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Abstract

We discuss inverse problem results for problems involving the estimation of prob-
ability distributions using aggregate data for growth in populations. We begin with a
mathematical model describing variability in the early growth process of size-structured
shrimp populations and discuss a computational methodology for the design of exper-
iments to validate the model and estimate growth rate distributions in shrimp pop-
ulations. Parameter estimation findings using experimental data from experiments
so designed for shrimp populations cultivated at Advanced BioNutrition Corporation
are presented illustrating the usefulness of mathematical and statistical modeling in
understanding the uncertainty in the growth dynamics of such populations.
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1 Introduction

In this paper we present results for an inverse problem for the estimation of growth rate
distributions in size-structured shrimp populations. The estimation and inverse problem
efforts discussed here are motivated by previous work on a hybrid model of the shrimp
biomass/countermeasure production system developed and discussed in detail in [5]. One
of the goals of this joint project with Advanced BioNutrition Corporation (ABN) was the
development of a model for a system where one uses shrimp as a scaffold organism to produce
large amounts of vaccine in response to a specific bio-toxic antigen challenge. Because the
output of the biomass growth model will serve as input to a vaccine production model, the
ability to accurately model the dynamics (including any uncertainty) of the size-structured
shrimp population is critical.

We discuss inverse problem methodologies for growth rate distributions in population models
involving uncertainty related to the data or observations employed. However, the problems
are not only the usual statistical inverse problems arising wherein measurement errors pro-
vide the source of data uncertainty and hence parameter uncertainty. Rather, the aggregate
nature of the data produces an additional need for uncertainty in the model itself. In these
problems one has individual dynamics (growth rate differential equations) but only aggre-
gate or population level longitudinal measurements without data on individuals. Thus the
usual hierarchial/mixing distributions methods from statistics [20] are not applicable. The
problems require inverse problem methodologies for estimation of probability distributions
for growth at the population level along with uncertainty quantities (e.g., confidence bands
or regions that play the role of the usual confidence intervals for Euclidean parameters)
for the estimated parameters and their associated sampling distributions. The resulting in-
verse problems are thus ones involving estimation of probability distributions (or associated
densities) for growth rates across a family of growth rates admissible in the population.

The outline of the paper is as follows. We begin (Section 2) with a review of a class of
size-structured population models along with modifications to permit growth rate variabil-
ity or uncertainty. These include growth rate distribution (GRD) models as well as those
involving a Markov stochastic process for size. In Section 3 we outline an approach based on
simulated inverse problems to aid in the design of experiments to produce data adequate for
validation of the GRD models. We do this in the context of an assumed parametric family
(truncated Gaussian) of distributions or densities and use quantities from asymptotic statis-
tics to evaluate efficacy. Among questions investigated are sampling frequency and sampling
size. In Section 4 we present the results for the parameter estimation problem for the growth
rate distribution of shrimp populations using experimental data collected according to the
designs resulting from the studies of Section 3. Concluding remarks are given in Section 5.
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2 Size-Structured Population Models

The Sinko-Streifer (SS) model [32] and its variations have been widely used to describe
various age and size-structured populations (see [2, 3, 7, 12, 13, 16, 25, 28] for only a sample).
More recently, extensions of these models have been employed in cell population models
where size is replaced by intensity of a label or marker [27].

One version of the SS model is given by

vt(x, t; g) + (g(x, t)v(x, t; g))x = −m(x, t)v(x, t; g)

g(x)v(x, t; g) =

∫ x̄

x

β(x, t)v(x, t; g)dx

v(x, 0; g) = v0(x; g).

(2.1)

We note that the population density of individuals with growth rate g at time t with size x
is denoted by v(x, t; g). The mortality rate of individuals in the population is represented by
m(x, t), while β(x, t) represents the fecundity or reproduction rate. The parameters x and
x̄ represent the minimum and maximum sizes of the individuals, respectively. The initial
size density of the population at t = 0 is given by v0(x; g). At any time t, the number of
individuals in the population with sizes between x and x̄ is given by

NSS(t) =

∫ x̄

x

v(x, t; g)dx.

In the SS model the growth rate of all individuals in the population is given by the following
deterministic growth model

dx

dt
= g(x, t). (2.2)

Therefore, all individuals of the same size at the same time are assumed to grow at the same
rate g(x, t). However, this assumption leads to a model that is incapable of predicting the
dispersion and bifurcation evident in mosquitofish population data collected in rice fields [7,
12, 13]. Dispersion in size has also been observed in experimental data shown in Figures 1
and 2 for the early growth of shrimp collected from two different raceways at the Shrimp
Mariculture Research Facility, Texas Agricultural Experiment Station in Corpus Christi,
TX. Although the initial sizes of the shrimp were very similar, a great deal of variability was
observed in the aggregate type longitudinal data as time progressed. Therefore, a reasonable
model for this population should account for the variability in the size distribution data which
is perhaps a result of variability in the individual growth rates across the population [19].
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Figure 1: Histograms for longitudinal data for size (in grams) for Raceway 1.
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Figure 2: Histograms for longitudinal data for size (in grams) for Raceway 2.
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In a modification of the SS model, the Growth Rate Distribution (GRD) model developed
and investigated in [7, 12, 13], the growth rates are allowed to vary across the population,
and individuals with the same growth rate are assumed to be in the same subpopulation.
The population density in the GRD model is then given by

u(x, t;P) =

∫

g∈G

v(x, t; g)dP(g), (2.3)

where v(x, t; g) is the solution to (2.1) with growth rate g, G is the collection of admissible
growth rates, and P is a probability measure on G. Thus, growth in a given population is
not characterized by a single growth rate function. Rather, populations are characterized
by growth as embedded in the pair (G,P), a set of possible growth rates and a probability
distribution on this family of growth rates. This model was shown to be sufficiently rich to
allow prediction of both the dispersion and bifurcation typically observed in mosquitofish (as
well as other) population data [7, 8, 12, 13]. Theoretical and computational frameworks for
the inverse problem of selecting a best P to fit the model (2.3) to aggregate population data
are developed and discussed in [4, 6, 8, 9, 14], where one endows the space of probability
measures with the Prohorov metric topology [4, 17]. Specifically, one formulates the problem
of finding P ∈ P(G), (where P(G) is the set of all probability distribution functions over G),
given population density data d̂k,j, k = 1, . . . , Nt, j = 1, . . . , Nx, by minimizing the least
squares functional

J(P) =
∑

k,j

∣∣d̂k,j −
∫

g∈G

v(xj, tk; g)dP(g)
∣∣2 (2.4)

over all P ∈ P(G).

