (note that although the training is offline
and therefore slow, it only needs to be performed once before the
task and not during the task itself). The readout weights were
trained such that the output follows a certain desired binary
output function, for example, the XOR of the previous bit and the
bit before that, x[� 1] XOR x[� 2]. Note that despite its apparent
simplicity, this XOR task with memory is considered to be a hard
problem in machine learning, as it cannot be solved by mere
linear regression on the inputs, but a result of 25% is, however,
possible as a suboptimal solution (in this case one out of four
solutions is constantly misclassified).

As a performance metric, we use the error rate (ER), that is, the
percentage of differences between the trained output and the
desired output. Note that the time scale of the reservoir
determines how much memory it has of past input signals. Since
in our photonic reservoir this time scale is determined by the
interconnection delay, we report ER as a function of the
(interconnection delay)/(bit period) ratio. In our experiment,
the value of the interconnection delay was 280 ps and the bitrate
was scanned from 0.125–12.5 Gbit s� 1. Figure 2 shows that for a
(interconnection delay)/(bit period) ratio of 0.4, we get a good
performance for x[� 1] XOR x[� 2]. We have also simulated our
network and find a similar optimal ER, but at a slightly different
value of the (interconnection delay)/(bit period) ratio. This can be
explained by the fact that the response of the photonic reservoir

depends strongly on parameters for which the exact values are
unknown, for example, the exact waveguide length and the
corresponding phase changes. However, by driving more than a
single network input, a wider basin of good performance can be
achieved. This is illustrated by simulation results in Fig. 2 for our
16-node network. This basin can be further enlarged by scaling to
larger networks and by optimizing the (relative) magnitudes of
the input signals in the different nodes. The regime of zero errors
in the experiment was obtained for a periodic bit pattern length of
104 bits, which leads to a lower limit of the measurable bit error
rate of at least 10� 4. Obviously, for practical applications, it will
be important in follow-up work to quantitate how much below
10� 4 this bit error rate is, to see whether it can compete against
alternative approaches. For this, larger reservoirs will need to be
studied as well.

Very important to note is that our generic network, which was
not at all specifically optimized and designed for a 2-bit XOR with
one bit delay, can also solve the XOR of many different bit
combinations (Fig. 3), as well as the easier (linearly separable)
other Boolean operations on past inputs (Fig. 4). Thanks to the
RC principle, this merely requires training a new set of readout
weights.

Since no other intrinsic timescales exist in the reservoir, the
optimization of interconnection delays only relates to the desired
memory, that is, a single optimum exists for all Boolean functions
on certain past input bits, demonstrating the general applicability
of the RC paradigm. Since the optimum exists for certain
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Figure 2 | Error rate for a 2-bit XOR task trained and tested on measured

and simulated data. The operation used is x[� 1] XOR x[� 2].

Figure 1 | Design of our 16-node passive reservoir in 4�4 configuration, overlain with the topology. All connections are bidirectional but by using one

input (black arrow), the light flows according to the blue arrows. The 11 nodes marked with a red dot were measured.
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(interconnection delay)/(bit period) ratios, chips can easily be
designed to handle very high speeds. For example, speeding up
the input signal to 100 Gbit s� 1 requiring a ratio of 0.5 needs
a delay of 50 ps (corresponding to a waveguide length of around
0.5 mm), which is perfectly feasible. Moreover, since that delay
line would be much shorter than the 2 cm used here, it will be
easier to fabricate and measure larger networks.

Nonlinear readout. For most tasks, including XOR, reservoirs
must be able to perform nonlinear transformations of their
inputs. However, our reservoir itself is passive and does not
contain any nonlinearity. What we exploit here is the intrinsic
nonlinearity of the photodetectors, which essentially square the
magnitude of the complex representation of the coherent light
signal. The actual readout implementation, that is, taking the
weighted sum of the states, is currently performed electronically
and offline, that is, not in real time. However, it is conceptually
easy to also implement this linear combination of states in the
optical domain, where a set of variable optical attenuators or
modulators implement the weights.

To further prove the point that the nonlinearity in the readout
is crucial in a passive reservoir, the simulation results of Fig. 5
show that with a purely linear readout operating on complex
values, the performance on the XOR task drops dramatically.
It also shows that, for this binary task, taking the norm of the

magnitude yields equally good results as when taking the square.
Similar results were obtained for other types of nonlinearities at
the readout (not shown). This indicates that, for an all-optical
readout implementation (that is, in which there would be no
photodetectors operating on the states), the states would have to
be routed through a nonlinear optical component before linearly
combining them, for example, in an optical combiner.

