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Experimental Design for Sensitivity Analysis, Optimization, and Validation of
Simulation Models

Jack P.C. Kleijnen, Department of Information Systems and Auditing (BIKA)/Center for
Economic Research (CentER), Tilburg University (KUB), 5000 LE Tilburg, Netherlands
e-mail: kleijnen@kub.nl; fax: +3113-663377;
Web: http://cwis.kub.nl/~few5/center/STAFF/kleijnen/cv.htm)

Abstract

This chapter gives a survey on the use of statistical designs for what-if analysis in simula-
tion, including sensitivity analysis, optimization, and validation/verification. Sensitivity
analysis is divided into two phases. The first phase is a pilot stage, which consists of
screening or searching for the important factors among (say) hundreds of potentially
important factors. A novel screening technique is presented, namely sequential bifurcation.
The second phase uses regression analysis to approximate the input/output transformation
that is implied by the simulation model; the resulting regression model is also known as a
metamodel or a response surface. Regression analysis gives better results when the simu-
lation experiment is well designed, using either classical statistical designs (such as frac-
tional factorials) or optimal designs (such as pioneered by Fedorov, Kiefer, and Wolfo-
witz). To optimize the simulated system, the analysts may apply Response Surface Metho-
dology (RSM); RSM combines regression analysis, statistical designs, and steepest-ascent
hill-climbing. To validate a simulation model, again regression analysis and statistical
designs may be applied. Several numerical examples and case-studies illustrate how statisti-
cal techniques can reduce the ad hoc character of simulation; that is, these statistical
techniques can make simulation studies give more general results, in less time. Appendix 1
summarizes confidence intervals for expected values, proportions, and quantiles, in termi-
nating and steady-state simulations. Appendix 2 gives details on four variance reduction
techniques, namely common pseudorandom numbers, antithetic numbers, control variates
or regression sampling, and importance sampling. Appendix 3 describes jackknifing, which
may give robust confidence intervals.

Keywords

least squares, distribution-free, non-parametric, stopping rule, run-length, Von Neumann,
median, seed, likelihood ratio

1. Introduction

This chapter gives a survey of 'Design Of Experiments' or 'DOE' (which includes designs
such as 2 designs) applied to simulation. The related term 'experimental design' mayk - p

suggest that this subdiscipline is still experimental, but it is not: see early publications such
as Plackett and Burman (1946). DOE is a subdiscipline within mathematical statistics. This
chapter is a tutorial that discusses not only methodology, but also applications. These
applications come from the author's own experience as a consultant, and from publications
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by others in the USA and Europe. The reader is assumed to have a basic knowledge of
mathematical statistics and simulation.

The Introduction will address the questions: what is DOE, and why is DOE needed?
These questions can be illustrated through the following two case studies.

The first case concerns an ecological study that uses a deterministic simulation
model (consisting of a set of non-linear difference equations) with 281 parameters. The
ecological experts are interested in the effects of these parameters on the response, namely,
future carbon-dioxide or CO concentration; CO is the major cause of the greenhouse ef-2 2

fect. The pilot phase of this study aims at screening: which factors among the many poten-
tially important factors are really important? Details will be given in §2 (on screening).

The second case study concerns a Decision Support System (DSS) for production
planning in a specific Dutch steel tube factory. The DSS and the factory are modeled
through a stochastic, discrete-event simulation (stochastic or random simulations have a
special variable, namely the pseudorandom number seed). The DSS is to be optimized.
This DSS has fourteen input or decision variables; there are two response variables,
namely, productive hours and lead time. Simulation of one combination of these fourteen
inputs takes six hours on the computer available at that time, so searching for the optimal
combination must be performed with care. Details will be given in §5 (on RSM).

Decision-making is an important use of simulation. In particular, factor screening
and optimization concern that topic. Note that closely related to optimization is goal
seeking: given a target value for the response variable, find the corresponding input values;
the regression metamodel of this chapter can be used to find these desired input values.
Much of this chapter is about the use of simulation to improve decision-making. This will
be demonstrated by several case studies; more case studies -especially in manufacturing-
are reviewed in Yu and Popplewell (1994).

It is convenient to introduce now some DOE terminology, defined in a simulation
context. A factor is a parameter, an input variable, or a module of a simulation model (or
simulation computer program). Examples of parameters and input variables have already
been given in the preceding discussion of two case studies. Other examples are provided by
classic queueing simulations: a parameter may be a customer arrival rate or a service rate;
an input variable may be the number of parallel servers; a module may be the submodel for
the priority rules (First-In-First-Out or FIFO, Shortest-Processing-Time or SPT, and so
on).

By definition, factors are changed during an experiment: they are not kept constant
during the whole experiment. Hence a factor takes at least two levels or 'values' during the
experiment. The factor may be qualitative, as the priority rules exemplified. A detailed
discussion of qualitative factors and various measurement scales is given in Kleijnen (1987,
pp. 138-142).

The central problem in DOE is the astronomically great number of combinations of
factor levels. For example, in the ecological case study at least 2 (> 10 ) combinations281 84

may be distinguished; a queueing network also has many factors. DOE can be defined as
selecting the combinations of factor levels that will be actually simulated in an experiment
with the simulation model.

After this selection of factor combinations, the simulation program is executed or
'run' for these combinations. Next DOE analyzes the resulting input/output (I/O) data of
the experiment, to derive conclusions about the importance of the factors. In simulation



3

this is also known as what-if analysis: what happens if the analysts change parameters,
input variables or modules of the simulation model? This question is closely related to
sensitivity analysis, optimization, and validation/verification, as this chapter will show in
detail.

Unfortunately, the vast literature on simulation does not provide a standard defini-
tion of sensitivity analysis. In this chapter, sensitivity analysis is interpreted as the system-
atic investigation of the reaction of the simulation responses to extreme values of the mod-
el's input or to drastic changes in the model's structure. For example, what happens to the
customers' mean waiting time when their arrival rate doubles; what happens if the priority
rule changes from FIFO to SPT? So this chapter does not focus on marginal changes or
perturbations in the input values.

For this what-if analysis, DOE uses regression analysis, also known as Analysis Of
Variance or ANOVA. This analysis is based on a metamodel, which is defined as a model
of the underlying simulation model; see Kleijnen (1975b), Friedman (1996). In other
words, a metamodel is an approximation of the simulation program's I/O transformation; it
is also called a response surface. Typically, this regression metamodel belongs to one of
the following three classes: (i) a first-order polynomial, which consists of main effects
only, besides an overall or grand mean; (ii) a first-order polynomial augmented with
interactions between pairs of factors (two-factor interactions); (iii) a second-order polyno-
mial, which also includes purely quadratic effects; also see equation (1) in §3.2.

Most simulation models have multiple outputs, also called responses or criteria. For
example, outputs may be both customer�s queueing time and server�s idle time, or both
mean and 90% quantile of the waiting time. In practice, multiple outputs are handled
through the application of the techniques of this chapter per output type. (Ideally, however,
such simulations should be studied through multi-variate regression analysis, and the design
should also account for the presence of multiple outputs; see Khuri (1996), Kleijnen
(1987).) Simultaneous inference may be taken care of through Bonferroni's inequality; see
appendix 1. Optimization in the presence of multiple responses will be discussed in §5.
Optimization accounting for both the mean and the variance of the response is the focus of
Taguchi�s methods; see Ramberg et al. (1991). Note that the term 'multiple regression
analysis� refers -not to the number of outputs- but to the presence of multiple inputs -or
better- multiple independent variables; also see the definition of z below (4) in §3.2.

A metamodel treats the simulation model as a black box: the simulation model's
inputs and outputs are observed, and the factor effects in the metamodel are estimated. This
approach has the following advantages and disadvantages.

An advantage is that DOE can be applied to all simulation models, either determin-
istic or stochastic. Further, DOE gives better estimates of the factor effects than does the
intuitive approach often followed in practice, namely the one-factor-at-a-time approach,
which will be discussed in §4.2 (on resolution-3 designs).

A drawback is that DOE cannot take advantage of the specific structure of a given
simulation model, so it takes more simulation runs than do perturbation analysis and mod-
ern importance sampling, also known as likelihood ratio or score function. These alterna-
tive methods usually require a single run (by definition, a simulation run is a single time
path with fixed values for all its inputs and parameters). Such a run, however, may be
much longer than a run in DOE. Moreover, these alternatives require more mathematical
sophistication, and they must satisfy more mathematical assumptions. Importance sampling
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as a variance reduction technique (not a what-if technique) will be discussed in §3.3 and
Appendix 2. There is much literature on these alternative methods: see Chapter 9 (by
Andradottir) of this handbook, and also Ho and Cao (1991), Glynn and Iglehart (1989),
Kleijnen and Rubinstein (1995), and Rubinstein and Shapiro (1993).

DOE may be used not only for sensitivity analysis and optimization, but also for
validation. This chapter will address only part of the validation and verification problem
(see §6). A detailed discussion of validation and verification can be found in Chapter 10
(by Balci) of this handbook.

In summary, this chapter discusses DOE as a method for answering what-if
questions in simulation. It is not surprising that DOE is important in simulation: by defini-
tion, simulation means that a model is used, not for mathematical analysis or numerical
methods, but for experimentation. But experimentation requires a good design and a good
analysis!

DOE with its concomitant regression analysis is a standard topic in statistics. How-
ever, the standard statistical techniques must be adapted such that they account for the
peculiarities of simulation:
(i) There are a great many factors in many practical simulation models. Indeed, the
ecological case study (mentioned above) has 281 factors, whereas standard DOE assumes
only up to (say) fifteen factors.
(ii) Stochastic simulation models use pseudorandom numbers, which means that the ana-
lysts have much more control over the noise in their experiments than the investigators
have in standard statistical applications. For example, common and antithetic seeds may be
used; see §3.5 and Appendix 2.
(iii) Randomization is of major concern in DOE outside simulation: assign the 'experimen-
tal units' (for example, patients) to the treatments (say, types of medication) in a random,
non-systematic way so as to avoid bias (healthy patients receive medication of type 1 only).
In simulation, however, this randomization problem disappears: pseudorandom number
streams take over.
(iv) Outside simulation the application of blocking is an important technique to reduce
systematic differences among experimental units; for example, tire wear differs among the
four positions on the car: left front, ..., right rear. In simulation, however, complete
control over the experiment eliminates the need for blocking. Yet, the blocking concept
may be used to assign common and antithetic pseudorandom numbers, applying the
Schruben-Margolin approach; see §3.5.

The main conclusions of this chapter will be:
(i) Screening may use a novel technique, called sequential bifurcation, that is simple, effi-
cient, and effective.
(ii) Regression metamodeling generalizes the results of a simulation experiment with a
small number of factors, since a regression metamodel estimates the I/O transformation
specified by the underlying simulation model.
(iii) Statistical designs give good estimators of main (first-order) effects, interactions
between factors, and quadratic effects; these designs require fewer simulation runs than
intuitive designs do.
(iv) Optimization may use RSM, which combines regression analysis and statistical designs
with steepest ascent; see (ii) and (iii).
(v) Validation may use regression analysis and statistical designs.
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(vi) These statistical techniques have already been applied many times in practical simula-
tion studies, in many domains; these techniques make simulation studies give more general
results, in less time.

The remainder of this chapter is organized as follows.
§2 discusses the screening phase of a simulation study. After an introduction (§2.1),

another subsection (§2.2) discusses a special screening technique, namely sequential
bifurcation.

§3 discusses how to approximate the I/O transformation of simulation models by
regression analysis. First it discusses graphical methods, namely scatter plots; see §3.1.
Next §3.2 presents regression analysis, which formalizes the graphical approach, including
Generalized Least Squares (GLS). Then §3.3 shows how to estimate the variances of
individual simulation responses, including means, proportions, and quantiles, in either
steady-state or transient state simulations. These estimates lead to Estimated GLS: see §3.4.
Variance reduction techniques (VRTs), such as common random numbers, complicate the
regression analysis; VRTs are discussed in §3.5. The estimated regression model may
inadequately approximate the underlying simulation model: §3.6 gives several lack of fit
tests. This section closes with a numerical example in §3.7 and a case study in §3.8.

§4 discusses statistical designs. After an introduction (§4.1), the focus is first on de-
signs that assume only main effects (§4.2). Then follow designs that give unbiased estima-
tors for the main effects, even if there are interactions between factors (§4.3). Further, this
section discusses designs that allow estimation of interactions between pairs of factors
(§4.4), interactions among any subset of factors (§4.5), and quadratic effects (§4.6). All
these designs are based on certain assumptions; how to satisfy these assumptions is
discussed in §4.7. 'Optimal' designs are discussed in §4.8. This section ends with a case-
study in §4.9.

§5 covers optimization of simulated systems. RSM is discussed in §5.1. Two case
studies are summarized in §5.2 and §5.3. §6 proceeds with the role of sensitivity analysis
in validation, emphasizing the effects of data availability. §7 gives a summary and conclu-
sions.

Three appendixes cover tactical issues, besides the strategic issues addressed by
DOE. Appendix 1 summarizes confidence intervals for expected values, proportions, and
quantiles, in terminating and steady-state simulations; also see Chapter 7 (by Alexopoulos
and Seila). This appendix makes this chapter self-sufficient. Appendix 2 gives more details
on VRTs, because VRTs are important when designing simulation experiments. This
appendix covers four VRTs, namely common pseudorandom numbers, antithetic numbers,
control variates or regression sampling, and importance sampling. Appendix 3 discusses
jackknifing, which is a general method that may reduce bias of estimated simulation re-
sponses and may give robust confidence intervals.

References conclude the chapter. Nearly one hundred references are given. To
reduce the number of references, only the most recent references for a topic are given,
unless a specific older reference is of great historical value.

2. Screening

2.1 Introduction
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In the pilot phase of a simulation study there are usually a great many potentially important
factors; for example, the ecological case study has 281 parameters. It is the mission of
science to come up with a short list of the most important factors: this is sometimes called
the principle of parsimony or Occam's razor.