In summary, the GRD model (2.3) represents one approach to accounting for variability in
growth rates by imposing a probability distribution on the growth rates in the SS model
(2.1). Individuals in the population grow according to a deterministic growth model (2.2),
but different individuals in the population may have different parameter dependent growth
rates in the GRD model. The population is assumed to consist of subpopulations with indi-
viduals in the same subpopulation having the same growth rate. The growth uncertainty of
individuals in the population is the result of variability in growth rates among the subpopula-
tions. This modeling approach, which entails a stationary probabilistic structure on a family
of deterministic dynamic systems, may be most applicable when the growth of individuals
is assumed to be the result of genetic variability such as considered in [19].

However, a second approach that has been studied as well is based on the assumption
that individual growth is a Markov diffusion stochastic process which leads to the Fokker-
Planck model for shrimp population density [1, 15, 22, 29]. The growth process for each
individual is stochastic, and each individual grows according to a stochastic growth model.
In the Fokker-Planck model, the uncertainty in the growth of individuals is the result of the
growth stochasticity of each individual. This modeling approach may be most applicable
when the variability in the growth rate of individuals is believed to be the result of changes
in environmental factors such as discussed in [23, 26, 30]. Theoretical arguments in [11]
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demonstrate that the population density from the GRD model is the same as the population
density obtained from the Fokker-Planck model when equivalent levels of variability are
used in both models. Numerical results are also presented in [10] to further validate the
theoretical analysis of [11]. Therefore, one can use the computationally “easier” approach
to model the population of interest when appropriately chosen forms of variability can be
determined. Based on these studies, we chose to use the GRD model (2.3) to incorporate
uncertainty in the growth rates in the size-structured population model for the early growth
of shrimp. A natural question arises immediately: how to collect date d̂k,j to carry out the
minimization in (2.4) to determine a reasonable value for P . In particular, what sampling
size and sampling frequency should be used in experiments to adequately estimate P ?

3 Experimental Design

In this section we outline an approach for determining the sampling size and the number
of sampling time points one needs to obtain reliable estimates for probabilistic growth rate
parameters in the GRD model. We also present some computational results demonstrating
the effect of the bin size used in inverse problem calculations on parameter estimates and
model predictions. We do this in the context of a parameterized family P of admissible
probability distributions (in this case a family of truncated normal distributions on intrinsic
growth rates).

Before discussing the results, we first describe the simulated data used in these calculations.
The experimental data to be used in the inverse problem calculations will be aggregate type
longitudinal data (similar to the data shown in Figures 1 and 2). Individual shrimp are
randomly sampled from the population at each time point; however, there is no guarantee
that the same set of individuals are sampled at different time points. The simulated data
that we use in the calculations in this section will also be aggregate longitudinal data.

We assume that the mortality rate m(x, t) and reproduction rate β(x, t) in (2.1) are both
zero because we only consider the early growth dynamics of the shrimp. We also assume
that the growth rate function has the form

dx

dt
= g(x) = b(x + c), (3.1)

where b represents the intrinsic growth rate of the individuals and c is a fixed constant.
This growth rate function was shown to be reasonable in [11] where the average size (weight
in grams) data for fifty randomly sampled shrimp was fit with the exponential function
corresponding to the solution of (3.1). In order to satisfy the assumption of varying growth
rates in the GRD model, we assume that the intrinsic growth rate is a random variable taking
values in a compact set B = [b, b̄] with probability density function ϕ(b). Here, we chose it
to be a truncated normal (Gaussian) distribution with mean µb and standard deviation σb,
denoted by N[b,b̄](µb, σ

2
b ). This choice was based on previous analysis [11] that demonstrated

that an assumption of a normal distribution on the intrinsic growth rates leads to a lognormal
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distribution in size, which is typical of data collected on shrimp populations such as those
in Figures 1 and 2. Therefore, the population density in (2.3) is given by

u(x, t; µb, σb) =

∫ b̄

b

v(x, t; b)ϕ(b; µb, σb)db =

∫ b̄

b

v(x, t; b)

1
σb

φ
(

b−µb

σb

)

Φ
(

b̄−µb

σb

)
− Φ

(
b−µb

σb

) db , (3.2)

where φ is the probability density function of the standard normal distribution, Φ is its
corresponding cumulative distribution function and v(x, t; b) is the solution of (2.1) with
(3.1).

While individual shrimp are randomly sampled and weighed at each time point, the data
used in the inverse problem calculations is the total number of shrimp in each size class. Let
∆x be the length of the size class interval that we choose for each size class bin. Then the
total number of population p(x, t; q) in each size class bin is approximated by

p(x, t; q) ≈ u(x, t; q)∆x, (3.3)

where q = (µb, σb), and u(x, t; q) is obtained from (3.2).

Let the sampling time points be given by tk, k = 1, 2, . . . , Nt. At each time point tk, we
independently draw N samples from N[b,b̄](µb, σ

2
b ); that is, we obtain N samples of intrinsic

growth rates bk
i , i = 1, 2, . . . , N. We also independently draw N samples of initial sizes xk

0,i

from a uniform distribution on the interval [x0, x̄0], where x0 and x̄0 are some constants. Let
sk

i represent the size of shrimp at time tk with intrinsic growth rate bk
i and initial size xk

0,i.
Then by solving (3.1), we have

sk
i = (xk

0,i + c) exp(bk
i tk)− c.

For convenience, we reorder {sk
i } in increasing order and reorder {bk

i } in the same order as
{sk

i }. To avoid introducing more notation, we continue to use the same notation; that is,

sk
1 ≤ sk

2 ≤ · · · ≤ sk
N .

We then group sk
i , i = 1, 2, . . . , N into size classes based on ∆x. For example, if |sk

1−sk
2| < ∆x,

then sk
1 and sk

2 are in the same size class. Suppose that we have Nk
x size classes at time tk after

we group {sk
i }. We use [xk

j , x
k
j +∆x) to denote size class j, j = 1, 2, . . . , Nk

x and zk
j to represent

the total number of population in size class j at time tk (that is,

Nk
x∑

j=1

zk
j = N, k = 1, 2, . . . , Nt).