Header recognition. Using the exact same chip and experimental
setup as for the Boolean tasks with memory, we also experi-
mentally and theoretically investigated the task of header recog-
nition. Figure 6 shows that with the current chip, we can
recognize headers with lengths up to 5 bits. Again, simulation
results and experimental results show similar trends, with the
differences attributed to phase variations during fabrication. For a
larger chip of 6� 6 nodes, simulations show that it is possible to
recognize 8-bit headers. Just as in the previous task, the dominant
design parameter is the ratio (interconnection delay)/(bit period),
so the system is trivially scalable to speeds 4100 Gbit s� 1 by
shortening the delay lines.

Classification of spoken digits. In a previous paper, we investi-
gated the most important properties of photonic reservoirs by
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Figure 3 | Results for the 2-bit XOR task with measured data for a wide

variety of delayed bit pairs in the bit stream.
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means of simulations for an isolated spoken digit recognition
task19. The reservoir employed there was a network of coupled
semiconductor optical amplifiers. By working at an optimal delay
and in the coherent regime, better results than with classical real-
valued reservoirs in software were achieved. To compare the
passive chip with our previous work, Fig. 7 shows theoretically
that we can reach a similar performance to the SOA chip with the
exact same passive silicon network we used for the digital tasks
above. Due to the unavailability of sufficiently high-speed
analogue arbitrary waveform generators, we were unable to test
this experimentally, but the good correspondence between theory
and experiment for the digital tasks leads us to conclude that the
same architecture can also be used to solve analogue signal
classification tasks.

Discussion
We have proposed a novel chip-based architecture for photonic
RC that uses passive silicon chips and in which the nonlinearity is
implemented in the readout layer converting complex amplitudes
to intensities. The single generic chip was shown to be capable of
solving both digital tasks (like Boolean operations with memory
and header recognition) and analogue tasks (isolated digit
recognition). The reservoir processing itself does not consume
any power, and currently its speed is completely dominated by
the input/output speeds, that is, by the modulators and detectors.
Internally, the time scale of the network is set by the optical delay,
which is easily scalable to perform Boolean operations in the
range of several hundreds of Gbit s� 1. In addition, given the
transparency of the chip over a wide bandwidth, one could, in
principle, use dense wavelength division multiplexing methods to
have many independent processing channels handled by a single
chip. Given the good performance of the same chip on both
analogue and digital tasks, this opens the way for a completely
novel type of ultrahigh-speed low-power optical information
processing, for applications such as optical regeneration/channel
equalization1, time series prediction and feature extraction.

Methods
Theoretical model. The model used to describe the optical behaviour of the chip
consists of a time-domain approach where a complex-valued envelope E(t) of the
signal with carrier frequency 2pc

l is propagated through a passive network. Taking
into account effects like a finite propagation time t, combined with a waveguide
loss a and phase change of DF, the transmission through the interconnections is
modelled by19 EoutðtÞ ¼ exp � a

2

� �
expð� jD FÞEinðt� tÞ. Splitters and combiners

are considered to be lossless and are simply modelled by division of the power by a
factor 2 and complex in-phase addition, respectively.

Similar to the experiment, we use the 16-node square mesh reservoir shown in
Fig. 1, of which the details are provided in Vandoorne et al.20 The conversion of the
aforementioned single component models to a description of the full system for
this topology is done using the network simulation software as described in Fiers
et al.25 More in particular, as light can be considered to pass instantaneously
through the idealized splitters and combiners compared with the latency induced
in the delay lines, we concatenate their individual scatter matrices in one big
S-matrix. Based on the connection matrix C of the circuit, one can then transfer at
each time step the output of the delay lines to the inputs of the subsequent delay
lines using an effective connection matrix C’ of the whole circuit, that takes the
influence of the splitters and combiners into account. For further details, we refer
to Fiers et al.25

Example waveforms collected at the reservoir nodes. By way of illustration,
Fig. 8 shows the output collected at a node (the red node surrounded by a black
square in Fig. 1) next to the input node, for an input signal at 2 Gbits s� 1 con-
sisting of 16 ‘one’ bits surrounded by ‘zero’ bits. The two red markers indicate the
duration (8 ns) of 16 bits. For this particular node, there are two relevant paths
from input to output, each with a slightly different delay, and the recorded
waveform clearly shows three stages, corresponding to the presence of only the
signal from the fast route, the presence of the signal from both paths and the
presence of the signal from only the slow route. Destructive interference between
both signals is clearly visible in the middle segment, proving that the chip operates
in a coherent regime. The delay difference between the two paths is estimated to be
560 ps±7.8 ps (one sample) from the time duration of the ones without
interference.