Obviously a full factorial design requires an astronomically great number of factor
combinations: in the case study, at least 2 (> 10 ). Even a design with only as many281 84

combinations as there are factors (see resolution-3 designs in §4.2) may require too much
computer time. Therefore many practitioners often restrict their study to a few factors,
usually no more than fifteen. Those factors are selected through intuition, prior knowledge,
and the like. The factors that are ignored (kept constant), are -explicitly or implicitly- as-
sumed to be unimportant. For example, in queueing networks the analysts may assume
equal service rates for different servers. Of course, such an assumption severely restricts
the generality of the conclusions from the simulation study!

The statistics literature does include screening designs: random designs, supersatu-
rated designs, group screening designs, and so on; see Kleijnen (1987). Unfortunately, the
statistics literature pays too little attention to screening designs. The reason for this neglect
is that outside simulation it is virtually impossible to control hundreds of factors; (say)
fifteen is hard enough.

In simulation, however, models may have hundreds of parameters, and yet their
control is simple: specify which combinations of parameter values to simulate. Never-
theless, screening applications in simulation are still scarce, because most analysts are not
familiar with these designs. Recently, screening designs have been improved and new
variations have been developed; details are given in Bettonvil and Kleijnen (1997), Saltelli,
Andres, and Homma (1995). The next subsection covers a promising screening technique,
namely sequential bifurcation.

2.2 Sequential Bifurcation

Sequential bifurcation is a group-screening technique; that is, it uses aggregation (which is
often applied in science when studying complicated systems). Hence, at the start of the
simulation experiment, sequential bifurcation groups the individual factors into clusters. A
specific group is said to be at its 'high' level (denoted as + or on), if each of its compo-
nents or individual factors is at a level that gives a higher or equal response (not a lower
response). Analogously, a group is at its low level (- or off), if each component gives a
lower or equal response. To know with certainty that individual factor effects within a
group do not cancel out, sequential bifurcation must assume that the analysts know whether
a specific individual factor has a positive or negative effect on the simulation response; that
is, the factor effects have known signs. In practice this assumption may not be too restric-
tive. For example, in specific queueing simulations it may be known that increasing the
service rates while keeping all other factors constant (�ceteris paribus� assumption) de-
creases waiting time (but it is unknown how big this decrease is; therefore the analysts use
a simulation model). In the ecological case study the experts could indeed specify in which
direction a specific parameter affects the response (CO concentration). Moreover, if a few2

individual factors have unknown signs, then these factors can be investigated separately,
outside sequential bifurcation!
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Sequentialization means -by definition- that factor combinations to be simulated are
selected as the experimental results become available. So, as simulation runs are executed,
insight into factor effects is accumulated and used to select the next run. It is well known
that in general, sequentialization requires fewer observations; the price is a more cumber-
some analysis and data handling. Sequential bifurcation eliminates groups of factors as the
experiment proceeds, because the procedure concludes that these clusters contain no impor-
tant factors

Also, as the experiment proceeds, the groups become smaller. More specifically,
each group that seems to include one or more important factors, is split into two subgroups
of the same size: bifurcation. At the end of bifurcation, individual factor effects are
estimated.

As a numerical example, consider a simple academic example with 128 factors, of
which only three factors are important, namely the factors #68, #113, and #120. Let the
symbol y denote the simulation output when the factors 1, ..., h are switched on and the(h)

remaining factors (h + 1, ..., k) are off. Consequently, the sequence {y } is non-decreas-(h)

ing in h. The main effect of factor h is denoted by $ (also see (1) in §3.2). Let the symbolh

$ denote the sum of individual effects $ through $ with h' > h; for example, $h - h' h h' 1 - 128

denotes the sum of $ through $ ; see Figure 1, line 1.1 128

At the start (stage #0) of the procedure, sequential bifurcation always observes the
two "extreme" factor combinations, namely y (no factor high) and y (all factors high).(0) (k)

The presence of (three) important factors gives y < y . Hence sequential bifurcation(0) (128)

infers that the sum of all individual main effects is important: $ > 0. Sequential1-128

bifurcation works such that any important sum of effects leads to a new observation that
splits that sum into two sub-sums: see the symbol 9 in Figure 1. Because stage #0 gives
$ > 0, sequential bifurcation proceeds to the next stage.1-128

Stage #1 gives y . The analysis first compares y with y , and notices that these(64) (64) (0)

two outputs are equal (remember that only factors #68, #113, and #120 are important).
Hence the procedure concludes that the first 64 individual factors are unimportant! So after
only three simulation runs and based on the comparison of two runs, sequential bifurcation
eliminates all factors in the first half of the total group of 128 factors. Next, sequential
bifurcation compares y with y , and notices that these two outputs are not equal.(64) (128)

Hence the procedure concludes that the second subgroup of 64 factors is important; that is,
there is at least one important factor in the second half of the group of 128 factors.

In stage #2 sequential bifurcation concentrates on the remaining factors (#65
through #128). That subgroup is again bifurcated, and so on. At the end, sequential
bifurcation finds the three important factors (#68, #113, #120). In total, sequential
bifurcation requires only 16 observations. The procedure also determines the individual
main effects of the important factors: see the symbol 8 in the last line of Figure 1.

INSERT FIGURE 1: Finding k = 3 important factors among K = 128 factors in Jacoby
and Harrison�s (1962) example

It can be proven that, if the analysts assume that there are interactions between
factors, then the number of runs required by sequential bifurcation is double the number
required in the main-effects only case (also see the foldover principle in §4.3). In general,
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it is wise to accept this doubling, in order to obtain estimators of main effects that are not
biased by interactions between factors.

The ecological case study also uses the sequential bifurcation algorithm that was
indicated in Figure 1. It took 154 simulation runs to identify and estimate the 15 most
important factors among the original 281 factors. Some of these 15 factors surprised the
ecological experts, so sequential bifurcation turns out to be a powerful statistical (black
box) technique. Notice that on hindsight it turned out that there are no important interac-
tions between factors, so only 154/2 = 77 runs would have sufficed.

Another case study is the building thermal deterministic simulation in De Wit
(1997). In his simulation, sequential bifurcation gave the 16 most important inputs among
the 82 factors after only 50 runs. He checked these results by applying a different screen-
ing technique, namely 'randomized one-factor-at-a time designs' of Morris (1991), which
took 328 runs.

These two case studies concern deterministic simulation models. In stochastic
simulation the signal/noise ratio can be controlled by selecting an appropriate run length.
Then sequential bifurcation may be applied as in deterministic simulation. Bettonvil (1990,
pp. 49-142) further investigates the use of sequential bifurcation in random simulation.
More research is needed to find out whether in practice this method performs well in
random simulations. Also see Cheng (1997).

3. Regression Metamodels

3.1 Introduction: Graphical Methods

Suppose the number of factors to be investigated is small, for example, fifteen (this small
number may be reached after a screening phase; see §2). Suppose further that the simula-
tion has been run for several combinations of factor levels. How should these I/O data be
analyzed?

Practitioners often make a scatter plot, which has on the x-axis the values of one
factor (for example, traffic rate) and on the y-axis the simulation response (say, average
waiting time). This graph indicates the I/O transformation of the simulation model treated
as a black box! The plot shows whether this factor has a positive or negative effect on the
response, and whether that effect remains constant over the domain (experimental area) of
the factor.

The practitioners may further analyze this scatter plot: they may fit a curve to these
(x, y) data; for example, a straight line (say) y = $ + $ x. Of course, they may fit other0 1

curves (such as a quadratic curve: second degree polynomial), or they may use paper with
one or both scales logarithmic.

To study interactions between factors, the practitioners may combine several of
these scatter plots (each drawn per factor). For example, the scatter plot for different
traffic rates was drawn, given a certain priority rule (say) FIFO. Plots for different priority
rules can now be superimposed. Intuitively, the average waiting time curve for SPT lies
below the curve for FIFO (if not, either this intuition or the simulation model is wrong;
see the discussion on validation in §6). If the response curves are not parallel, then by
definition there is interaction between priority rule and traffic rate.
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However, superimposing many plots is cumbersome. Moreover, their interpretation
is subjective: are the response curves really parallel and straight lines? These shortcomings
are removed by regression analysis. Also see Kleijnen and Van Groenendaal (1992), and
Kleijnen and Sargent (1997).

3.2 GLS, OLS, WLS

A regression metamodel may be used to approximate the I/O transformation of the simula-
tion model that generates the data to which the regression analysis is applied. (A different
use of regression analysis is to obtain control variates, which are a specific type of VRT;
see (15) in §3.5.) Draper (1994) gives a bibliography on applied regression analysis,
outside simulation.

Consider the second degree polynomial

where stochastic variables are shown as upper case letters; the specific symbols are
Y : simulation response of factor combination i, replication ji, j

k: number of factors in the simulation experiment
$ : overall mean response or regression intercept0

$ : main effect or first-order effect of factor hh

x : value of 'standardized' factor h in combination i (see (2) below)ih

$ : interaction between factors h and h' with h < h'h, h'

$ : quadratic effect of factor hh, h

E : fitting error of the regression model in combination i, replication ji, j

n: number of simulated factor combinations
m : number of replications for combination i.i

To interpret this equation, it is convenient to first ignore interactions and quadratic
effects. Then the relative importance of a factor is obtained by sorting the absolute values
of the main effects $ , provided the factors are standardized. Let the original (non-stan-h

dardized) factor h be denoted by w . In the simulation experiment w ranges between ah h

lowest value l and an upper value u ; that is, the simulation model is not valid outside thath h

range (see the discussion on validation in §6) or in practice that factor can range over that
domain only (for example, because of space limitations the number of servers can vary
only between one and five). Measure the variation or spread of that factor by the half-
range a = (u - l )/2, and its location by the mean b = (u + l )/2. Now the followingh h h h h h

standardization is appropriate:

Notice that importance and significance are related, but different concepts.
Significance is a statistical concept. An important factor may be declared non-significant if
the variance of the estimated effect is high (because the simulation response has high
variance and the total sample size N = m is small): this is called the type II ori
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(3)

(4)

(5)

(6)

$ error. Importance depends on the practical problem that is to be solved by simulation.
An unimportant factor may be declared significant if the variance of the estimated factor
effect is small (in simulation large sample sizes do occur).

It is convenient to use the following notation. Denote the general linear regression
model by

Comparison of (1) and (3) gives the following identities: ( = $ , ( = $ , ..., ( = $ ,1 0 2 1 q k, k

and z = 1, z = x , ..., z = . It is also convenient to use matrix notation for thei, 1 i, 2 i, 1 i, q

preceding equation, (3):

where bold symbols denote matrices including vectors (vectors are matrices with a single
column; in linear algebra it is customary to denote matrices by upper case letters and
vectors by lower case letters, but in this chapter upper case letters denote random vari-
ables); the specific symbols are
N: total number of simulation responses, m ;i
Y: vector with N components; the first m elements are the m replicated simulation1 1

responses for input combination 1, ..., the last m elements are the m replicationsn n

for input combination n;
((: vector of q regression parameters, ;
z: N by q matrix of independent variables; the first m rows are the same and denote1

factor combination 1, ..., the last m rows are the same and denote factor combina-n

tion n;
E: vector with N fitting errors, (E , ..., ).1, 1

An alternative notation is

where the bar denote the average per factor combination; each matrix (including vector)
has now only n (instead of N) rows. For example, the first element of the vector is

.
Note that non-linear regression models and the concomitant DOE are discussed in

Ermakov and Melas (1995, pp.167-187).
The Generalized Least Squares (GLS) estimator of the parameter vector ((, denoted

by , is

where denotes the N by N covariance matrix of , which is assumed to be non-singular
so that its inverse exists (in §3.5 this assumption is revisited for the estimate ); it is
further assumed that is such that is regular (further discussion on will follow in
§4, on DOE); to simplify the notation, this chapter will sometimes denote by . It is
not too difficult to derive an alternative expression for the GLS estimator that uses the
alternative notation in (5); see Kleijnen (1987, p. 195) and Kleijnen (1992).
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(7)

(8)

(9)

(10)

GLS gives the best linear unbiased estimator (BLUE), where 'best' means mini-
mum variance. The individual variances can be found on the main diagonal of the covari-
ance matrix for C:

A (1 - ") confidence interval per parameter follows from the well-known Student statistic.
The general formula for this statistic (which will be used repeatedly below) is

where denotes the number of degrees of freedom. Notice that a statistic is called student-
ized if the numerator is divided by its standard error or standard deviation. For the GLS
estimator, in (8) is replaced by C (g = 1, ..., q) and by the estimator of the standardg

deviation of C ; this estimator will be discussed in the next subsection, §3.3. Software forg

GLS estimation is abundant; see Swain (1996).
A special, classic case of GLS is Ordinary Least Squares (OLS). OLS remains

BLUE if the simulation responses have white noise; that is, they are independent and have
constant variances; that is, where denotes the N by N identity matrix
(usually denoted by I in linear algebra). Then the GLS estimator in (6) reduces to

Even if the OLS assumptions do not hold, an alternative to GLS is the OLS point estima-
tor in (9), but with the correct covariance matrix

If the OLS assumptions ( ) do hold, then this equation (10) simplifies to
. The white noise assumption may be used in deterministic simulation; see

the case study in §3.8.
In random simulation, however, it is realistic to assume that the response variances

vary with the input combinations: var(Y ) = . (So Y has a mean and a variance thati, j i, j

both depend on the input.) In other words, (the covariance matrix for the simulation
responses) becomes a diagonal matrix with the first m elements equal to , ..., the last1

m elements equal to . Then a special case of GLS applies, namely Weighted Leastn

Squares (WLS): substitute this diagonal matrix into the GLS formulas in (6) and (7).
The interpretation of the resulting formula is that WLS uses the standard deviations F asi

weights. In case of variance heterogeneity, the WLS estimator is BLUE; both OLS and
WLS still give unbiased estimators.