The center point xk
j + ∆x/2 of size class j is used in the computations to estimate the

parameters (µb, σb) in order to eliminate any left bias by using xk
j or right bias by using

xk
j + ∆x. Then the estimate q∗ = (µ̂b, σ̂b) of the underlying “true” parameters q0 = (µ0

b , σ
0
b )

(assumed to exist) can be calculated by

q∗ = arg min
q∈Q

J(q) =
Nt∑

k=1

Nk
x∑

j=1

|p(xk
j + ∆x/2, tk; q)− zk

j |2,

where Q is some closed set in R2
+.
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3.1 Influence of Sampling Size and Frequency on Parameter Esti-
mation Problem

We carried out a series of inverse problem calculations in order to determine the influence
of the sampling size (N) and the number of sampling time points (Nt) on the quality of
the parameter estimation. The sampling frequency varied between twice a week, once a
week and once every two weeks, while sampling size N varied between 25, 50, 75 and 100.
We considered these sampling frequencies and sizes to determine minimal effort experiments
to provide data sufficient to accurately estimate variability (i.e., to estimate q0 = (µ0

b , σ
0
b ))

in the growth rates of the shrimp. A sampling period of six weeks was used in all of the
following simulations. We also considered different σ0

b values in order to determine the
effect of the amount of variability in the growth rates on the sampling size and sampling
frequency necessary for the experiments. The true standard deviation σ0

b used to generate
the simulated data was set to σscale · µ0

b , where σscale = 0.1, 0.5, and 0.9. Therefore, we had
a total of 36 scenarios. The following parameter values were used in the inverse problem
calculations: ∆x = 0.01, c = 0.1, µ0

b = 0.045, σ0
b = σscale · µ0

b , b = 0.001, b̄ =
0.2, x0 = 0, x̄0 = 0.02. We used the following function for the initial condition v0(x; g) :

v0(x; g) =





N

2ε
if x0 − ε < x < x0 + ε,

0, otherwise,

where ε = 0.01. The inverse problem calculations were performed 500 times for each scenario
with different sets of {bk

i }N,Nt

i=1,k=1 sampled from the truncated normal distribution on [b, b̄] with

mean µ0
b and standard deviation σ0

b and {xk
0,i}N,Nt

i=1,k=1 sampled from a uniform distribution
on [x0, x̄0]. The estimated value for q0 in the jth (j = 1, 2, . . . , 500) inverse problem of the
lth (l = 1, 2, . . . , 36) scenario is denoted as q∗j,l = (µ̂j,l

b , σ̂j,l
b ).

Figure 3 displays the results obtained when σscale = 0.1. The upper two plots show the
average relative errors of µ̂b and σ̂b, while the 95% confidence bounds for µ̂b and σ̂b are in
the lower two plots of Figure 3. The average relative errors RE(µ̂b)

l and RE(σ̂b)
l of µ̂b and

σ̂b, respectively, in each scenario is given by

RE(µ̂b)
l =

1

500

500∑
j=1

|µ̂j,l
b − µ0

b |
µ0

b

and RE(σ̂b)
l =

1

500

500∑
j=1

|σ̂j,l
b − σ0

b |
σ0

b

, for l = 1, 2, . . . , 36.

We obtain the 95% confidence bounds for µ̂l
b and σ̂l

b for each scenario by computing the value
where 2.5% of the estimated parameters (µ̂b, σ̂b) are below and above based on the results of
the 500 inverse problem calculations. While the sampling size N and sampling frequency do
not have an effect on the estimation of µb in this example, we observe that there is an effect
on the estimation of σb. The average relative error of σ̂b decreases as we increase either N or
Nt. Furthermore, the reduction in the average relative error resulting from an increase in the
sampling size N from 25 to 50 is greater than the reduction caused by an increase in N from
50 to 75 and 75 to 100. These results suggest that a sampling size of 25 is not sufficiently
large to obtain reliable estimates of the variability in the growth rates.
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Figure 3: (Upper): Relative errors of µ̂b and σ̂b; (Lower): 95% confidence bounds for the
estimates corresponding to µ̂b and σ̂b with σscale = 0.1.
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The lower plots in Figure 3 depicting the 95% confidence bounds for µ̂b also show that for
this example with σscale = 0.1 the sampling size and frequency have minimal effect on the
estimates µ̂b based on the very tight bounds around the “true” mean µ0

b . However, we observe
a decrease in the width of the confidence bounds for σ̂b as N is increased from 25 to 50 and
essentially no change in the width as N is increased from 50 to 75 and 75 to 100. This also
suggests that N = 25 is not sufficient to obtain a reliable estimate of σb.

A σscale value of 0.5 was used in the simulations that produced the results in Figure 4. We
note in this case that the estimates of µb and σb are both affected by the sampling size and
frequency. The average relative error of µ̂b and σ̂b both decrease as N is increased. The
decrease in the average relative error is very significant as N is increased from 25 to 50 for
both parameters; however, the reduction in the average relative error for both parameters is
not as dramatic as N is increased from 50 to 75 and from 75 to 100. We would again infer
from these results that a sampling size of at least 50 is desirable in order to obtain reliable
estimates of (µb, σb).
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Figure 4: (Upper): Relative errors of µ̂b and σ̂b; (Lower): 95% confidence bounds for the
estimates corresponding to µ̂b and σ̂b with σscale = 0.5.
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The resulting 95% confidence bounds for µ̂b and σ̂b when σscale = 0.5 are shown in the lower
plots of Figure 4. As already noted, the estimation of both parameters depends on N and
Nt. The decrease in the width of the confidence bounds for µ̂b is more significant as N is
increased from 25 to 50 in comparison to the decrease in the width when N is increased
from 50 to 75 and 75 to 100. We also observe the same type of behavior in the width of the
confidence bounds for σ̂b. The reduction in the width of the confidence bounds for σ̂b is much
smaller as N is increased from 50 to 75 and 75 to 100 versus the decrease in width as N is
increased from 25 to 50. While a sampling size N of 25 appears to be too small, a sampling
size of 50 seems to be sufficient to obtain reasonably accurate estimates of the variability in
the growth rates.
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Figure 5: (Upper): Relative errors of µ̂b and σ̂b; (Lower): 95% confidence bounds for the
estimates corresponding to µ̂b and σ̂b with σscale = 0.9.

The final sets of results in Figure 5 were computed with σscale = 0.9. The average relative
errors for µ̂b and σ̂b depicted in the upper plots in Figure 5 reveal that the reliability of
both parameters is influenced by the sampling size and frequency. As the previous results
suggested, a sampling size of 25 is not adequate for the parameter estimation problem based
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on the magnitude of the average relative error for N = 25 in comparison to the average
relative errors obtained for N = 50, 75, and 100. We also note that the decrease in the
average relative error of σ̂b is not as large when N is increased from 50 up to 100 in comparison
to a much greater decrease when N is increased from 25 to 50. These results suggest that
there is not a significant improvement in the reliability of the parameter estimates when a
sampling size larger than 50 is used. We also observe from the lower plots in Figure 5 that
the effect of N on the width of the 95% confidence bounds of µ̂b and σ̂b decreases as Nt is
increased. As in the previous two cases considered, the width of the confidence bounds for
both parameters decreases the most when N is increased from 25 to 50 which also appears
to suggest that reliable estimates of (µb, σb) can be obtained with a sampling size N of 50.