2-bit Boolean task. In measurement and simulation, the 10,000 bits are divided
into 10 sets of 1,000 bits used in turn for training and testing through fivefold
cross-validation and ridge regression to avoid overfitting. After training the readout
weights on the training bit stream, both the tested output (which consists of
applying those weights to the states of the reservoir of the test bit stream) and
desired output are sampled at the middle of the bit period and a threshold is
applied at the middle of the bit amplitude. These two bit streams are then com-
pared to determine the performance of the system, yielding an error rate. The
desired bit stream is constructed from the input bit stream depending on the
Boolean operation that needs to be solved. The measured 11 reservoir states are
padded initially with zeros depending on the signal frequency and the physical
interconnection distance from the input node in Fig. 1.

Header recognition task. The setup for this task is similar to the one for the 2-bit
Boolean task, but the readout uses a winner-take-all approach. For x-bit header
recognition, 2x classifiers have to be trained, one for each possible header.
A classifier should give þ 1 at the last bit of its header, � 1 otherwise. After
training the readout weights on the training bit stream, both the tested output and
desired outputs of all classifiers are sampled at the middle of the bit period and the
classifier with the highest response wins. The ER is also here the percentage of
differences between the trained output and the desired output.

Isolated digit speech recognition task. Isolated spoken digits, ‘0’ to ‘9’, have to be
classified20. In the data set, these words are each spoken 10 times by five female
speakers, giving 500 samples, taken from the TI46 speech corpus26. For speech
recognition, some pre-processing of the raw speech signal is commonly performed.
These methods involve a transformation to the frequency domain and a selective
filtering based on known psychoacoustic properties of the human ear and/or
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spectral properties of speech. For the experiments in this paper, we used the Lyon
ear model27. To shorten the simulation time, a decimation of the input signals with
a factor of 128 was also applied. We obtain the output by training 10 distinct linear
classifiers, one for each digit. Each trained output should return the value þ 1
whenever the corresponding digit is spoken and � 1 otherwise. During testing, a
winner-take-all approach is used to determine which word was spoken. The word
ER, which is (Nnc/Ntot), with Nnc the number of incorrectly classified samples, and
Ntot the total number of samples, determines the performance. Since it is possible
to achieve a word ER very close to 0%, babble noise from the NOISEX database was
added with a SNR of 3 dB (http://www.speech.cs.cmu.edu/comp.speech/Section1/
Data/noisex.html). The results are always averaged over 10 runs. We used ridge
regression to avoid overfitting and fivefold cross-validation to make our results
more robust28. This processing was done with a freely available toolbox
(http://www.reslab.elis.ugent.be/rctoolbox v1.0).

SOI. The passive reservoir was fabricated through http://www.epixfab.eu on a SOI
wafer with 193 nm deep ultraviolet lithography29. The SOI structure was designed
with a top silicon layer of 220 nm and a buried oxide layer of 2 microns. The
waveguides are mono mode and only support TE polarization.

Measurement setup. The coupling to and from the chip happens with a vertical
fibre setup22. A periodic pattern of 10,000 bits was generated with an Anritsu
MP2101A pulse pattern generator. This signal was fed to an amplitude modulator
from JDSU onto an optical signal coming from a Finisar (Syntune) S7500 widely
tunable laser (line width 5 MHz, active coherence control with wavelength stability
significantly below 1 pm h� 1).The measured signal was first amplified with a
Keopsys erbium-doped fibre amplifier, before being filtered and coupled in the
chip. The periodic patterns of the different outputs were detected sequentially with
a LeCroy WaveExpert 100H and a 112 Gbit s� 1 photodiode from Fraunhofer
Gesellschaft. A specific header sequence allowed us to temporally realign the
different output channels before processing them in a computer.
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