3.3 Estimation of Response Variances

The preceding formulas feature (the covariance matrix of the simulation responses),
which unfortunately is unknown (as are the means E(Y ) = ). The estimation of thei

standard deviations F is a classic tactical problem in simulation. To solve this problem, thei

analysts should distinguish terminating and steady-state simulations (see Chapter 7, by
Alexopoulos and Seila), and expected values, proportions, and quantiles. This subsection
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i
)2/(m

i
& 1)

m
i

m
i

m
i
$

Ȳ
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(11)

considers four cases: (i) mean response of terminating simulation, (ii) mean response of
steady-state simulation, (iii) proportions, and (iv) quantiles.
(i) Mean response of terminating simulation
By definition, a terminating simulation has an event that stops the simulation run; an exam-
ple is a queueing simulation of a bank that opens at 9 a.m. and closes at 4 p.m. In such a
situation, the simulation runs for one specific combination (say) i may give independently
and identically distributed (i.i.d.) responses Y , for example, average waiting time per day.i

Then the estimator of the variance of Y , given a sample size of replications (fori

example, days) with integer 2, is

where the average of the m replications is ; each replication uses a non-i

overlapping sequence of pseudorandom numbers.
Note that in the simulation literature on tactical issues it is classic to focus on (1- ")

confidence intervals. If a Gaussian distribution is assumed (N( , )), then the confidence
interval should use the Student statistic in (8), now with = m - 1 degrees of freedom. If,i

however, Y has an asymmetric distribution, then Johnson's modified Student statistic is ai

good alternative; this statistic includes an estimator for the skewness of the distribution of
Y ; see Appendix 1. One more alternative is a distribution-free or non-parametric confi-i

dence interval such as the sign test or the signed rank test. Conover (1971) gives an
excellent discussion of distribution-free statistics. Kleijnen (1987) discusses the application
in simulation. Other alternatives are jackknifing and bootstrapping; see the next subsection,
§3.4. Appendix 1 gives more details on (1- ") confidence intervals for the response of an
individual factor combination. (This appendix covers 'per comparison' intervals, not
'familywise' or 'experimentwise' intervals; see Bonferroni's inequality at the end of
Appendix 1, and Chapter 8, by Goldsman and Nelson). In DOE, however, confidence
intervals are desired, not for the individual simulation responses, but for the individual
factor effects. For that purpose, the variances of the simulation responses are needed.
(ii) Mean response of steady-state simulation
Some practical problems require steady-state simulations; examples are strategic decisions
on production-facility layout, assuming static environments and long-term reward systems.
Suppose the simulationists execute a single long run (not several replicated runs) per factor
combination. Assume that a simulation run yields a time series that (possibly, after elimina-
tion of the start-up phase) gives a stationary process in the wide sense. Then there are
several methods for the estimation of the variance : batching (or subruns), renewal (or
regenerative) analysis, spectral analysis, standardized time series; see Chapter 7, by Alexo-
poulos and Seila. Appendix 1 gives formulas for renewal analysis only.
(iii) Proportions
Let p denote the probability of the response exceeding a given value a; for example, thea

probability of waiting time exceeding five minutes in a simulation run. This leads to a
binomially distributed variable, and the estimation of its mean p and variance p (1 -a a

p )/m. Actually, the subscript i must be added to the parameters p and m; see (11).a a

When estimating an extremely small probability, importance sampling is needed:
the probability distribution of some input variable is changed such that the probability of
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the event of interest increases; for example, the mean (say) 1/ of the Poisson service
process is increased so that the probability of buffer overflow increases; see Appendix 2
and also Heidelberger (1995) and Heidelberger, Shahabuddin, and Nicola (1996).
(iv) Quantiles
A response closely related to a proportion is a quantile: what is the value not exceeded by
(say) 80% of the waiting times? Quantile estimation requires sorting the m observations y ,j
which yields the order statistics y ; that is, y is the smallest observation, ..., y is the(j) (1) (m)

largest observation. Appendix 1 gives formulas. Notice that the median is a good alterna-
tive for the mean when quantifying the location of a random variable; the regression
metamodel may explain how the various factors affect the median simulation response.

3.4 Estimated GLS and WLS

The cases (i) through (iv) in the preceding subsection (§3.3) show that there are different
types of responses, each requiring its own procedures for the estimation of the variances

. But whenever the analysts use estimated response variances, WLS becomes Estimated
WLS or EWLS. This gives a non-linear estimator for the factor effects ((; see (6) with
replaced by a diagonal matrix with main-diagonal elements defined in (11). But the
properties of non-linear estimators are not well-known: is the estimator still unbiased; does
it have minimum variance; what is its variance?

Jackknifing is a general computer-intensive technique that the analysts should
consider whenever they presume the estimator under consideration to be biased or
whenever they do not know how to construct a valid confidence intervals. In the EWLS
case, Jackknifed EWLS or JEWLS may be defined as follows. Suppose there are m
replications of Y . This yields (say) , the EWLS estimator of the regression parame-i

ter ((. Next, for each factor combination eliminate one replication, say, replication j (with j
= 1, ..., m). Calculate the EWLS estimator from the remaining (m - 1) replications; this
gives m estimators . The pseudovalue (say) P is defined as the following linearj

combination of the original and the j estimator:th

The jackknifed estimator is defined as the average pseudovalue:

If the original estimator is biased, then the jackknifed estimator may have less bias, albeit it
at the expense of a higher variance. Moreover, jackknifing gives the following robust
confidence interval. Treat the m pseudovalues P as m i.i.d. variables: see the Studentj

statistic in (8), now with Y replaced by P and = m - 1.
Efron (1982) and Miller (1974) give classic reviews of jackknifing. Jackknifing of

EWLS is further discussed in Kleijnen, Karremans, Oortwijn, and Van Groenendaal
(1987). Jackknifed renewal analysis is discussed in Kleijnen and Van Groenendaal (1992,
pp. 202-203); also see Appendix 3. Jackknifing is related to bootstrapping, which samples
from the set of m observations; see Cheng (1995), Efron (1982), and Efron and Tibshirani
(1993).
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3.5 Variance Reduction Techniques

VRTs are supposed to decrease the variances of estimators such as the estimated mean
simulation response, the estimated differences among mean simulation responses, and the
estimated factor effects (which are linear combinations of simulation responses; see the
GLS estimator in (6)). This subsection covers the following three VRTs that have relations
with GLS: (i) common random numbers, (ii) antithetics, and (iii) control variates.
(i) Common random numbers
Practitioners often use common (pseudo)random numbers to simulate different factor
combinations (see Appendix 2 for details). When responses are statistically dependent,
GLS gives BLUE. But in practice the covariances between simulation responses of
different factor combinations are unknown, so these covariances must be estimated.
Assume m independent replications per factor combination, so Y and Y are dependent butij i'j

Y and Y are not , when j j' and j' = 1, ..., m. Then the classic covariance estimator isij ij'

Notice that this equation reduces to the classic variance estimator in (11) if i = i' and S isii

defined as . Dykstra (1970) proves that the estimated covariance matrix is singular if
m n. Estimated GLS or EGLS gives good results; see Kleijnen (1992). A detailed
example is given in Chapter 8, by Goldsman and Nelson.

The simulation literature has ignored the estimation of covariances in steady-state
simulations. If renewal analysis is used, then the renewal cycles get out of step; for
example, when a factor combination uses a lower traffic rate, its cycles get shorter.
However, if subruns are used, then the estimators are strictly analogous to the preceding
equation, (14).
(ii) Antithetics random numbers
Closely related to common pseudorandom numbers are antithetic pseudorandom numbers:
to realize negative correlation between pairs of replications, use the pseudorandom
numbers r for one replication and the complements or 'antithetics' 1 - r for the other
replication. Then m replications give m/2 independent pairs ( , ..., ) where

. Hence to estimate the variance, use (11) but replace m by m/2 andi

Y by with r = 1, ..., m/2.j

Notice that these antithetic pseudorandom numbers do create negative correlation
between two variables sampled from the same distribution if this sampling uses the inverse
transformation technique: X = f(R) where f denotes the inverse (cumulative) distribution
function (which is monotonically increasing). An example is provided by the exponential
distribution: X = -ln(R)/ with 1/ = E(X). A counter-example is provided by the
sampling of two independent standard normal variables (say) V and V through the well-1 2

known Box-Muller transformation: V = cos(2 R ){-2ln(R )} and V = sin(2 R ){-1 1 2 2 1
1/2

2ln(R )} . But then the basic idea can still be applied: X = E(X) + V and X = 2E(X)2 1 1 2
1/2

- X (V can be used for the next sample of the pair, X and X ). Appendix 2 gives some1 2 1 2

details on antithetic variates.
Since common and antithetic pseudorandom numbers are so closely related,

Kleijnen (1975c) investigated their combination. Later Schruben and Margolin (1978)
examined this combination in the case of a first-order polynomial metamodel. Their rule is:
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treat the selection of common and antithetic seeds as a separate factor -say, factor k- in a
two-level design. Associate one level of that factor with common seeds; that is, use com-
mon seeds for the n/2 combinations that have factor k at its plus level. Associate the other
level with antithetic seeds; that is, use the same antithetic seeds for the remaining n/2
combinations that have factor k at its minus level. Later, the Schruben-Margolin strategy
was further investigated for second-order metamodels; see Donohue (1995).
(iii) Control variates
Regression models can be used not only as metamodels for what-if questions, but also as a
VRT: control variates or regression sampling. Whereas antithetics makes the companion
replication compensate 'overshoot' (that is, y > E(Y)), control variates corrects the
response of a given replication as follows.

A random variable (say) X can serve as a control variate if its mean E(X) is known
and it is strongly correlated with the response Y: >> 0 where denotes the
linear correlation coefficient between X and Y. As an example, consider the simulation of
an M/M/1 queueing system. On first reading the subscript i may be ignored in the
following definitions and formulas; actually a control variate estimator may be computed
for each factor combination i. Denote the average input #1 (say, average service time) per
replication in combination i by . Obviously this input and the output Y (say, either thei

average or the 90% quantile of waiting time in combination i) are positively correlated:
D( , Y ) > 0. Hence in case of an overshoot, y should be corrected downwards:i

where C denotes the OLS estimator when output is regressed on , whichi, 1, OLS

denotes input #1 in combination i (this OLS estimator is computed from m replications ofi

the pair ( , )); the input averaged over m replicates is . There-i

fore the technique of control variates is also called regression sampling. Notice that in this
equation the input is a random variable (upper case X), whereas in the regression meta-
model this input is fixed at its extreme values (lower case x; see (1)). Also see Appendix 2.

The single control variate estimator in the last equation, (15), can be extended to
multiple control variates; for example, service time X and arrival time (say) X . This1 2

requires multiple regression analysis. Actually, a better control variate may be traffic load,
E(X )/E(X ). In general, the explanatory variables in this regression model may be selected1 2

such that the well-known multiple correlation coefficient R is maximized. R = 1 means2 2

perfect fit. However, because R increases as the number of independent variables in-2

creases, the adjusted R is preferred as criterion for the selection of control variates2

A complication is that the estimator C in (15) leads to a non-linear estimatori, 1, OLS

(see the product C ), which in general is biased. Moreover, the construction of ai, 1, OLS

confidence interval for E( ) becomes problematic. These problems can be solved, either
assuming multivariate normality for (Y , , , ...) or using the robust technique ofi

jackknifing. Details of jackknifing the control variates are shown in Appendix 3.
The joint application of common, antithetic, and control variates is examined in

Tew and Wilson (1994).

3.6 Lack of Fit of the regression metamodel
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Once having specified a regression metamodel and having estimated its parameters -with or
without applying VRTs- it becomes necessary to check possible lack of fit of the regression
metamodel: is the estimated regression model an adequate approximation of the I/O
transformation of the specific simulation model, given a specific experimental domain? In
other words, the simulation model is supposed to be valid only within a certain area of its
parameters and input variables; also see §6. Likewise, the metamodel is supposed to be
valid only for those simulation I/O data that lead to its estimated parameter values.
Consequently, the metamodel is more reliable when used for interpolation; it may be
dangerous when used to extrapolate the simulated behavior far outside the domain simu-
lated in the DOE.

Notice that in practice, analysts often try to interpret individual effects before they
check whether the regression model as a whole makes sense. However, first the analysts
should check if the estimated regression model is a valid approximation of the simulation
model's I/O transformation. If the metamodel seems valid, its individual effects are to be
examined.

To test the adequacy of the metamodel, this model might be used to predict the
outcomes for new factor combinations of the simulation model. For example, in (1) replace
$$ by its estimate, and substitute new combinations of x (remember there are n old com-
binations). Compare the predictions with the simulation response y.

A refinement is cross-validation. The idea is as follows:
(i) eliminate one combination (say) i with i = 1, ..., n, instead of adding new combi-
nations, which require more computer time;
(ii) re-estimate the regression model from the remaining n - 1 combinations;
(iii) repeat this elimination for all values of i.
Notice that cross-validation resembles jackknifing.

The formulas are as follows. The predictor for the simulation response given C (the
estimator of the regression parameters or factor effects) and z (the vector of independenti

variables) is

The variance of this predictor is

The estimator of this variance follows from substitution of the estimator for . Hence,
for OLS the estimator of (17) follows immediately from (10), (11), and (14). For GLS the
estimator of (17) might use (7), (11), and (14); this gives an asymptotically valid estimator.



C
&i
' (z )

&iFFy
&&i

&1
z
&&i
)&1z ))

&&iF
&1

y
&i

Y
&i
.

�T
<
'

Y
i
&

�Y
&i

[ �var(Y
i
) % �var( �Y

&i
)]1/2

F
n & q, m & n &q

'

(m & n % q)

(n & q)(m & 1)
(Ȳ & z̄C))S &1
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i
&

�Y
i

j
n

i ' 1
�E
2

i
m/(n & q)

F
n & q, n(m &1)
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(18)

(19)

(20)

After elimination of I/O combination i the new vector of estimated effects is based
on the GLS formula in (6):

Substitution into (16) gives the predictor = y(C , z ). The Studentized cross-validation
-i i

statistic (see (8)) is

where and follows from (17), replacing C by C , etc. The degrees-i

of freedom in (19) are unknown; Kleijnen (1992) uses = m - 1. When this Student-
ized prediction error is significant, the analysts should revise the regression metamodel
they specified originally. When judging this significance, they may apply Bonferroni�s
inequality, since there are multiple runs, namely m (see Appendix 1). In their revision,
they may use transformations of the original inputs, such as logarithmic transformations
and cross-products or interactions.