Based on these simulations, we conclude that, not surprisingly, the sampling size N does
have an effect on the reliability of the results of the parameter estimation problem. When
the standard deviation σ0

b is small relative to the mean µ0
b , the effect on the accuracy of the

estimates µ̂b is minimal; however, this effect is more noticeable as the magnitude of σ0
b is

increased. The influence of the sampling size N is much more evident in the estimation of σb

for each of the values considered here. We also conclude that the results when sampling once
a week are comparable to those obtained when sampling twice a week. The most desirable
experiment involved using a sampling size N of 100 once a week; however, there appears to
be little loss in accuracy in estimating the variability in growth rates if one uses a sample size
N = 50. Finally, our computations suggest that experiments with a sampling size of only
N = 25 would not be adequate even when one increases the sampling frequency to twice a
week.

3.2 Effect of Sampling Size and Bin Size on Model Predictions
and Parameter Estimates

We also carried out numerical simulations with simulated data to investigate the effect of the
bin size ∆x in relation to the sampling size N on the parameter estimation results as well as
the model predictions. In this section we also compare the results from computations with
a fixed bin size versus variable bin sizes (fixed number of bins Nb) for a fixed sampling size
in the estimation problem. Since the “true” growth rate distribution of shrimp observed in
experiments is unknown, the accuracy of the parameter estimates is determined by how well
the model fits the data. The discussion of the results for the inverse problem with simulated
data in this section will emphasize the importance in choosing the appropriate bin size ∆x
with respect to the sampling size N in the inverse problem calculations.

In the first set of results we used a fixed ∆x with two different N values to illustrate the
significance of using the proper bin size relative to the sample size for accurate model pre-
dictions. Using simulated data generated with a truncated normal distribution with mean
µ0

b = 0.045 and standard deviation σ0
b = 0.5 · µ0

b = 0.0225, we obtained the following results
from the inverse problem with a fixed bin size ∆x of 0.01. Because of our earlier findings
discussed in the last section, we used a sampling size N of 50 with sampling frequency of once

12



a week for six weeks. Using our inverse problem techniques, we computed good parameter
estimates (µ̂b, σ̂b) with small relative errors (see Table 1) which suggests that the model does
a good job of fitting the data. However, the model does not provide good fits to the data as
time progresses based on the plots shown in Figure 6. The model appears to do a good job of
predicting the population data during the first two weeks but fails to predict the magnitudes
seen in the data during the final four weeks. It is clear from Figure 6 that the model performs
reasonably qualitatively; however, as a result of the quantitative comparisons of the model
predictions to the data, the model fits do not support any optimism based on the numerical
results in Table 1.

N µ̂b RE(µ̂b) σ̂b RE(σ̂b)
50 0.04817 0.07044 0.02400 0.06667

Table 1: Estimated mean and standard deviation (µ̂b, σ̂b) and relative errors for inverse
problem with simulated data with N = 50 and b ∼ N[0.001,0.2](0.0450, 0.02252) and ∆x = 0.01.

We then generated simulated data with a sampling size of 5000 and a truncated normal
distribution on the intrinsic growth rates with mean µ0

b = 0.045 and standard deviation
σ0

b = 0.0225. The estimated parameters along with the corresponding relative errors that
were computed with the fixed bin size ∆x = 0.01 are in Table 2.

N µ̂b RE(µ̂b) σ̂b RE(σ̂b)
5000 0.04495 0.00111 0.02253 0.00133

Table 2: Estimated mean and standard deviation (µ̂b, σ̂b) and relative errors for inverse
problem with simulated data with N = 5000 and b ∼ N[0.001,0.2](0.0450, 0.02252) and ∆x =
0.01.

Based on the small relative errors, we also conclude in this example that we have obtained
good estimates of the true parameters (µ0

b , σ
0
b ). Moreover, we assume that the model predic-

tions would fit the data very well. Figure 7 presents plots of the model predictions versus
the simulated data for six weeks with a sampling size of 5000. We see that the model does
a very good job both qualitatively and quantitatively. Unlike the previous example with
N = 50, the model provides good fits to the entire data set when N = 5000.

These results demonstrate the effect of the bin size relative to the sampling size N on the
accuracy of the model predictions. While the parameter estimates obtained for (µ0

b , σ
0
b ) with

both sampling sizes were good, the model predictions with a sample size of 50 were not
as accurate as those obtained with a sample size of 5000. As noted earlier, the accuracy
of (µ̂b, σ̂b) will depend on the model fits to data when experimental data is used since the
“true” underlying distribution of the growth rates is unknown and relative errors cannot be
computed. Therefore, using an appropriately chosen bin size ∆x is critical in the parameter
estimation problem with experimental data.
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Simulated Data
Estimated Pop. p(x,35;q*)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3
Simulated Data versus Model Predictions: N = 50

Size of Shrimp

F
re

qu
en

cy

 

 

Simulated Data
Estimated Pop. p(x,42;q*)

Figure 6: Simulated population data, snapshot zk
j , and model predicted population p(x, t; q∗)

with optimal parameter q∗ for t = 7, 14, 21, 28, 35, 42 days with sample size N = 50.
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Figure 7: Simulated population data, snapshot zk
j , and model predicted population p(x, t; q∗)

with optimal parameter q∗ for t = 7, 14, 21, 28, 35, 42 days with sample size N = 5000.
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To further investigate the effect of ∆x on the accuracy of the model predictions and parameter
estimates, we considered using a fixed bin size ∆x versus a fixed number Nb of bins (variable
bin size) in the parameter estimation problem with simulated data for a fixed sampling
size. A sampling size N of 50 with a sampling frequency of once a week for six weeks was
used in the following results. The simulated data was generated with a truncated normal
distribution with mean µ0

b = 0.045 and standard deviation σ0
b = 0.0225. Using the same data

set, we computed results with a fixed bin size ∆x = 0.01 and with a fixed number Nb = 10
of bins. The bin size for each time point when a fixed number of bins is used is given by

∆x(tk) =
x̄(tk)− x(tk)

Nb

,

where x̄(tk) is the largest size sampled at time tk and x(tk) is the smallest size sampled at
time tk. The parameter estimates (µ̂b, σ̂b) along with the relative errors for both scenarios
are given in Table 3. While we obtain comparable estimates of the mean µ0

b , we note that
the estimated standard deviation σ̂b is better when using a fixed number of bins versus a
fixed bin size. We observe from the model predictions versus the data in Figure 8 that as
time evolves the model is not able to predict the peaks present in the data when the fixed
bin size ∆x = 0.01 is used. However, the model predictions obtained with the fixed number
Nb = 10 of bins (varying bin size) are more accurate as seen in Figure 9. The model does a
much better job of fitting the data when a fixed number of bins are used versus a fixed bin
size. We infer from the results shown in Figure 8 that the fixed bin size ∆x = 0.01 is too
small; this leads to the increased number of size classes with a frequency equal to one seen
in the simulated data. This is not the case with the fixed number Nb = 10 of bins.