An alternative to cross-validation is Rao's lack of fit test. To understand this test, it
is convenient to first consider the classic OLS case: normally distributed simulation
responses Y with white noise. Then there are the following two estimators of the commoni

response variance . The first estimator is based on replication: see the classic variance
estimator defined in (11). Because the true variance is constant, these estimators are
averaged or pooled: ; if m is not constant, then a weighted average is used,i

with the degrees of freedom m - 1 as weights. Next consider the n estimatedi

residuals, with i =1, ..., n. These residuals give the second variance estima-
tor, . The latter estimator is unbiased if and only if (iff) the regression
model is specified correctly; otherwise this estimator overestimates the true variance.
Hence the two estimators are compared statistically through the well-known F-statistic,
namely .

Rao (1959) extends this test from OLS to GLS:

where the n estimated GLS residuals are collected in the vector , and where not
only response variances are estimated but also response covariances, collected in the
estimated covariance matrix ; also see (14).

Kleijnen (1992) shows that Rao's test is better than cross-validation if the simulation
responses are symmetrically distributed, for example, normally or uniformly distributed.
Lognormally distributed responses, however, are better analyzed through cross-validation.

In deterministic simulation, studentizing the prediction errors as in (19) gives
misleading conclusions. In such simulations the constant error is estimated from the
residuals. Hence, the worse the metamodel is, the bigger this estimate becomes. But then
the denominator in (19) increases ( = 0), so the probability of rejecting this false
model decreases! Therefore relative prediction errors /y are of more interest to practitioi
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ners. Examples will be presented in the coal-transport and the FMS case-studies in §3.8
and §4.9.

It is also interesting to observe how the estimated individual input effects change, as
combinations are deleted: see c . Obviously, if the specified regression model is a goodh, -i

approximation, then the estimates remain stable. Examples will be given for the same coal-
transport and FMS case-studies. Notice that the q n matrix = (c ) concerns the useh, -i

of the simulation model and its concomitant metamodel for explanation, whereas the vector
with the n elements /Y concerns the use for prediction purposes. Other diagnostic statis-i

tics are PRESS, DEFITS, DFBETAS, and Cook's D; see the general literature on
regression analysis, and Kleijnen and Van Groenendaal (1992, p. 157).

3.7 Numerical Example: Multiple Server System

Kleijnen and Van Groenendaal (1992, pp. 150-151, 159-162) considers the well-known
class of server systems with (say) s servers in parallel, and Markovian arrival and service
processes: exponential interarrival times with rate and exponential service times with
rate , which are i.i.d. These systems are denoted as M/M/s.

Suppose the response of interest is the steady-state mean queue length. Estimate this
mean by the run average (say) . Start each run in the empty state. Stop each run after
2,000 customers. (Better solutions for these tactical problems are discussed in Appendix 1.)

Simulate six intuitively selected combinations of , , and s. Replicate each
combination twenty times. This gives Table 1. (The next section will show that much better
designs are possible.)

INSERT Table 1: Average queue length of 2000 customers in M/M/s simulation started
in empty state

Specify a regression metamodel for the M/M/s simulation model, with both the
response and the inputs logarithmically transformed: see (1) with Y = ln ( ), x = ln( ),1

x = ln( ), and x = ln(s). Use of the SAS package for the regression analysis of this2 3

problem gives Table 2.

INSERT Table 2: Regression analysis of M/M/s example, using standard SAS software

Table 2 shows N = 6 20 = 120 and q = 1 + 3 = 4, so 116 degrees of freedom
remain to estimate the common response variance under the classical OLS assumptions.
CLS stands for Corrected Least Squares, and denotes the OLS point estimates with correct
standard errors; see (10). The classical OLS computations give wrong standard errors for
the estimated factor effects that are slightly smaller than the standard errors that use the
unbiased estimated response variances.

The point estimates for OLS and EWLS do not differ much in this example: the
standard errors are small, and both estimators have the same expectation. EWLS gives only
slightly smaller standard errors. The explanation is that the logarithmic transformation
reduces variance heterogeneity: estimated response variances range only between 0.17 and
0.26 (the next section, §4, will return to transformations).
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All values for the multiple correlation coefficient R , adjusted or not, are very high.2

This numerical example does not formally test the goodness of fit. The individual input
effects have the same absolute values, roughly speaking. Their signs are as expected
intuitively. Kleijnen and Van Groenendaal (1992) also examine a simpler regression
metamodel that uses a single input, namely the traffic rate /( s).

3.8 Case Study: Coal Transport

This subsection summarizes Kleijnen (1995d), which concerns the following real-life
system. A certain British coal mine has three coalfaces, each linked to its own bunker.
These bunkers have specific capacities. Each bunker receives coal from a single coalface,
and discharges this coal onto a conveyor belt that serves all three bunkers. This belt
transports the coal to the surface of the mine. Whenever a bunker is full, the corresponding
coalface must stop; obviously this congestion decreases the efficiency.

Wolstenholme (1990, p. 115) considers three inputs, namely total belt capacity,
maximum discharge rate per bunker, and bunker capacities (which are assumed to be
equal). He further presents three control rules for managing the discharge rate of the
bunkers. For example, under policy I the discharge rate of each bunker can only be either
zero or maximal (no intermediate values). The maximum is used as long as there is coal in
the bunker and room on the conveyor belt. For this chapter it suffices to understand that
policies II and III are more sophisticated than policy I. Policy is a qualitative factor with
three levels.

Vital questions are: what are the efficiency effects of changing inputs; are there
interactions among inputs? So this case study is representative of many problems that arise
in real life, especially in physical distribution and production planning.

Wolstenholme (1990) develops a system dynamics model, which is a particular type
of simulation, namely deterministic non-linear difference equations with feedback relations.
As software he uses STELLA, whereas Kleijnen (1995d) uses POWERSIM 1.1.

Kleijnen (1995d) runs eight combinations of the three quantitative inputs (w , w ,1 2

w ); the output is the efficiency y; see Table 3 (the selection of input combinations will be3

discussed in the next section, §4).

INSERT Table 3: Input/output per policy for Wolstenholme (1990)'s coal transport model

The problem is how to find a pattern in the I/O behavior of the simulation model.
To solve this problem, Wolstenholme (1990, pp. 116-121) uses intuition and common
sense, studying run after run. This section, however, uses regression metamodeling, as fol-
lows.

Because qualitative factors are slightly more difficult to represent in a regression
model, the effects of the three quantitative factors are first examined per policy. Next,
policy is incorporated as a factor.

Assume a regression metamodel with main effects and two-factor interactions: see
(1) with k = 3 and no quadratic effects. Hence q = 7 effects need to be estimated. OLS is
used, because the simulation model is deterministic.

To check the validity of this metamodel, R and cross-validation are used. The first2

measure is computed by all standard statistical software, whereas the second measure is
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supported by modern software only. In cross-validation the regression model is estimated
using only seven of the eight combinations in Table 3. First combination 1 is deleted, and
the regression parameters are estimated from the remaining seven combinations. This new
estimator (say) is used to predict the simulation response through ; see (18) and (16)
respectively. The actual simulation response is already known: y = 55.78 for policy I; see1

Table 3. Hence prediction errors can be computed. In this case the eight relative prediction
errors /y vary between 0.77 and 1.19, for policy I.i

As combinations are deleted, estimated individual input effects change. But the
estimates remain stable if the specified regression model is a good approximation. Table 4
gives results for the metamodel with main effects only, still using the I/O data of Table 3.
The three estimated main effects have the correct positive signs: increasing input capacities
increase efficiency. Moreover, an intuitive analysis of the I/O data in Table 3 suggests that
input #3 has more effect than input #1, which in turn exceeds the effect of input #2; the
formal analysis agrees with this intuitive analysis.

INSERT Table 4: Estimates of main effects ($ ), upon deleting a combination, in policy I;h

The I/O data in Table 3 are also analyzed through other regression metamodels.
Searching for a 'good' regression model requires intuition, common sense, and knowledge
of the underlying system that generated the I/O data, namely the System Dynamics model
and the real system. This search receives more attention in econometrics than in DOE; also
see the case-study in Van Groenendaal and Kleijnen (1996). To save space, these details
are skipped. The final conclusion is that in this case study a regression model with the
three main effects seems best: interactions turn out to be insignificant, whereas deleting the
main effect of input #2 (which is the smallest estimated main effect) increases the relative
prediction error.

Next individual estimated input effects are tested statistically, assuming white noise.
Then classic OLS yields the standard errors . To test if $ is zero (unimportant mainh

effect), OLS uses Student's t statistic. The critical value of this statistic is determined by
the significance level ". A usual value is 0.10, but to reduce the probability of falsely
eliminating important inputs, the value 0.20 is also used in this study. A higher " means a
smaller critical value. This yields the blanks and the symbol * in Table 4.

Next consider policy II, for which no table is displayed. The best metamodel turns
out to have main effects only for inputs #2 and #3: deleting the nonsignificant main effect
of input #1, decreases the maximum relative prediction error; interactions are not signifi-
cant.

For policy III a model with the three main effects gives a good approximation. Note
that such simple metamodels do not always hold: in the case study on a Flexible Manu-
facturing System or FMS, only a regression model with interactions -in addition to main
effects- gives valid predictions and sound explanations; see §4.9.

Finally consider regression metamodels with policy as a qualitative factor. So now
there are three quantitative inputs, each simulated for only two values, and there is one
qualitative factor with three 'levels', denoted by I, II, and III. Technically, regression
analysis handles this qualitative factor through two binary (0, 1) variables; see Kleijnen
(1987). Now the best regression model includes the main effects of all four factors. Policy
III is the best policy; policy II is worse than policy I, even though policy I is the simplest
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policy. These regression results agree with an intuitive analysis of the I/O data in Table 3:
calculate the efficiency per policy, averaged over all eight combinations of the three other
factors> These averages are 72.50, 70.75, 78.75.

4. Design of Experiments

4.1 Introduction

The section on regression metamodels (§3) assumed that the matrix of independent
variables z is such that the corresponding inverse matrices are not singular when computing
GLS, WLS, and OLS point estimates and their estimated covariance matrices. An obvious
condition seems to be that the number of observations is not smaller than the number of
regression parameters. But does that mean N q or n q (with N = )?

Consider a simple example, namely a second-order polynomial with a single factor:
Y = $ + $ X + $ ; see (1) with k = 1. Obviously, simulating only two values of X0 1 1 1, 1 1

-corresponding with n = 2- does not give a unique estimate of this regression model,
whatever the number of replicates m is. Hence the condition is n q, not N q. Also see
the alternative notation of the regression model in (5).

Which n combinations to simulate -provided n q- can be determined such that the
variances of the estimated factor effects are minimized. This is one of the main goals of the
statistical theory on DOE; other goals follow in the subsection on optimal DOE, §4.8.

This section first covers classical DOE, which assumes white noise or
and a correctly specified regression model or E(E ) = 0 in (3). This gives well-knowni, j

designs such as 2 and central composite design; see §4.2 through §4.6. Next this sectionk - p

presents ways to design simulation experiments such that these assumptions do hold; see
§4.7. Optimal DOE does account for heterogeneous variances and correlated simulation
responses; see §4.8. An FMS case-study finishes this section; see §4.9.

This chapter does not cover all types of designs. For example, it does not discuss
'mixture' designs, which imply that the factor values are fractions that sum up to the value
one: ; see Myers et al. (1989, p. 142). It does not cover Taguchi's DOE;
see Donohue (1994). This section further assumes that the experimental area is a k-dimen-
sional hypercube in the standardized factors. In practice, however, certain corners of this
area may represent unfeasible combinations; see Nachtsheim (1987), Nachtsheim et al.
(1996), and also Kleijnen (1987, p. 319).

Classical designs are tabulated in many publications. Two authoritative textbooks
are Box and Draper (1987) and Box, Hunter, and Hunter (1978). Two textbooks focussed
on DOE in simulation, are Kleijnen (1975a, 1987).

The analysts may also learn how to construct those designs; see the preceding
references. The next subsections show which types of designs are available, but they only
indicate how to construct them (see the 'generators' in §4.2).

Recently, software, including artificial intelligence and expert systems, has been
developed to help the analysts specify these designs. Expert systems for DOE, however,
are still in the prototype phase; see Nachtsheim et al. (1996). �Non-intelligent� software for
DOE outside the simulation domain is supported by several commercial software products,
such as CADEMO, ECHIP, and RS/1; see ProGAMMA (1997), Nachtsheim (1987) and
BBN (1989) respectively. The need for DOE software in simulation is articulated in a panel



d ))d ' n1
nxn

1
nx1

1
nx1

FF
y
' F21

N×N

j
n

i ' 1 di, 4
' j

n

i ' 1 di, 1
d
i, 2

j
n

i ' 1 di, 7
' j

n

i ' 1 di, 1
d
i, 2

d
i, 3

22

(21)

discussion at the 1994 Winter Simulation Conference; see Sanchez et al. (1994). DOE
software for simulation is investigated in Ären (1993), Ozdemirel, Yurttas, and Koksal
(1996), and Tao and Nelson (1997).

Simulation applications of classical designs are referenced in Donohue (1994),
Kleijnen (1987, 1995c), and Kleijnen and Van Groenendaal (1992). As mentioned above, a
FMS case-study will be presented in §4.9.

4.2 Main Effects Only: Resolution-3 Designs

According to Box and Hunter�s (1961) definition, resolution-3 designs give unbiased
estimators of the parameters of a first-order polynomial regression model. These parame-
ters are the k main effects, plus the overall mean; see the first two terms in the right-hand
side of (1). Sometimes these designs are called 'screening' designs; see Nachtsheim (1987,
p. 133). This chapter, however, reserves the term 'screening' for designs with fewer runs
than factors: n < k; see §2.

In practice, analysts often simulate the 'base' situation first, and next they change
one factor at a time. This approach implies n = 1 + k. However, consider orthogonal
designs, that is, designs that satisfy

with design matrix d = (d ) and i = 1,... , n, j = 1,... , k, and n > k. Notice that theij

matrix of independent variables z becomes ( , d) where corresponds with the
dummy factor x = 1, which has effect $ . Box (1952) proves that an orthogonal designi0 0

minimizes the variances of the estimated regression parameters. Moreover, the effect
estimators become independent: use (21) in the covariance matrix in (10) with

. Obviously, both orthogonal and one-factor-at-a-time designs give unbiased
estimators.

How to obtain the desired orthogonal matrices? Plackett and Burman (1946) derive
orthogonal designs for k up to 99, and n equal to k + 1 rounded upwards to a multiple of
four. For example, k equal to 8, 9, 10 or 11 requires n = 12. This design is displayed in
Table 5.

INSERT Table 5: A Plackett-Burman design with 12 combinations

Another example is k equal to 4, 5, 6 or 7, which requires n = 8. Writing n = 27 - 4

symbolizes that a fraction 2 is not simulated; that is, only 2 combinations are simulated.4 3

This design is displayed in Table 6, where the symbol 4 = 1.2 means
, ..., the symbol 7 = 1.2.3 means

. These symbols are called the generators of the design.

INSERT Table 6: A 2 design with generators 4 = 1.2, ...7 - 4

In general, 2 designs with non-negative integer p smaller than k are a subclass ofk - p

Plackett-Burman designs. These designs have p generators. These generators determine
how effects are confounded with each other; that is, they fix the bias pattern among factor
effects. For example, 4 = 1.2 implies that the estimator of the main effect of factor 4 is
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biased by the interaction between factors 1 and 2. Of course, if the analysts assume that
only main effects are important, then this bias is unimportant. See Kleijnen (1987).

In the examples of Tables 5 and 6, saturated designs result when k is 11 or 7.
Smaller k values -namely, 8, 9, 10 and 4, 5, 6 respectively- enable cross-validation, to
check if the first-order regression metamodel is adequate (see §3.6).

So resolution-3 designs are useful when a first-order polynomial seems an adequate
regression model apriori. This will be the case in the first stages of RSM used in optimiza-
tion; see §5. Moreover these resolution-3 designs are useful as building blocks for the next
type of design, namely resolution-4 designs. An example of this building block approach
will be given in the FMS case study of §4.9.

4.3 Main Effects Against Two-factor Interactions: Resolution-4 Designs

According to Box and Hunter (1961), resolution-4 designs give unbiased estimators of all k
main effects, even if there are interactions between pairs of factors. Box and Wilson (1951,
p. 35) prove that this design property can be achieved through the foldover principle: to the
original resolution-3 design with design matrix (say) d now add the 'mirror' or �negative�3

image of d , namely -d . Obviously, the foldover principle implies doubling the number of3 3

simulated factor combinations; for example, k = 7 requires n = 2 x 8 = 16. A subclass of
resolution-4 designs are 2 designs with the proper choice of p. An example is the 2k - p 8 - 4

design in Table 7.

INSERT Table 7: A 2 foldover design with generators 4 = 1.2.8, ...8 - 4

Notice that this design implies that the estimator of the main effect of factor 4 is biased by
the interaction among the factors 1,2, and 8, but not by any interactions between pairs of
factors. (The estimators of two-factor interactions are biased by each other; for example,
the estimated interaction between the factors 1 and 2 is biased by the interaction between
the factors 4 and 8; see Kleijnen (1987).)

Another example of a resolution-4 design for a great many factors is given in Kleij-
nen, Van Ham, and Rotmans (1992, p. 416): k = 62 factors requires p = 55 generators,
which are specified in that reference. Fürbringer and Roulet (1995) give a simulation
application with k = 24 and p = 16.

A different subclass are the non-orthogonal designs derived by Webb (1968). These
designs are specified only for k is 3, 5, 6 or 7 with n equal to 2k,. Details are given in
Kleijnen (1987, pp. 303-309) and in the other references.

Obviously, resolution-4 designs leave degrees of freedom over since n > 1 + k.
Hence, these designs can give an indication of the importance of two-factor interactions.
Actually, these designs give estimators of certain sums of two-factor interactions; for
example, ; see Kleijnen (1987, pp. 304-305).

4.4 Individual Two-factor Interactions: Resolution-5 Designs

Resolution-5 designs give estimators of main effects and two-factor interactions that are not
biased by each other; they may be biased by interactions among three or more factors.
Obviously, there are k(k - 1)/2 such interactions: see $ in (1).h, h'
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One subclass is again 2 designs with a proper choice of the p generators. Ank - p

example is a 2 design with the generators 7 = 1.2.3.4 and 8 = 1.2.5.6. In this design8 -2

no two-factor interaction estimator is biased by another two-factor interaction or main
effect estimator; the estimator of the interaction between the factors 1 and 2, however, is
biased by the interaction among the factors 3, 4, and 7, and among the factors 5, 6, and 8.
See Kleijnen (1987).

Rechtschaffner (1967) gives saturated resolution-5 designs: n = 1 + k + k(k -
1)/2; see Kleijnen (1987, pp. 309-311). In general, resolution-5 designs require many
factor combinations. Therefore, in practice, these designs are used only for small values of
k (also see the next subsection).

4.5 High-order Interactions: Full Factorial Designs

If k is very small (say, k = 3), then all 2 combinations can be simulated. Then all interac-k

tions -not only two-factor interactions- can be estimated. In practice, these full factorial
designs are sometimes used.

Though high-order interactions can be defined mathematically, they are hard to
interpret. Therefore a better metamodel may be specified, using transformations. For
example, replace Y or x in a first-order polynomial by log Y or log x, so elasticity coeffi-
cients and decreasing marginal responses may be represented. A numerical example was
presented in §3.7, concerning an M/M/s simulation model. A recent application is a
simulation of Japanese production control systems known as kanban systems; see Aytug,
Dogan, and Bezmez (1996). Transformations are further discussed in Cheng and Kleijnen
(1997). Also see §4.7, the subsection on how to satisfy DOE assumptions.

4.6 Quadratic Effects: Central Composite Designs

Obviously, if quadratic effects are to be estimated, then at least k extra runs are needed;
see $ in (1) with h = 1, ..., k. Moreover, each factor must be simulated for more thanh, h

two values. Designs that are popular in both statistics and simulation are central composite
designs. These designs combine resolution-5 designs (see §4.4) with �one-factor-at-a-time
star� designs; that is, each factor is simulated for two more values, while the other k - 1
factors are kept at their base values. In symbols: taking standardized values for all factor
values. each factor is simulated for the values c and -c with c not equal to one or zero, so
these values are symmetrical relative to zero The selection of an appropriate value for c is
surveyed in Myers et al. (1989). Besides the resolution-5 and the star design, simulate the
central point x = 0 with h = 1, 2, ..., k. In other words, each factor is simulated for fiveh

values, namely the standardized values -1, +1, -c, +c, 0. These designs require relatively
many runs: n >> q. An example is displayed in Table 8: k = 2 gives n = 9 whereas q =
6. These designs imply non-orthogonal columns for the k + 1 independent variables that
correspond with the quadratic and the overall effects.

INSERT Table 8: Central composite designs for two factors
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Other designs for second-order polynomials, including saturated and fractional 3k

designs, are summarized in Kleijnen (1987, pp. 314-316) and Myers et al. (1989, p. 140).
A case study that uses the design of Table 8 will follow in the section on RSM (§5).

4.7 Satisfying the Classical DOE Assumptions

Classical DOE assumes white noise and a correctly specified regression model:
and E(E ) = 0. In simulation, responses are independent if the pseudo-i, j

random number streams do not overlap and if the pseudorandom number generator is
adequate (see Chapter 4, by L'Ecuyer). Practitioners, however, often use common pseudo-
random numbers. In that case the resulting correlations should be estimated and incorpo-
rated through either EGLS (see §3.5, on VRTs) or OLS with corrected covariance matrix
(see (10)). Orthogonal designs, however, no longer give independent estimators of the re-
gression parameters: see (7) and (10). Whether other 'optimality' characteristics still hold,
requires more research; also see §4.8 (on optimal DOE).

The classical DOE literature tries to realize constant variances through variance
stabilizing transformations; see Box and Cox (1964). A major problem is that such a
transformation may result in a regression metamodel that has lack of fit, or that is hard to
interpret; also see Dagenais and Dufour (1996). A counter-example is the successful
M/M/s study in §3.7.

In simulation, however, there is another way to realize constant variances, as
simulation proceeds sequentially (apart from simulation on multi-processors). So simulate
so many replications that the average response per factor combination has a constant
variance (say) c :0

The variances in this equation can be estimated, either sequentially or in a pilot phase;
Kleijnen and Van Groenendaal (1995) report good results for this heuristic. In steady-state
simulations this equation needs slight adjustment.

Whether the regression metamodel is correctly specified, can be verified through
lack of fit tests, which were discussed at length in §3.6. These tests assume that degrees of
freedom are left over after estimation of the factor effects: n > q. Saturated designs
violate this assumption. Many designs, however, are not saturated, as the preceding
subsections demonstrated. If, however, a design is saturated, then one or more extra factor
combinations may be simulated; also see Kleijnen and Sargent (1997).

If the regression model shows significant lack of fit, then a polynomial regression
model may be augmented with higher-order terms: see the high-order interactions in §4.5.
Fortunately, many classical designs can be simulated stagewise. For example, a resolution-
3 design can be easily augmented to a resolution-4 design: see the foldover principle in
§4.3. And a resolution-5 design can be easily augmented to a central composite design: see
§4.6. An example will be provided by the case study on FMS in §4.9. Also see Kleijnen
(1987, pp. 329-333) and Kleijnen and Sargent (1997). Lack of fit may also be reduced
through transformations of the dependent or independent regression variables: see the
M/M/s study in §3.7.
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4.8 Optimal DOE

There are several optimality criteria in DOE: see St. John and Draper (1975); many more
references are given in Kleijnen (1987, p.357, footnote 65). Here only the following three
related criteria are discussed.
(i) A-optimality or trace of
An 'optimal' design may minimize the average variance of the estimated regression
parameters, given the number of parameters q and the number of factor combinations n. In
other words, the trace of the covariance matrix may be minimized.
(ii) D-optimality or determinant of
An error in the estimate for one parameter may affect the error for another parameter, so
the off-diagonal elements of the covariance matrix may also be relevant. The determi-
nant of gives a scalar criterion, which may be minimized.
(iii) G-optimality or maximum mean squared error (MSE)
The regression metamodel specified may be wrong. Therefore the design may minimize the
maximum value of the MSE between the true regression model and the fitted model. Also
see Box and Draper (1987) and Myers et al. (1989).

Kiefer and Wolfowitz (1959, p. 272) prove that under certain conditions a saturated
design (n = q ) gives 'optimal' results. They further started the investigation of which
values of the independent variables to observe and how many replicates to take; also see
Fedorov (1972). Recently, Cheng and Kleijnen (1997) extended Kiefer and Wolfowitz's
results to 'nearly saturated' queueing simulations (traffic rates close to one), which have
variance heterogeneity. Their main results are that the highest traffic rate actually simu-
lated should be much lower than the highest traffic rate that is of interest; and the highest
traffic rate simulated should be simulated for more customers than the lower traffic rates.
The latter result implies that the simulation budget should not be allocated equally to the
various traffic rates simulated.

Sacks, Welch, Mitchell, and Wynn (1989) assume that fitting errors are positively
correlated: the closer two factor combinations are in k-dimensional space, the more the
fitting errors are correlated. This assumption is realistic if the response function is smooth.
Technically speaking, they assume a covariance stationary process, as an alternative to
white noise. Also see Welch, Buck, Sacks, Wynn et al. (1992).

Optimal DOE gives designs that do not have the standard geometric patterns that
classical designs have. These designs can not be looked up in a table; they are generated by
means of a computer; see Nachtsheim (1987, pp. 146, 151). Additional research is needed
to facilitate more frequent application of optimal designs in simulation practice.

An overview of optimal DOE theory, including many references to the older
literature is Myers et al. (1989, pp. 140-141). More recent literature is given in Atkinson
and Cook (1995) and Ermakov and Melas (1995).

4.9 Case Study: FMS

A machine-mix problem for a particular FMS is studied in Kleijnen and Standridge (1988),
and summarized in Kleijnen and Van Groenendaal (1992, pp. 162-164). The analysts wish
to determine the number of machines, per type of machine such that a given production
volume is realized. There are four machine types: w through w . Only type #4 is a flexible1 4
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machine; the other types are dedicated to a particular operation. A more complicated
simulation model would allow for random service and arrival times, and random machine
breakdowns. Yet the deterministic simulation model actually used, demonstrates many
main issues to be solved in DOE. Issues typical for random simulation are runlength
determination and estimation of the response covariance matrix . These tactical issues
are not addressed in this case study. (Yet this study was initiated at a major supplier of
discrete-event simulation software, namely Pritsker & Associates.)

Because these inputs must be integers, there are only 24 feasible combinations in
the experimental domain. The actual values are given in Kleijnen and Standridge (1988),
but they are not relevant here. Initially eight intuitively selected combinations are simu-
lated; see Table 9.

INSERT Table 9: Intuitive design for the four factors in the FMS simulation in Kleijnen
and Standridge (1988)

Then DOE is applied, initially assuming a first-order polynomial regression
metamodel for these four factors. A possible resolution-3 design is a 2 design with 3 =4 - 1

1.2.4; see §4.2. This design is not saturated, so lack of fit can be examined. Because the
simulation model is deterministic, OLS is used to estimate the factor effects. Table 10
shows that the orthogonal design indeed gives more accurate estimates.

INSERT Table 10: Estimated variances of estimated effects in first-order polynomial
regression metamodel for FMS simulation

The remainder of this subsection concentrates on the results of the more accurate
2 design. Cross-validation gives Table 11, which displays the estimated factor effects4 - 1

that remain significantly different from zero when " = 0.30.

INSERT Table 11: Cross-validation and estimated factor effects significantly different from
zero when " = 0.30; first-order polynomial metamodel for four factors in FMS simulation

Besides the stability of individual effects in cross-validation, the relative prediction
errors /y are of interest. These errors turn out to range between -38% and +33%.i

Altogether, these cross-validation results lead to rejection of this first-order polynomial
regression metamodel.

Table 11 does suggest that the factors #1 and #3 are not important. Therefore a
metamodel for the remaining factors # 2 and #4 is formulated, but now including their
interaction. Using the old I/O data, which resulted from the 2 design, gives Table 12.4 - 1

INSERT Table 12: Cross-validation and stability of and in metamodel
with interaction for FMS

This table shows that in this new metamodel all estimated effects remain significant
in cross-validation! Further, the relative prediction errors /y become much smaller: theyi

now vary between -16% and +14%. So the conclusions of this case study are:
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(i) The machines of types 2 and 4 are bottlenecks, not the types 1 and 3: and are not
significant in Table 11.
(ii) There is a trade-off between the machine of types 2 and 4, as there is a significant
negative interaction: see in Table 12.
(iii) The regression metamodel helps to understand how the FMS works.