µ̂b RE(µ̂b) σ̂b RE(σ̂b)
∆x = 0.01 0.04471 0.00644 0.01965 0.12667
Nb = 10 0.04485 0.00333 0.02146 0.04622

Table 3: Estimated mean and standard deviation (µ̂b, σ̂b) and relative errors for inverse
problem with simulated data with b ∼ N[0.001,0.2](0.045, 0.02252).

Similar results were obtained when we repeated the inverse problem calculations 500 times.
Using a fixed bin size that is too small results in model predictions that are not very accurate
during the early growth process of the shrimp when the sampling size N is relatively small.
Although the plots in Figure 9 demonstrate the benefits of fixing the number of bins, one
must still be careful when selecting the number of bins to use in computations because
choosing a value that is too small or too large can bias the data as well and affect the
model predictions. Furthermore, we also found that a larger fixed bin size ∆x can result in
better model predictions. The results shown here demonstrate the importance in using the
appropriate number Nb of bins or bin size ∆x in ratio to the sampling size N to obtain good
model fits and parameter estimates in inverse problem calculations.

The simulated inverse problem investigations discussed in this and the previous section are
not only helpful in designing experiments by suggesting sample size and frequency, but they
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Simulated Data
Estimated Pop. p(x,35;q*)
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Figure 8: Simulated population data, snapshot zk
j , and model predicted population p(x, t; q∗)

with optimal parameter q∗ for t = 7, 14, 21, 28, 35, 42 days with fixed bin size ∆x = 0.01.
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Figure 9: Simulated population data, snapshot zk
j , and model predicted population p(x, t; q∗)

with optimal parameter q∗ for t = 7, 14, 21, 28, 35, 42 days with fixed number of bins Nb = 10.
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also suggest the importance of careful inverse problem formulation once experimental data is
obtained. In particular, the manner in which a given data set is used in the inverse problem
formulation can be very important in determining the quality of estimates obtained.

4 Computational Results for Parameter Estimation Prob-

lem with Experimental Data

Based on the design calculations discussed in Section 3, experiments were carried out in
controlled environment tanks at ABN. In this section, we present the results of the inverse
problem for the estimation of the growth rate distribution of a size-structured shrimp popu-
lation using this data. Data were collected during the early growth of shrimp initially in the
post-larval stage. Shrimp were randomly sampled from a fixed population growing under
relatively constant tank conditions (density, temperature, feeding, etc.) and fifty shrimp
were measured weekly from December 4 through December 31, 2007, resulting in a data set
with five longitudinal size distribution observations. As noted earlier, we must compare the
experimental data to the estimated population data generated by using the optimal param-
eter q∗ in (3.3) since the actual growth rate distribution of the shrimp observed is unknown.
The following results were obtained via computations carried out in MATLAB with bin size
and intrinsic growth bounds ∆x = 0.02, b = 10−6, b̄ = 10−1 in the context of truncated
normal distributions as described in the simulation studies of Section 3.

Before presenting the results, we briefly discuss how we obtain confidence intervals for the
parameter estimates based on the asymptotic distribution of ordinary least squares (OLS)
estimators for finite dimensional parameters [20, 21, 24, 31]. We assume the following sta-
tistical model describes the observations

Yj = Y (τj) = f(τj; θ0) + εj, j = 1, . . . , n, (4.1)

where f(τj; θ0) represents the observed mathematical model response (3.3), τj represents
(x, t) pairs, and θ0 ∈ Θ ⊂ R2 represents the “true” parameter value (unknown but assumed
to exist in the usual statistical framework we employ here). We note that for our examples
θ0 ≈ θ = q = (µb, σb). The εj are also assumed to be independent identically distributed
(i.i.d.) random variables with E[εj] = 0 and V ar[εj] = σ2

0, where σ2
0 > 0 is unknown. We

note that the observations Yj are also random variables with mean E[Yj] = f(τj; θ0) and
variance σ2

0. The OLS estimator θOLS(Y ) used in the inverse problem for the estimation of
θ is given by

θOLS(Y ) ≡ arg min
θ∈Θ

n∑
j=1

(Yj − f(τj; θ))
2. (4.2)

Because the observations Yj are random variables, then the OLS estimator θOLS(Y ) is also
a random variable, and as n → ∞, the sampling distribution for θOLS(Y ) can be approx-
imated by a multivariate normal distribution with mean E[θOLS(Y )] ≈ θ0 and covariance
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V ar[θOLS(Y )] ≈ Σn
0 ≈ σ2

0[X T (θ0)X (θ0)]
−1. The n× 2 sensitivity matrix X (θ) has entries

Xjk(θ) =
∂f(τj; θ)

∂θk

where θ = q = (µb, σb). Since θ0 and σ2
0 are generally unknown, we must use estimates for

these parameters in order to approximate the covariance matrix Σn
0 . The estimate for θ0 is

determined by using a particular realization or data set {yj} to find the OLS estimates θ̂
that minimize

J(θ) =
n∑

j=1

(yj − f(τj; θ))
2.

The estimate for σ2
0 is given by

σ2
0 ≈ σ̂2 =

1

n− 2

n∑
j=1

(
yj − f(τj; θ̂)

)2

.

Using the estimates θ̂ and σ̂2, we can find an estimate of the covariance matrix Σn
0 by

computing Σn
0 ≈ Σ̂ = σ̂2[X T (θ̂)X (θ̂)]−1. The endpoints of the confidence intervals based on

the standard errors are
θ̂k ± t1−α/2SE(θ̂k), k = 1, 2,

where the standard errors are given by

SE(θ̂k) =

√
Σ̂kk, k = 1, 2.

Here t1−α/2 is computed from the Student’s t-distribution and depends on the level of sig-
nificance chosen [18]. We can use the confidence intervals to quantify the uncertainty in the
estimates of the finite-dimensional parameter θ obtained from the OLS estimator for a given
data set.