5. Optimization of Simulated Systems: RSM

Whereas the previous designs were meant to gain understanding of the simulation model
through what-if analysis, the goal of simulation experimentation may also be to optimize
the simulated system. There are many mathematical techniques for optimizing the decision
variables of nonlinear implicit functions; simulation models are indeed examples of such
functions. These function may include stochastic noise, as is the case in random simulation.
Examples of such optimization techniques are sequential simplex search (see Nachtsheim
1987), genetic algorithms, simulated annealing, and tabu search (see Nash 1995). Software
is given in Chapter 25 (Vendor survey; §25.3), for example, ProModel�s SimRunner and
MicroSaint�s OptQuest. There is virtually no software for optimization in the presence of
multiple responses; see Khuri (1996, p. 240, 242). Software for the optimization of system
dynamics includes DYSMOD�s pattern search; see Dangerfield and Roberts (1996). System
dynamics is a special kind of simulation, which may inspire developers of discrete-event
simulation software. This paper, however, concentrates on RSM.

Note that some authors outside the discrete-event simulation area speak of RSM,
but mean what this chapter calls the what-if regression-metamodeling approach, not the
sequential optimization approach; see, for example, Olivi (1980). Further, RSM assumes
that the decision variables are quantitative. Systems that differ qualitatively, are discussed
in Chapter 8 (by Goldsman and Nelson).

Classical RSM assumes a single type of response. However, the two case studies in
§5.2 and §5.3 have two response types. In these case studies one response is to be maxi-
mized, whereas the other response must meet a side-condition. In the case study in Keijzer,
Kleijnen, Mullenders, and Van Reeken (1981), however, three response types are consid-
ered, namely waiting time for each of three priority classes; a single overall criterion
function is formulated by quantifying tradeoffs among the waiting times per job class.

The next subsection (§5.1) first gives general characteristics of RSM; next, it will
give some details on RSM. The two last subsections (§5.2, §5.3) give case studies.

5.1 Response Surface Methodology

RSM has the following four general characteristics.
(i) RSM relies on first and second order polynomial regression metamodels or response
surfaces; the responses are assumed to have white noise (see §3).
(ii) RSM uses classical designs (see §4).
(iii) RSM adds to regression models and DOE the mathematical (not statistical) technique
of steepest ascent; that is, the estimated gradient determines in which direction the decision
variables are changed.
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(iv) RSM uses the mathematical technique of canonical analysis to analyze the shape of the
optimal region: does that region have a unique maximum, a saddle point or a ridge
(stationary points)?

Now consider some details. Suppose the goal of the simulation project is to maxi-
mize the response; minimization is strictly analogous.

RSM begins by selecting a starting point. Because RSM is a heuristic, success is not
guaranteed. Therefore several starting points may be tried later on, if time permits.

RSM explores the neighborhood of the starting point. The response surface is
approximated locally by a first-order polynomial in the decision variables, as the Taylor
series expansion suggests. This gives the regression metamodel in (1), but with all cross-
products eliminated. Hence k main effects $ with h = 1, ..., k are to be estimated,. Forh

that purpose a resolution-3 design should be used; this gives n k + 1; see §4.2.
If (say) the estimated effects are such that >> > 0, then obviously the

increase of w (decision variable 1) should be larger than that of w ; the symbol w refers to1 2

the original, non-standardized variables; see (2). The steepest ascent path means
= / ; in other words, steepest ascent uses the local gradient.

Unfortunately, the steepest ascent technique does not quantify the step size along
this path. Therefore the analysts may try a specific value for the step size. If that value
yields a lower response, then the step size should be reduced. Otherwise, one more step is
taken. Note that there are more sophisticated mathematical procedures for selecting step
sizes; also see Safizadeh and Signorile (1994).

Notice that special designs have been developed to estimate the slope accurately;
that is, these designs are alternatives to the classical resolution-3 designs mentioned above;
see Myers et al. (1989, pp. 142-143).

Ultimately, the simulation response must decrease, since the first-order polynomial
is only a local approximation to the real I/O transformation of the simulation model. In that
case the procedure is repeated. So around the best point so far, the next n k + 1 combi-
nations of w through w are simulated. Note that the same resolution-3 design may be1 k

used; only the locations and spreads of the original variables are adjusted: see (2). Next the
factor effects in the new local first-order polynomial are estimated. And so RSM proceeds.

A first-order polynomial or hyperplane, however, cannot adequately represent a hill
top. So in the neighborhood of the optimum, a first-order polynomial may show serious
lack of fit. To detect such specification error, the analysts might use cross-validation. In
RSM, however, simple diagnostic measures are more popular: R << 1, ( )2

>> . Also see §3.6 (on lack of fit).
So next a second-order polynomial is fitted: see §3 and §4. Finally, the optimal

values of the decision variables w are found by straightforward differentiation of thish

polynomial. A more sophisticated evaluation uses canonical analysis; see Myers et al.
(1989, p. 146).

Software for RSM is available. Much software referenced in the section on DOE
(§4), also handles RSM. Nachtsheim (1987) discusses special RSM software, namely
SIMPLEX-V and ULTRAMAX. This software provides designs such as central composite
designs (see §4.6), and contour plots of the fitted surface, even for multiple responses; also
see Myers et al. (1989, pp. 145-146, 148).

RSM is further discussed in Fu (1994), Ho, Shi, Dai, and Gong (1992), Khuri and
Cornell (1996), and Sheriff and Boice (1994). Applications of RSM to simulated systems
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can be found in Hood and Welch (1993), Kleijnen (1987), and Kleijnen and Van Groen-
endaal (1992). Numerous applications outside the simulation field are surveyed in Myers et
al. (1989, pp. 147-151). The next subsection summarizes a case study illustrating how
RSM climbs a hill; a following subsection (§5.3) gives a different case study illustrating
how a hill top can be further explored when there are two response types.

5.2 Case Study: Production Planning DSS

Kleijnen (1993) studies a DSS for production planning in a specific Dutch steel tube
factory that has already been mentioned in §1. Both the DSS and the factory are simulated;
the DSS is to be optimized. This DSS has fourteen decision variables; for example, w1

denotes 'penalty for producing class-2 products on the next best machine'. There are two
response variables, namely the total number of productive hours, and the 90% quantile of
lead time. Simulation of one input combination takes six hours on the computer available at
that time. Consequently, searching for the optimal combination must be performed with
care.

The original team of operations researchers planned to fit a local first-order
polynomial with 14 inputs. They designed to simulate the base case first. Next they
planned to change one factor at a time, once making each factor 20% higher than its base
value, and once 20% lower. Obviously, this design implies n, number of simulated factor
combinations, equal to 1 + 2 14 = 29. Kleijnen (1993), however, uses a 2 design,14 - 10

so n = 16 > q = 15. The specific n = 16 combinations are specified by writing all 24

combinations of the first four factors, and then using the generators 5 = 1.2, 6 = 1.3, 7
= 1.4, 8 = 2.3, 9 = 2.4, 10 = 3.4, 11 = 1.2.3, 12 = 1..2.4, 13 = 1.3.4, and 14 =
2.3.4.

The resulting OLS estimates are not tested for significance, as a small parameter
value may become a big value in a next local area. Table 13 gives the local effects on
productive hours and on lead time respectively.

INSERT Table 13: Estimated local effects on productive hours and lead time in simulated
production planning DSS

This table demonstrates that some decision variables have a favorable local effect on
both response types. For example, raising w by one unit increases production by =1

0.52; at the same time this raise improves lead time by = -0.054. And lowering w by4

one unit changes production by = -18.07, while it decreases lead time by =
150.583. Because the decision variables have different scales and ranges, this table gives
not only the unit effects but also the unit effects multiplied by the base values (say) w0, 1

through w .0, 14

The step size in RSM must be determined heuristically. In this case the step size is
selected such that at least one of the decision variables is doubled. Table 14 shows that w12

changes from 0.33 to 0.5936; the other thirteen variables do not change much. These
changes result from a step size of 0.0005; that is, the base values w become w +0, h 0, h

0.0005 . Further results are given in Kleijnen (1993).
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INSERT Table 14: Values of decision variables in base run and after a step of 0.005 on
steepest ascent

5.3 Case Study: Coal Transport

This subsection returns to the coal transport model already presented in §3.8, but now the
focus is on optimization instead of sensitivity analysis. Wolstenholme (1990, pp. 125-127)
restricts the optimization to the best control rule, namely policy III. Obviously efficiency,
now denoted by y , can not exceed 100%. Therefore the goal is to minimize total costs,(1)

denoted by (say) y , under the condition that the efficiency remains at its maximum of(2)

100%. Wolstenholme assumes that one input is fixed: the 'maximum discharge rate' is
fixed at an average of 1000 tons/hour. He wishes to optimize the two remaining inputs, w1

or 'total belt capacity' and w or 'capacity per bunker'. (The two symbols w and w have2 2 3

different meanings in §3.8 and this subsection.) The cost parameters are £1000/ton/hour
for w and £2000/ton for w . The total costs are a linear function of the decision variables:1 2

y = 1000w + 2000w . Efficiency, however, is a complicated non-linear function speci-(2)
1 2

fied by the system dynamics model; see §3.8.
Kleijnen (1995) develops the following heuristic, inspired by RSM. Classic RSM,

however, maximizes a single criterion, ignoring restrictions such as the one on efficiency,
namely y = 1.(1)

Step 1. Find an initial combination w = (w , w )' that yields a simulated efficiency1 2

of 100%. Such a combination is already available: see the element in the last row and
column of Table 3, discussed in §3.8.

Step 2. Reduce each input by (say) 10%. Simulate the system dynamics model with
this input. Obtain the corresponding output.

Step 3. If the output of step 2 is still 100%, then return to step 2; else proceed to
the next step.

Step 4. Find the most recent input combination that satisfies the efficiency
restriction y = 1; see steps 1 and 2. Reduce the step size to (say) 5%. Simulate the model(1)

with this new input combination, and obtain the corresponding output.
Step 5. Further explore the most recent local area that includes a combination with

y = 1. In other words, simulate the model for the four input combinations that are
specified by the 2 design. In Figure 2 these four combinations form the rectangle with2

lower left corner (2693, 923) and upper right corner (2835, 972).
Since this heuristic does not result in further progress, the optimum seems to be

close. Now a second-order polynomial is specified as an approximation to the production
function y (w , w ). To estimate the six parameters in this polynomial, the 2 design is(1) 2

1 2

expanded to the central composite design of Table 8, discussed in §4.6. Figure 2 shows the
central point (2764, 948). The standardized axial value c is set at 0.75; if c > 1 then (0, c)
and (c, 0) give too high costs, and (0, -c) and (-c, 0) give too low efficiencies. Table 15
shows the standardized and original values of the two decision variables, and the resulting
costs and efficiencies.

INSERT Table 15: Input combinations in the central composite design with corresponding
costs and efficiencies for the coal transport system
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From the I/O data in that table the second-order polynomial can be estimated.
Because the simulation model is deterministic, OLS is used. This gives

Though the quadratic and interaction coefficients look small, they should not be ignored,
since they are multiplied by , , and , which are large.

Step 6. Combine this second-order polynomial approximation with the cost
restriction y = 1000w + 2000w ; that is, replace in the left-hand side of this(2)

1 2

polynomial by the value one. Mathematically, this results in an ellipsoid: Figure 2 shows
only a small part of that ellipsoid. Economically, the ellipsoid gives the efficiency frontier:
outside the ellipsoid, inputs are wasted; inside that ellipsoid the efficiency is too low.

Minimizing the total cost y = 1000w + 2000w under the efficiency restriction(2)
1 2

y = 1 can be done through a Lagrangean multiplier. This yields the estimated optimal(1)

input combination ( ) = (2841.35; 968.17). Graphically, this is the point in which
the efficiency frontier is touched by an iso-cost line with the angle -1000/2000 = -1/2.

INSERT Figure 2. Central composite design, estimated efficiency frontier, and optimal
iso-cost line; * means y = 1; O means y < 1(1) (1)

This optimum is based on an approximation: the estimated second-order polynomial
has a multiple correlation coefficient R of only 0.80. Therefore this solution is checked:2

simulate the system dynamics model with the estimated optimal input combination. This
simulation indeed gives 100% efficiency. However, its cost is £ 4.78 mln, which exceeds
the lowest cost in Table 15 that corresponds with a combination that also gives 100%
efficiency. In that table the combination (2835.00; 923.40) gives a cost of £ 4.68 mln,
which is 2% lower than the estimated optimal cost. Compared to Wolstenholme (1990, pp.
125-127), the final solution saves £ 0.72 mln or 15%, which is a substantial cost reduc-
tion.

6. Validation and Verification (V & V)

6.1 Overview

This chapter limits its discussion of V & V to the role of regression analysis and DOE; V
& V are further discussed in Chapter 10 (by Balci); also see Kleijnen (1995a). Obviously,
V & V is one of the first questions that must be answered in a simulation study. For di-
dactic reasons, however, V & V is discussed at the end of this chapter.

True validation requires that data on the real system be available. In practice, the
amount of such data varies greatly: data on failures of nuclear installations are rare,
whereas electronically captured data on computer performance and on supermarket sales
are abundant.

If data are available, then many statistical techniques can be applied. Assume that
the simulation is fed with real-life input data: this is known as trace driven simulation.
Then simulated and real responses (say) Y and X respectively might be compared through
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the Student statistic for paired observations, assuming (say) m normally and independently
distributed (n.i.d.) observations on X and Y: see (8) with replaced by and = m
- 1.

A better test, however, uses regression analysis, as follows. Regress Y - X on Y +
X; that is, in the regression model (1) replace Y by Y - X and x by Y + X. Use a first-order
polynomial; that is, delete cross-products in (1). Next test the null-hypothesis H : $ = 00 0

and $ = 0. This hypothesis implies equal means and equal variances of X and Y, as is1

easily derived assuming bivariate normality for (X, Y). This hypothesis is tested using the
familiar F statistic. Whenever the simulation responses are non-normal, a normalizing
transformation should be applied. Kleijnen, Bettonvil, and Van Groenendaal (1997) give
details, including numerical examples for single-server queueing simulations. This
reference also demonstrates that a valid simulation model is rejected too often when simply
regressing Y on X, and testing for zero intercept and unit slope.