For the application considered here, we note that we are able to compute the entries of the
sensitivity matrix explicitly. Since

f(τj; θ0) ≈ p(τj; θ),

the entries in the sensitivity matrix X (θ) are given by

Xjk(θ) =
∂f(τj; θ)

∂θk

=
∂

∂θk

p(τj; θ)

= ∆x

∫ b̄

b

v(τj; b)
∂ϕ(b; θ)

∂θk

db,

where θ = q = (µb, σb) and ϕ(b; θ) is the probability density function (pdf) for the truncated
normal distribution. We chose to use α = 0.05 which corresponds to a significance level of
95% and a t1−α/2-value of approximately 1.96 when n is greater than or equal to 30.
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4.1 Results with Complete December Data Set

In the first set of results we considered the entire data set collected in December, and we
began by fitting the exponential function

x̄(t) = a exp(bt)− c (4.3)

to the data {(tk, x̄k
d)} where a, b, and c are all unknown parameters and x̄k

d is the average
size of shrimp observed at time tk. This exponential function was determined by solving the
deterministic growth rate function of the form

dx

dt
= b(x + c), (4.4)

where b and c are assumed to be fixed constants. The optimal parameters corresponding to
the fit with (4.3) shown in Figure 10 are â = 0.049, b̂ = 0.043 and ĉ = 0.036.
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Data
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Figure 10: Exponential fit of (4.3) to complete ABN average size shrimp data set with
dx̄

dt
= 0.043(x̄ + 0.036).

We then used the optimal value ĉ in our inverse problem calculations for the estimation of
(µb, σb) with the entire December 2007 data. The data from December 4, 2007 (see Figure 11)
is interpolated and used as an approximation for the initial size density v0(x; g). Therefore,
it cannot be used in the estimation of the growth rate distribution, and we are left with four
longitudinal data records to use in the inverse problem.

The estimated parameters (µ̂b, σ̂b) along with the confidence intervals for each of these pa-
rameters are given in Table 4. These results have an optimal cost J(q∗) of 574.8315, and
the estimated variance of the statistical model is σ̂2 = 17.4191. We observe from the plots
in Figure 11 that the model predictions do not fit the data well. The model does a decent
job of fitting the data on December 11 but is shifted to the left of the observations for the
final three time points. Moreover, the estimates (µ̂b, σ̂b) are not very reliable based on the
magnitude of the associated confidence intervals relative to the estimated parameter values.
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µ̂b 0.0010± 0.0535 σ̂b 0.0324± 0.0313

Table 4: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
complete December data set using ĉ = 0.036 from exponential fit of (4.3) to average size
shrimp data.
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Figure 11: Longitudinal data on shrimp weight (in grams) from ABN on December 4, 11, 18,
24, and 31 versus model predicted population density p(x, t; q∗) with q∗ = (0.0010, 0.0324)
and ĉ = 0.036 from exponential fit of (4.3) to average size shrimp data.
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In [11] the authors outline and compare the two previously mentioned approaches (a proba-
bilistic formulation corresponding to the Growth Rate Distribution model versus a stochas-
tic formulation corresponding to the Fokker-Planck model) for modeling variability in the
growth process of size-structured populations. As established in [11], the population density
from these two approaches is the same when comparable levels of uncertainty are used in
both formulations. Hence, we chose to use the computationally “easier” GRD model (2.3)
for our purposes. The shortcomings of the deterministic growth model (4.4) in modeling
populations exhibiting a great deal of variability was also discussed in [11] with several dif-
ferent approaches for including uncertainty in the growth process also being described. One
such approach (the one taken in this paper) is based on considering the probabilistic growth
model

dx(t; b)

dt
= b(x(t; b) + c), b ∈ B, (4.5)

where a distribution is placed on the intrinsic growth rates taking values in B and c is assumed
to be a fixed affine growth term. If a normal distribution with mean µb and variance σ2

b is
used to describe the distribution of the intrinsic growth rates, then the exponential function
corresponding to probabilistic growth model (4.5) is given by

x(t; b) = (x(0; b) + c) exp(bt)− c, (4.6)

where b ∼ N (µb, σ
2
b ). Moreover, it was shown that the probabilistic growth model results in

the following exponential function for the mean of the stochastic process for the size of the
individuals

x̄(t) = (x̄(0) + c) exp{µbt +
1

2
σ2

b t
2} − c (4.7)

which corresponds to the time-varying mean growth dynamics

dx̄(t)

dt
= (µb + σ2

b t)(x̄(t) + c). (4.8)

As an alternative to the deterministic form (4.4), we also chose to fit the average size shrimp
data {(tk, x̄k

d)} with (4.7) where µb, σb, and c are the parameters to be estimated and x̄(0)
is the average size shrimp data for the initial start time. The fit using the time varying
intrinsic growth rate, shown in Figure 12, was generated with the estimated parameters
µ̂b = 0.045, σ̂b = 0.003 and ĉ = 0.029.

The data from December 4 was again used as an approximation for the initial size den-
sity v0(x; g) in these computations. We used the estimated values of µ̂b and σ̂b from the
exponential fit to the average size shrimp data as initial starting points for the optimiza-
tion calculations to determine the growth rate distribution of the shrimp population. The
optimal value of c was also used in our inverse problem calculations for the growth rate dis-
tribution parameters. The optimal cost corresponding to the optimized parameters in Table
5 is 563.9064. We computed a value of 17.0881 for the estimate of the variance σ2

0 of the
statistical model. The results in this case are very similar to those in the previous case as
can be seen by the model fits to data shown in Figure 13. We observe the same behavior in
the model predictions versus the observations in the final three time points with the model
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Figure 12: Exponential fit of (4.7) to complete ABN average size shrimp data with
dx̄

dt
=

(0.045 + 0.0032t)(x̄ + 0.029).

predictions being shifted to the left of the data. The width of the confidence intervals for
the estimates (µ̂b, σ̂b) also demonstrate how unreliable these parameter values are as well.

µ̂b 0.0018± 0.0627 σ̂b 0.0363± 0.0377

Table 5: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
complete December data set using ĉ = 0.029 from exponential fit of (4.7) to average size
shrimp data.

It is clear from the results in this section that the model does not provide a good fit to
the entire data set from December. While the model predictions do exhibit the lognormal
behavior characteristic of the observations, the model does a poor job of fitting the data
quantitatively. The exponential fits to the average size shrimp data in Figures 10 and 12
suggest that the problem in fitting the data could potentially be a result of the data sampled
on December 11. The average size shrimp data point for December 11 lies the farthest away
from the exponential curves produced by (4.3) and (4.7). Therefore, we reconsidered the
inverse problem for the estimation of the growth rate distribution for the shrimp population
with the data from December 4, 18, 24 and 31 in an effort to obtain better parameter
estimates and model fits to the data.
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Figure 13: Longitudinal data on shrimp weight (in grams) from ABN on December 4, 11, 18,
24, and 31 versus model predicted population density p(x, t; q∗) with q∗ = (0.0018, 0.0363)
and ĉ = 0.029 from exponential fit of (4.7) to average size shrimp data.
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4.2 Results Excluding December 11 Data

In an attempt to provide better fits to the shrimp population data, we excluded the data
from December 11 in the parameter estimation problem for the growth rate distribution.
The exponential function (4.3) generated by the deterministic growth model was used to fit
the average size shrimp data for December 4, 18, 24, and 31. The estimated parameters
generating the solid line shown in Figure 14 are â = 0.043, b̂ = 0.046 and ĉ = 0.026. We
note from Figure 14 that (4.3) provides a good fit to the average size shrimp data excluding
the point for December 11.
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Figure 14: Exponential fit of (4.3) to ABN average size shrimp data excluding December 11

with
dx̄

dt
= 0.046(x̄ + 0.026).

Given the optimal value of c from the exponential fitting to averaged data, we carried out the
inverse problem calculations for the mean µb and standard deviation σb of the truncated nor-
mal distribution. We also interpolated the December 4 data and used it as an approximation
to the initial size density v0(x; g) in (2.1). Since we excluded the data from December 11,
only the three data sets from December 18, 24, and 31 are used in estimating the growth rate
distribution parameters. We obtained an optimal cost of 87.4619 and an estimated variance
σ̂2 of 3.1236 for these computations which are much smaller than the values computed in
the previous calculations in Section 4.1. The estimated parameters (µ̂b, σ̂b) are in Table 6
along with the corresponding 95% confidence intervals.

µ̂b 0.0369± 0.0027 σ̂b 0.0159± 0.0030

Table 6: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 11 using ĉ = 0.026 from exponential fit of (4.3) to average
size shrimp data.

The widths of the confidence intervals for both parameters are much smaller in comparison
to those computed when the entire data set is considered. We are more confident about
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the estimates obtained in this case based on the relatively small confidence intervals. We
were able to use the confidence intervals corresponding to the estimated mean and standard
deviation of the truncated normal distribution to construct a confidence band or confidence
region for the estimated probability distribution on the growth rates using techniques dis-
cussed in [9]. These results are shown in Figure 15 with the estimated probability density
and confidence region on the left and the estimated probability distribution and confidence
band on the right. The confidence band gives us a measure of the uncertainty associated
with the infinite-dimensional parameter (probability distribution) that is of most interest in
this application. Due to the width of this confidence band, we are fairly confident about the
reliability of the estimated probability distribution.
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Figure 15: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 11 using
ĉ = 0.026 from exponential fit of (4.3) to average size shrimp data.

Moreover, we note from the model predictions versus the data in Figure 16 that the model
does a much better job of fitting the data on December 18, 24, and 31 when the data from
December 11 is excluded. The model overall does a good job of predicting the key features
of the size distribution for these three weeks.

We also used (4.7) corresponding to the probabilistic growth model (4.5) to fit the average
size shrimp data with the data from December 11 excluded. The exponential fit shown in
Figure 17 corresponds to the optimal parameters µ̂b = 0.046, σ̂b = 0.001 and ĉ = 0.027.
The estimated parameter values for µb and c in this case are very close to the estimated
parameter values of b and c when (4.3) was used to fit the data. We see that (4.7) also
provides a good fit to the average size shrimp data in the absence of the December 11 data
point.

The estimates for (µb, σb) for the truncated normal distribution were obtained from the
inverse problem calculations with the optimal value of c. The parameter estimates (µ̂b, σ̂b) are
relatively close to the previously estimated parameters in Table 6, and in fact, the confidence
intervals in Table 7 have the same width (centered differently) as those in Table 6.
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Figure 16: Longitudinal data on shrimp weight (in grams) from ABN on December 4, 18,
24, and 31 versus model predicted population density p(x, t; q∗) with q∗ = (0.0369, 0.0159)
and ĉ = 0.026 from exponential fit of (4.3) to average size shrimp data.
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Figure 17: Exponential fit of (4.7) to ABN average size shrimp data excluding December 11

with
dx̄

dt
= (0.046 + 0.0012t)(x̄ + 0.027).
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µ̂b 0.0360± 0.0027 σ̂b 0.0158± 0.0030

Table 7: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 11 using ĉ = 0.027 from exponential fit of (4.7) to average
size shrimp data.

We computed an optimal cost for these results of 88.0090 and an estimated variance σ̂2 =
3.1432, which are also very close to the values in the previous case in this subsection. These
results also support our previous assertions. The estimated parameters obtained by excluding
the data from December 11 are much more reliable than those obtained when the entire data
set from December is used in the parameter estimation problem. The small width observed
in the confidence band associated with the estimated probability distribution in Figure 18
validate our claims as well.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35
Estimated Probability Density with Confidence Region 

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

Estimated
p

+

p
−

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Estimated Probability Distribution with Confidence Band 

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n

 

 

Estimated
PM

+

PM
−

Figure 18: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 11 using
ĉ = 0.027 from exponential fit of (4.7) to average size shrimp data.

In Figure 19 we see similar results to those shown in Figure 16 with there being a very
small difference in the model predictions on December 18. As previously remarked, the
model does a very good job of fitting the data for December 18, 24, and 31 when the data
from December 11 is excluded from the inverse problem calculations. The model predictions
exhibit the lognormal behavior seen in the observations and provide reasonably accurate
quantitative fits to the data.

While we were able to obtain reliable parameter estimates and good model predictions by
excluding the data from December 11, we also chose to investigate the effects of the initial
data in this problem by excluding the data from December 4 and using the data from
December 11 as an approximation to the initial size density v0(x; g). The results in this
section suggest that perhaps there was a change in the environmental conditions, such as
feeding or temperature, which affected the growth of the shrimp. However, the poor model
fits in Section 4.1 where the entire data set from December is considered could also be
the result of using unreliable initial conditions. Therefore, we reconsidered the parameter
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Figure 19: Longitudinal data on shrimp weight (in grams) from ABN on December 4, 18,
24, and 31 versus model predicted population density p(x, t; q∗) with q∗ = (0.0360, 0.0158)
and ĉ = 0.027 from exponential fit of (4.7) to average size shrimp data.

estimation problem for the growth rate distribution with the data collected on December 11,
18, 24, and 31, and the results follow in the next section.