If no data are available, then DOE can be used, in the following way. The -
simulationists and their clients do have qualitative knowledge about certain parts of the
simulated and the corresponding real system; that is, they do know in which direction
certain factors affect the response of the corresponding module in the simulation model;
also see the discussion on known signs in sequential bifurcation in §2.2. If the regression
metamodel discussed in §3 gives an estimated factor effect with the wrong sign, this is a
strong indication of a wrong simulation model or a wrong computer program!

To obtain a valid simulation model, some inputs may need to be restricted to a
certain domain of factor combinations. This domain corresponds with the experimental
frame in Zeigler (1976), a seminal book on modeling and simulation.

The regression metamodel shows which factors are most important; that is, which
factors have highly significant regression estimates in the metamodel. If possible, informa-
tion on these factors should be collected, for validation purposes.

The importance of sensitivity analysis in V & V is also emphasized by Fossett,
Harrison, Weintrob, and Gass (1991, p. 719). They investigate three military case studies,
but do not present any details.

One application of DOE and regression analysis in V & V is the ecological study in
Kleijnen, Van Ham, and Rotmans (1992, p. 415), which concerns the same greenhouse
problem examined in Bettonvil and Kleijnen (1997). The regression metamodel helped to
detect a serious error in the simulation model: one of the original modules should be split
into two modules. This application further shows that some factors are more important than
the ecological experts originally expected. This 'surprise' gives more insight into the
simulation model. Another application will be given in the next subsection.

6.2 Case Study: Mine Hunting at Sea

Kleijnen (1995b) considers a simulation model for the study of the search for explosive
mines on the sea bottom by means of sonar. This model was developed for the Dutch navy,
by TNO-FEL, which stands for Applied Scientific Research-Physics and Electronics Labo-
ratory; this is a major military research institute in the Netherlands. The model is called
HUNTOP, which stands for mine HUNTing Operation. Other countries have similar simu-
lation models for naval mine hunting; the corresponding literature is classified.



�$
2

34

In this case study, V & V proceeds in two stages: in stage #1 individual modules
are validated; in stage #2 the whole simulation model is treated as one black box, and is
validated. The latter stage, however, is not discussed here, but in Kleijnen (1995b).

Some modules within the model give intermediate output that is hard to observe in
practice, and hence hard to validate. Sensitivity analysis is applied to such modules, in
order to check if certain factor effects have signs or directions that agree with experts'
prior qualitative knowledge. For example, deeper water gives a wider sonar window; see
$ in the sonar window module below.2

Because of time constraints, only the following two modules are examined in the
HUNTOP case study.

(i) Sonar window module
The sonar rays hit the bottom under the so-called grazing angle. This angle is determined
deterministically by three factors, namely w or Sound Velocity Profile (SVP) that maps1

sound velocity as a function of depth, w or average water depth, and w or tilt angle. SVP2 3

is treated as a qualitative factor.
The sonar window module has as response variables y , the minimum distance of(1)

the area on the sea bottom that is insonified by the sonar beam, and y , the maximum(2)

distance of that same area. Consider a second-degree polynomial in the two quantitative
factors w and w , namely one such polynomial for each SVP type. Note that a first-degree2 3

polynomial misses interactions and has constant marginal effects; a third-order polynomial
is more difficult to interpret and needs many more simulation runs. So a second-order
polynomial seems a good compromise

To estimate the q = 6 regression parameters of this polynomial, use the classical
central composite design with n = 9 input combinations, already displayed in Table 8. The
fitted polynomial turns out to give an acceptable approximation: the multiple correlation
coefficient R ranges between 0.96 and 0.98, for the four SVPs simulated.2

Expert knowledge suggests that certain factor effects have specific signs, namely $2

> 0, $ < 0, and $ < 0. Fortunately, the corresponding estimates turn out to have the3 2, 3

correct signs. So this module has the correct I/O transformation, and the validity of this
module need not be questioned. The quadratic effects are not significantly different from
zero. So on hindsight, simulation runs could have been saved, since a resolution-5 design
instead of a central composite design would have sufficed.

For y , maximum distance, similar results hold. The exception is one SVP that(2)

results in an R of only 0.68 and a non-significant .2

(ii) Visibility module
An object is visible if it is within the sonar window, and it is not concealed by the bottom
profile. HUNTOP represents the bottom profile through a simple geometric pattern,
namely hills of fixed heights with constant upward slopes and constant downward slopes. A
fixed profile is used within a single simulation run. Intuitively, the orientation of the hills
relative to the ship's course and to the direction of the sonar beam is important: does the
sonar look down a valley or is its view blocked by a hill? The response variable of this
module is the time that the object is visible, expressed as a percentage of the time it would
have been visible were the bottom flat; obviously, a flat bottom does not conceal an object.
Six inputs are varied, namely water depth, tilt angle, hill height, upward hill slope,
downward hill slope, and object's position on the hill slope (top, bottom, or in between).
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A quadratic polynomial regression metamodel is also used for this module. To esti-
mate the 28 regression parameters, a central composite design is used. This design has 77
input combinations. R turns out to be 0.86. The upward hill slope has no significant ef-2

fects at all: no main effect, no interactions with the other factors, no quadratic effect.
These results agree with the experts' qualitative knowledge. So the validity of this module
is not questioned either.

7. Conclusions

In the Introduction (§1) the following questions were raised:
1. What if: what happens if the analysts change parameters, input variables or modules of a
simulation model? This question is closely related to sensitivity analysis and optimization.
2. Validation: is the simulation model an adequate representation of the corresponding sys-
tem in the real world?
These questions were answered as follows, in the remainder of this chapter.

In the initial phase of a simulation it is often necessary to perform screening: which
factors among the multitude of potential factors are really important? The goal of screening
is to reduce the number of really important factors to be further explored in the next phase.
The technique of sequential bifurcation is simple and efficient. This technique also seems to
be effective.

Once the important factors are identified, further study requires fewer assumptions,
namely no known signs are assumed. This study may use regression analysis. It generalizes
the results of the simulation experiment, since it characterizes the I/O transformation of the
simulation model.

Design Of Experiments (DOE) gives better estimators of the main effects, interac-
tions, and quadratic effects in this regression metamodel. So DOE improves the effective-
ness of simulation experimentation. DOE requires relatively few simulation runs, which
means improved efficiency.

Once the factor effects are quantified through the corresponding regression
estimates, they can be used in V & V, especially if there are no data on the I/O of the
simulation model or its modules, and in optimization through RSM, which augments re-
gression analysis and DOE with the steepest-ascent hill-climbing technique.

Applying the statistical techniques of this chapter in simulation studies is meant to
make these studies give more general results, in less time These techniques have already
been applied many times in practical simulation studies, in many domains, as the various
case studies demonstrated. This chapter should stimulate more analysts to apply these
techniques..

In the mean time, research on statistical techniques adapted to simulation, should
continue. This chapter did mention several items that require further research.

Appendix 1: Confidence intervals for individual responses

The following formulas are taken from Kleijnen (1996).
(i) Mean of terminating simulation
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(24)

(25)

(26)

(27)

(28)

(29)

A 1 - " one-sided confidence interval for E(Y) is

where denotes the 1 - " quantile of the Student statistic T . This interval assumesm - 1

that the simulation response Y is normally, independently distributed (n.i.d.). The Student
statistic is known to be not very sensitive to non-normality; the average is asymptotically
normally distributed (Central Limit Theorem).

Johnson (1978) modifies the Student statistic in case Y has a distribution with
asymmetry coefficient (also see Kleijnen 1987, pp. 22-23):

where S denotes the asymmetry estimator:3

Kleijnen, Kloppenburg and Meeuwsen (1986) discuss this statistic in detail.
(ii) Mean of steady-state simulation
For steady-state simulations the analysts may apply renewal analysis (also see Chapter 7,
by Alexopoulos and Seila). Denote the length of the renewal cycle by L, and the total cycle
response (for example, total waiting time over the whole cycle) by W. Then the steady-
state mean response is

This analysis uses ratio estimators; see in the next equation. Crane and Lemoine
(1977, pp. 39-46) derive the following asymptotic 1 - " confidence interval for the mean:

where denotes the (1 - ") quantile of the standard normal variate N(0, 1), m is now the
number of cycles (in terminating simulations m was the number of replications), and S is a2

short-hand notation:

where the (co)variances are estimated analogous to (14).
In a Markov system, any state can be selected as the renewal state. A practical

problem, however, is that it may take a long time before the selected renewal state occurs
again; for example, if the traffic rate is high, then it takes a long time fore all servers to be
idle again. Also, if there are very many states (as may be the case in network systems),
then it may take a long time before a specific state occurs again. In those cases nearly
renewal states may be used; for example, define 'many servers busy' as the set of (say)
two states, 'all servers busy' or 'all minus one servers busy'. This approximate renewal
state implies that the cycles are not exactly i.i.d. However, for practical purposes they may
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(30)

(31)

(32)

be nearly i.i.d., which may be tested through the Von Neumann statistic for successive
differences:

This statistic is approximately normally distributed with mean 2 and variance 4(m - 2)/(m -2

- 1), provided the W are n.i.d.. Since W is a sum, normality may apply. However, whenj

testing the mutual independence of the cycle lengths L and L , a complication is that Lj j - 1

probably has an asymmetric distribution. Then the rank version of the Von Neumann
statistic may be applied; see Bartels (1982). To ensure that the Von Neumann test has a
reasonable chance of detecting dependence, at least 100 cycles are needed: for m < 100
the test has low power; see Kleijnen (1987, p. 68).

The proposed approximate renewal analysis of simulation requires more research.
Also see Gunther (1975), Gunther and Wolff (1980), and Pinedo and Wolff (1982). A
different method for 'accelerating' the renewal process is proposed in Andradottir, Calvin,
and Glynn (1995).
(iii) Proportions
A proportion (say) p is estimated by comparing the simulation outputs y (j = 1, ..., m)a j

with the prespecified constant a, which leads to the binomially distributed variable (say) B
= D with D = 0 if Y < a; else D = 1. This binomial variable has variance p (1j j j j a

- p )m. Obviously, B/m is an estimator of p with variance p (1 - p )/m.a a a a

(iv) Quantiles
The following notation ignores the fact that pm, l, and u are not necessarily integers;
actually these three real variables must be replaced by their integer parts. The p quantileth

z (with 0 < p < 1) may be estimated by the order statistic . The (1 - ") confidencep

interval is

where the lower limit is the l order statistic withth

and the upper limit is the u order statistic that follows from the preceding equationth

replacing the minus sign in front of z by a plus sign. Proportions and quantiles in
"/2

terminating and steady-state simulations are further discussed in Kleijnen (1987, pp. 36-40)
and Kleijnen and Van Groenendaal (1992, pp. 195-197).
(v) Multiple responses
In the presence of multiple responses, each individual (1 - ") confidence interval has a
coverage probability of 1 - ", but the simultaneous or joint coverage probability is lower.
If the intervals were independent and there were (say) two responses, then this probability
would be (1 - ") . Bonferroni's inequality implies that if the individual confidence intervals2

use ", then the probability that both intervals hold simultaneously is at least 1 - 2". In
general, this conservative procedure implies that the simultaneous type I error rate (say) "E

is divided by the number of confidence intervals, in order to guarantee a joint probability
of " .E

Appendix 2: Variance reduction techniques
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(33)

(34)

VRTs are discussed in detail in Fishman (1989), Kleijnen (1974/75, pp. 105-285), Kleijnen
and Van Groenendaal (1992, pp.197-201), Ermakov and Melas (1995), Tew and Wilson
(1994), and in the references mentioned below.
(i) Common Pseudorandom Numbers
In the what-if approach there is more interest in the differences than in the absolute magni-
tudes of the simulation outputs. Intuitively it seems appropriate to examine simulated
systems under equal conditions, that is, in the same environments. This implies the use of
the same stream of pseudorandom numbers for two different factor combinations. Then the
two simulation responses (say) Y and Y become statistically dependent. A general1 2

relationship is

So if the use of the same pseudorandom numbers does result in positive correlation, then
the variance of the difference decreases.

However, in complicated models it may be difficult to realize a strong positive
correlation. Therefore separate sequences of pseudorandom numbers are used per 'pro-
cess'; for example, in a queueing network a separate seed is used per server. One seed may
be sampled through the computer's internal clock. However, sampling the other seeds in
this way may cause overlap among the various streams, which makes times at different
servers statistically dependent. For certain generators, there are tables with seeds 100,000
apart. For other generators such seeds may be generated in a separate computer run. Also
see Kleijnen and Van Groenendaal (1992, pp. 29-30).

The advantage of a smaller variance comes at a price: the analysis of the simulation
results becomes more complicated, since the responses are not independent anymore. Now
the analysts should use either GLS or OLS with adjusted standard errors for the estimated
regression parameters; this implies that the analysts should estimate the covariances
between simulation responses. In practice this complication is often overlooked.
(ii) Antithetic pseudorandom numbers
The intuitive idea behind antithetic pseudorandom numbers (briefly 'antithetics') is as
follows. When replication #1 samples many long service times, then the average waiting
time y is higher than expected. So it is nice if replication #2 compensates this overshoot.
Statistically this compensation means negative correlation between the responses of replica-
tions #1 and #2. The variance of their average (say) , taking into account that both repli-
cations have the same variance, follows from (33):

So the variance of the average decreases as the correlation becomes more
negative.

To realize a strong negative correlation, use the pseudorandom numbers r for
replication #1, and the 'antithetics' 1 - r for replication #2. Actually, the computer does
not need to calculate the complements 1 - r, if it uses a multiplicative congruential
generator. Then it suffices to replace the seed r by its complement e - r , where e stands0 0

for the generator's modulo; that is, r = fr mod e where f denotes the generator's multi-t t - 1

plier. Also see Kleijnen (1974, pp. 254-256).
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(35)

(36)

(37)

(38)

(iii) Control variates or regression sampling
Consider the following linear correction:

where Y is called the linear control variate estimator. Obviously, this new estimatorc

remains unbiased. It is easy to derive that this control variate estimator has minimum vari-
ance, if the correction factor ( equals1

In practice, however, the correlation is unknown, so it is estimated. Actually,
replacing the three factors in the right-hand side of the preceding equation by their classic
estimators results in the OLS estimator (say) C of the regression parameter ( in the1, OLS 1

regression model

where denotes the fitting error of this regression model, analogous to E in (1). Obvious-
ly, these two regression parameters ( ) are estimated from the m replications that
give m i.i.d. pairs ( ) with h = 1, ..., m.