4.3 Results Excluding December 4 Data

We now present results for the inverse problem for the growth rate distribution of the size-
structured shrimp population considering the data from December 11 - 31 in order to de-
termine if using the interpolated December 11 data as an approximation for v0(x; g) will
result in better model predictions. Under the assumption of the deterministic growth model
(4.4), Equation (4.3) was used to fit the average size shrimp data excluding the data point
for December 4. The exponential function in (4.3) with the optimal parameter values of
â = 0.058, b̂ = 0.047, ĉ = 0.028 fits the average size shrimp data well as shown in Figure 20.

The inverse problem for (µb, σb) was performed with the optimal value of c computed from
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Figure 20: Exponential fit of (4.3) to ABN average size shrimp data excluding December 4

with
dx̄

dt
= 0.047(x̄ + 0.028).

the exponential fitting to the average size shrimp data. As already noted, we interpolated
the data from December 11 and used it as an approximation to the initial size density. We
were left with the final three data sets from December 18, 24, and 31 for the parameter
estimation problem. The optimal parameter values for the mean and standard deviation
of the truncated normal distribution along with the computed confidence intervals are in
Table 8. We note that the optimal cost J(q∗) = 121.4561 and the estimated variance of
the statistical model σ̂2 = 4.3377. Although these values are larger than the values obtained
when the data from December 4 was used as an approximation to the initial condition, the
results are still significantly better than those obtained with the entire data set.

µ̂b 0.0441± 0.0077 σ̂b 0.0294± 0.0123

Table 8: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 4 using ĉ = 0.028 from exponential fit of (4.3) to average
size shrimp data.

We also observe slightly larger confidence intervals corresponding to the estimated param-
eters µ̂b and σ̂b. These larger confidence intervals result in the larger confidence band for
the estimated probability distribution in Figure 21. Thus, there is more uncertainty in the
estimates obtained in this case in comparison to the estimates obtained when the data from
December 11 was excluded in Section 4.2. We are more confident about the reliability of the
estimates obtained for (µb, σb) in Section 4.2 based on the smaller width of the confidence
intervals and bands.

Although the optimal cost was slightly larger in this case, the model predictions shown in
Figure 22 are similar to those in Section 4.2. The model still does a good job of predicting
the key features of the shrimp population data when the data from December 11 is used
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Figure 21: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 4 using
ĉ = 0.028 from exponential fit of (4.3) to average size shrimp data.
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Figure 22: Longitudinal data on shrimp weight (in grams) from ABN on December 11, 18,
24, and 31 versus model predicted population density p(x, t; q∗) with q∗ = (0.0441, 0.0294)
and ĉ = 0.028 from exponential fit of (4.3) to average size shrimp data.
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versus the data from December 4. It appears that using the December 11 data instead of
the December 4 data does not result in discernable improvements in the model fits to data.

In our final set of computations, we fit the average size shrimp data with the data point
from December 4 excluded with (4.7) taking into account the probabilistic nature of b.
There is some noticeable difference in the estimated parameter values µ̂b = 0.038, σ̂b =
0.003, ĉ = 0.059 determined to give the best fit shown in Figure 23. However, we note that
the exponential fit in Figure 23 is comparable to that shown in Figure 20.
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Figure 23: Exponential fit of (4.7) to ABN average size shrimp data excluding December 4

with
dx̄

dt
= (0.038 + 0.0032t)(x̄ + 0.059).

The results of the inverse problem calculations for the mean µb and standard deviation σb

of the truncated normal distribution are in Table 9 along with the confidence intervals. We
computed an optimal cost of 106.6413 and an estimated variance σ̂2 of 3.8086 which are
slightly better than the previous results in this section. We point out that the confidence
intervals for the estimated mean in Table 9 do not intersect with those in Table 8, but
the confidence intervals for σ̂b do intersect. However, we still infer from the results shown
here that the parameter estimates obtained in absence of the data from December 4 are
not as reliable as those obtained in the previous section where the data from December 11
was omitted. The confidence band associated with the estimated probability distribution in
Figure 24 also suggests that we are not as confident about the reliability of this estimated
probability distribution in comparison to the estimates presented in Section 4.2.

µ̂b 0.0289± 0.0051 σ̂b 0.0215± 0.0065

Table 9: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 4 using ĉ = 0.059 from exponential fit of (4.7) to average
size shrimp data.

The model predictions in Figure 25 are very similar to the previous results. We observe
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Figure 24: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 4 using
ĉ = 0.059 from exponential fit of (4.7) to average size shrimp data.
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Figure 25: Longitudinal data on shrimp weight (in grams) from ABN on December 11, 18,
24, and 31 versus model predicted population density p(x, t; q∗) with q∗ = (0.0289, 0.0215)
and ĉ = 0.059 from exponential fit of (4.7) to average size shrimp data.
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nice model fits to the data which validates the model’s ability to accurately describe the
growth dynamics of the shrimp. The results presented in this section suggest that there were
perhaps some changes in the environmental conditions between December 4 and December
11 which resulted in very poor model predictions when the entire data set was used in
the parameter estimation problem. Although we were able to use the data from December
11 as an approximation to the initial size density to compute good fits to the data, the
best numerical and statistical results were obtained when the data from December 11 was
excluded from the inverse problem calculations. These results are illustrative of the types of
issues that can be addressed with mathematical and statistical inverse problem ideas when
using models to describe specific applications.

5 Concluding Remarks

In this paper we have presented a computational methodology based on statistical and math-
ematical estimation and inverse problem techniques. This methodology can be used to design
experiments that can provide data adequate to reliably estimate parameters in partial differ-
ential equation models for growth rates in populations. We presented this in the context of
a Growth Rate Distribution (GRD) model for size-structured shrimp populations whose size
distribution data exhibited a great deal of variability. We then detailed the computational
methodology that proved to be useful in designing experiments that were carried out at ABN
to validate the GRD model. We were able to determine the sampling size and frequency suf-
ficient for reliable estimates of the variability in the growth rates of size-structured shrimp
populations. Using our inverse problem methodology, we were able to successfully estimate
the growth rate distribution from experimental data (from experiments based on our design
calculations) collected during the early growth process of shrimp populations at ABN. The
results presented in this paper demonstrate how the GRD model can be used to gain insight
into the growth processes of shrimp. Moreover, although the mathematical and statistical
methodologies were presented in the context of size-structured shrimp populations, this ap-
proach and these ideas can easily be extended to other problems in which one wishes to
design and use experimental data in model investigation and validation.
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