The OLS estimator of defined in (36) gives a new control variate estimator. Let
denote the average over m replications of the responses Y , the average over mj

replications of (average service time per run), and C the OLS estimator of ( in1, OLS 1

(37) or in (36) based on the m pairs (Y, ). Then the new control variate estimator is
given in (15). This estimator is easy to interpret, noticing that the estimated regression line
goes through the point of gravity, ( ).
(iv) Importance sampling
The preceding VRTs relied on the correlation between (i) the responses of systems with
comparable simulated environments realized through common seeds, (ii) the responses of
antithetic runs, or (iii) the output and inputs or control variates. In other words, the
simulation model itself was not affected; the computer program might be slightly adapted
to increase the positive and negative correlations (seeds were changed or inputs were moni-
tored). Importance sampling, however, drastically changes the sampling process of the
simulation model. This technique is more sophisticated, but it is necessary when simulating
rare events; for example, buffer overflow may occurs with a probability of (say) one in a
million replicated months so a million replicated months must be simulated, to expect to
see a single breakdown of the system!

The basic idea of importance sampling can be explained simply in the case of static,
non-dynamic simulation, also known as Monte Carlo sampling. Consider the following
example integral

This can be estimated through Crude Monte Carlo as follows.
(i) Sample x from the negative exponential distribution with parameter ; that is, x
Ne( ).
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(39)

(40)

(41)

(42)

(43)

(ii) Substitute the sampled value x into the 'response' Y = g(X) with

Obviously, g(X) is an unbiased estimator of . Notice that the event 'g(x) > 0' becomes a
rare event as .

Importance sampling does not sample x from the original distribution f(x) (in the
example, Ne( )), but from a different distribution (say) h(x). The resulting x is substituted
into the response function g(x). However, g(x) is corrected by the likelihood ratio f(x)/h(x).
This gives the corrected response

This estimator is an unbiased estimator of :

It is quite easy to derive the optimal form of h(x), which results in minimum variance.
For dynamic systems (such as queueing systems) a sequence of inputs must be

sampled; for example, successive service times X with t = 1, 2, .... If these inputs are1, t

assumed to be i.i.d. and Ne( )), then their joint density function is given by

Suppose crude Monte Carlo and importance sampling use the same type of input distri-
bution, namely, negative exponential but with different parameters and respectively.
Then the likelihood ratio becomes

Obviously this expression can be reformulated to make the computations more efficient.
In the simulation of dynamic systems it is much harder to obtain the optimal new

density. Yet in some applications, distributions were derived that did give drastic variance
reductions; see Heidelberger (1995), Heidelberger et al. (1996), Rubinstein and Shapiro
(1992), and the literature mentioned at the beginning of this appendix.

Appendix 3: Jackknifing control variates
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Control variates are based on m i.i.d. pairs, say, (Y , ) with j = 1, ..., m; see Ap-j

pendix 2. Now eliminate pair j, and calculate the following control variate estimator (see
(35)):

where denotes the sample average of the responses after elimination of Y : furtherj

denotes the average service time after eliminating replication j, and C denotes-j, OLS

the OLS estimator based on the remaining m - 1 pairs. Note that = =
1/ . This gives the pseudovalue

where is the control variate estimator based on all m pairs.
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Table 1: Average queue length of 2000 customers in M/M/s simulation started in empty
state

Replication
Comb. 8 µ s 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

1 1 0.9 2 0.56 0.55 0.47 0.52 0.42 0.55 0.44 0.46 0.31 0.52
0.38 0.56 0.66 0.64 0.56 0.45 0.51 0.49 0.38 0.47

2 1 0.38 4 1.14 0.72 0.78 0.74 1.14 0.67 0.51 1.04 0.86
0.97

0.82 0.71 0.63 0.81 0.60 0.67 0.49 0.47 0.66 0.62
3 2 1.6 2 1.18 0.78 0.80 1.60 0.87 0.81 0.93 0.71 0.62

0.87
0.69 1.15 0.98 1.00 0.72 0.84 0.67 0.99 0.90

0.69
4 2 1 4 0.11 0.19 0.16 0.14 0.20 0.14 0.13 0.11 0.20

0.16
0.17 0.18 0.18 0.23 0.12 0.14 0.16 0.13 0.18

0.23
5 4 2.9 2 1.74 1.10 1.24 1.23 1.31 1.27 1.07 1.64 1.70

1.57
1.07 1.27 0.90 1.12 1.29 1.13 1.08 1.41 1.19

1.17
6 4 1.69 4 0.41 0.39 0.60 0.31 0.37 0.36 0.42 0.26 0.42

0.40
0.43 0.57 0.27 0.36 0.38 0.35 0.29 0.29 0.32

0.41
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Table 2: Regression analysis of M/M/s example, using standard SAS software

Linear regression: OLS
R-square 0.9078

ADJ R-SQ 0.9054

Parameter estimates

Parameter Standard T for HO:
Variable D.F. estimate error parameter=0 Prob >*T*

INTERCEPT 1 2.82523873 0.10951557 25.798 0.0001
LOGLABDA 1 5.10760536 0.19460843 26.246 0.0001
LOGMU 1 -5.21545 0.19938765 -26.157 0.0001
LOGSERVERS 1 -5.90304 0.18832235 -31.345 0.0001

Covariance of estimates
COVB INTERCEPT LOGLABDA LOGMU LOGSERVERS
INTERCEPT 0.01199366 0.01576176 -0.0172908 -0.0189349
LOGLABDA 0.01576176 0.03787244 -0.0381753 -0.034371
LOGMU -0.0172908 -0.0381753 0.03975544 0.035793
LOGSERVERS -0.0189349 -0.034371 0.0357937 0.03546531
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Table 2: (Continued)

Linear regression: CLS
R-square
0.9491

Parameter Standard T statistic
errors

2.82524 0.11376 24.83509
5.10761 0.20000 25.53805
-5.21545 0.21361 -24.41576
-5.90304 0.19607 -30.10680

COVB

0.012942 0.0180258 -0.020285 -0.02091
0.018026 0.0399989 -0.042134 -0.03712
-0.020285 -0.042134 0.045630 0.040085
-0.020909 -0.03712 0.040085 0.038444

Linear regression: EWLS
R-square
0.9477

ADJ R-SQ
0.9463

Parameter Standard T statistic
errors

2.80905 0.11300 24.85885
5.08647 0.19873 25.59488
-5.19890 0.21285 -24.42518
-5.87790 0.19492 -30.15545

COVB

0.0127697 0.0178555 -0.020153 -0.020676
0.0178555 0.0394948 -0.04173 -0.036675
-0.020153 -0.04173 0.0453059 0.0397319
-0.020676 -0.036675 0.0397319 0.0379927
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Table 3: Input/output per policy for Wolstenholme�s (1990) coal transport model

Run w w w y for y for y for1 2 3

policy I policy II policy III

1 2000 700 150 55.78 56.87 65.87

2 3500 700 150 66.34 57.65 66.34

3 2000 1000 150 56.48 62.09 66.42

4 3500 1000 150 72.63 65.48 72.63

5 2000 700 1200 62.62 74.61 85.16

6 3500 700 1200 87.94 74.76 87.94

7 2000 1000 1200 78.47 80.73 85.60

8 3500 1000 1200 100 93.18 100
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Table 4: Estimates of main effects $ , upon deleting a combination, in policy I;h

a blank denotes a nonsignificant effect;
denotes an estimated effect significant at " = 0.20;*

all other estimated effects are significant at " = 0.10

Combination

deleted ß ß ß ß R adj. R0 1 2 3

2 2

1 70.900 10.823 5.995 11.358 0.9772 0.9543

2 72.858 9.520 4.038 9.400 0.9316 0.8632*

3 72.906 8.821 4.736 9.351 0.9202 0.8404*

4 73.466 10.129 5.300 8.791 0.9478 0.8955

5 74.053 7.675 2.843 11.245 0.9730 0.9461*

6 72.320 8.983 4.575 9.613 0.9194 0.8387*

7 72.271 9.456 4.101 9.463 0.9310 0.8620

8 71.486 8.149 8.679 0.9026 0.8052

None 72.535 9.195 4.363 9.725 0.9314 0.8799
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Table 5: A Plackett-Burman design with 12 combinations
+ denotes +1; - denotes -1

1 2 3 4 5 6 7 8 9 10 11

+ - + - - - + + + - +

+ + - + - - - + + + -

- + + - + - - - + + +

+ + + - + + - - _ + +

+ - + + - - - - - - +

+ + - + + + + + - - -

- + + + - + + - + - -

- - + + + - + + - + _

- - - + + + - + + - +

+ - - - + + + - + + -

- + - - - + + + - + +

- - - - - - - - - - -
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Table 6: A 2 design with generators 4 = 1.2, 5 = 1.3, 6 = 2.3, 7 = 1.2.37 - 4

1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 =1.2.3

- - - + + + -

+ - - - - + +

- + - - + - +

+ + - + - - -

- - + + - - +

+ - + - + - -

- + + - - + -

+ + + + + + +
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Table 7: A 2 foldover design with generators 4 = 1.2.8, 5 = 1.3.8, 6 = 2.3.8, 7 = 1.2.38 - 4

Run 1 2 3 4 5 6 7 8

1 - - - + + + - +

2 + - - - - + + +

3 - + - - + - + +

4 + + - + - - - +

5 - - + + - - + +

6 + - + - + - - +

7 - + + - - + - +

8 + + + + + + + +

9 + + + - - - + -

10 - + + + + - - -

11 + - + + - + - -

12 - - + - + + + -

13 + + - - + + - -

14 - + - + - + + -

15 + - - + + - + -

16 - - - - - - - -
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Table 8: Central composite designs for two factors

Run 1 2 3 4 5 6 7 8 9

1' + - + - c -c 0 0 0

2' - + - + 0 0 c -c 0

Table 9: Intuitive design for the four factors in the FMS simulation in Kleijnen and Standridge
(1988)

Run
i w w w w

1 2 3 4

1 - - - -

2 + - + 0

3 - + + 0

4 + + - -

5 - - + +

6 + - - 0

7 - + - 0

8 + + + +
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Table 10: Estimated variances of estimated effects in first-order polynomial regression
metamodel for FMS simulation

Effect Intuitive Formal
design design

0.5 0.5
0.5 0.5
1.0 0.5
0.5 0.13
20.6 19.6

Table 11: Cross-validation and estimated factor effects significantly different from zero when
" = 0.30; first-order polynomial metamodel for four factors in FMS simulation

Run
deleted

1 557 577

2 712 500 2032

3 640 700

4 629 694

5 658 1962

6 736

7 536

none 541 3288

541 3288
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Table 12: Cross-validation and stability of and in metamodel with interaction

for FMS

Run
deleted

1 952 1364 -492 776

2 952 1300 -460 776

3 952 1324 -468 776

4 952 1340 -484 776

5 1152 1432 -576 576

6 752 1232 -376 976

7 952 1332 -476 776

8 952 1332 -476 776

none 952 1332 -476 776
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Table 13: Estimated local effects on productive hours and lead time in simulated production

planning DSS; unit effects and ; base values w0, h

Effect on productive hours Effect on lead time

h w w0, h 0, h

1 0.52 62.40 -0.054 -6.48
2 -39.30 -117.90 -1.504 -4.51
3 0.65 78.00 0.072 8.64
4 -18.07 -0.90 150.583 7.53
5 -128.96 -64.48 -16.519 -8.26
6 0.00 0.00 -0.102 -29.38
7 -0.22 -132.00 -0.006 -3.60
8 13.88 20.82 2.963 4.44
9 -1.53 -38.25 1.311 32.78
10 1.39 139.00 0.072 7.20
11 0.03 9.00 0.037 11.10
12 527.23 158.17 8.485 2.55
13 -9.27 -46.35 -6.351 -31.76
14 -0.46 -55.20 -0.145 -17.40



�$
h

59

59

Table 14: Values of decision variables in base run and after a step of 0.005 on steepest ascent
path

Unit effect Value of variable in

h Base run Steepest ascent

1 0.52 132 132.0003

2 -39.30 3.3 3.28035

3 0.65 132 132.0003

4 -18.07 0.075 0.065965

5 -128.96 0.55 0.48552

6 0.00 316.8 316.8

7 -0.22 660 659.9999

8 13.88 1.65 1.65694

9 -1.53 27.5 27.44992

10 1.39 110 110.0007

11 0.03 330 330

12 527.23 0.33 0.5936

13 -9.27 5.5 5.4954

14 -0.46 132 131.9998
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Table 15: Input combinations in the central composite design with corresponding costs and
efficiencies for the coal transport system

Input combination
standard variables

(x , x )1 2

Input combination Cost (£ mln) Efficiency (%)
original variables y y

(w , w )1 2

(2) (1)

(1.00, 1.00) (2835.00; 972.00) 4.7790 100.00

(-1.00, 1.00) (2693.25; 972.00) 4.63725 99.59

(1.00, -1.00) (2835.00; 923.40) 4.68180 100.00

(-1.00, -1.00) (2693.25; 923.40) 4.54005 99.36

(0.00, 0.00) (2764.13; 947.70) 4.65953 99.35

(0.00, 0.75) (2764.13; 965.97) 4.69607 99.59

(0.75, 0.00) (2817.28; 947.70) 4.71268 100.00

(0.00, -0.75) (2764.13; 929.48) 4.62309 99.36

(-0.75, 0.00) (2710.97; 947.70) 4.60637 98.83



Figure 1. Finding k = 3 important factors among K = 128 factors in Jacoby and Harrison�s

(1962) example
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Figure 2. Central composite design, estimated efficiency frontier, and optimal

iso-cost line;

means y = 1; O means y < 1(1) (1)


