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ABSTRACT

This tutorial introduces some of the ideas, issues,
challenges, solutions, and opportunities in deciding how
to experiment with a simulation model to learn about its
behavior.  Careful planning, or designing, of simulation
experiments is generally a great help, saving time and
effort by providing efficient ways to estimate the effects
of changes in the model�s inputs on its outputs.
Traditional experimental-design methods are discussed in
the context of simulation experiments, as are the broader
questions pertaining to planning computer-simulation
experiments.

1 INTRODUCTION

The real meat of a simulation project is running your
model(s) and trying to understand the results.  To do so
effectively, you need to plan ahead before doing the runs,
since just trying different things to see what happens can
be a very inefficient way of attempting to learn about your
models� (and hopefully the systems�) behaviors.  Careful
planning of how you�re going to experiment with your
model(s) will generally repay big dividends in terms of
how effectively you learn about the system(s) and how you
can exercise your model(s) further.

This tutorial looks at such experimental-design issues
in the broad context of a simulation project.  The term
�experimental design� has specific connotations in its
traditional interpretation, and I will mention some of these
below, in Section 5.  But I will also try to cover the issues
of planning your simulations in a broader context, which
consider the special challenges and opportunities you have
when conducting a computer-based simulation experiment
rather than a physical experiment.  This includes questions
of the overall purpose of the project, what the output
performance measures should be, how you use the
underlying random numbers, measuring how changes in
the inputs might affect the outputs, and searching for some
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kind of optimal system configuration.  Specific questions
of this type might include:

• What model configurations should you run?
• How long should the runs be?
• How many runs should you make?
• How should you interpret and analyze the output?
• What�s the most efficient way to make the runs?

These questions, among others, are what you deal with
when trying to design simulation experiments.

My purpose in this tutorial is to call your attention to
these issues and indicate in general terms how you can deal
with them.  I won�t be going into great depth on a lot of
technical details, but refer you instead to any of several
texts on simulation that do, and to tutorials and reviews on
this subject in this and recent Proceedings of the Winter
Simulation Conference.  General book-based references for
this subject include chapter 12 of Law and Kelton (2000),
chapter 11 of Kelton, Sadowski, and Sadowski (1998),
Banks, Carson, and Nelson (1996), and Kleijnen (1998), all
of which contain numerous references to other books and
papers on this subject.  Examples of application of some of
these ideas can be found in Hood and Welch (1992, 1993)
and Swain and Farrington (1994).  This paper is an update
of Kelton (1999), and parts of it are taken from Kelton
(1997), which also contains further references and
discussion on this and closely related subjects.

2 WHAT IS THE PURPOSE
OF THE PROJECT?

Though it seems like pretty obvious advice, it might bear
mentioning that you should be clear about what the
ultimate purpose is of doing your simulation project in the
first place.  Depending on how this question is answered,
you can be led to different ways of planning your
experiments.  Worse, failure to ask (and answer) the
question of just what the point of your project is can often
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leave you adrift without any organized way of carrying out
your experiments.

For instance, if there is just one system of interest to
analyze and understand, then there still could be questions
like run length, the number of runs, allocation of random
numbers, and interpretation of results, but there are no
questions of which model configurations to run.  Likewise,
if there are just a few model configurations of interest, and
they have been given to you (or are obvious), then the
problem of experimental-design is similar to the single-
configuration situation.

However, if you are interested more generally in how
changes in the inputs affect the outputs, then there clearly
are questions of which configurations to run, as well as the
questions mentioned in the previous paragraph.  Likewise,
if you�re searching for a configuration of inputs that
maximizes or minimizes some key output performance
measure, you need to decide very carefully which
configurations you�ll run (and which ones you won�t).

The reality is that often you can�t be completely sure
what your ultimate goals are until you get into a bit.  Often,
your goals may change as you go along, generally
becoming more ambitious as you work with your models
and learn about their behavior.  The good news is that as
your goals become more ambitious, what you learned from
your previous experiments can help you decide how to
proceed with your future experiments.

3 WHAT ARE THE RELEVANT OUTPUT-
PERFORMANCE MEASURES?

Most simulation software produces a lot of numerical
output by default, and you can usually specify additional
output that might not be automatically delivered.  Much of
this output measures traditional time-based quantities like
time durations or counts of entities in various locations.
Increasingly, though, economic-based measures like cost
or value added are being made available, and are of wide
interest.  Planning ahead to make sure you get the output
measures you need is obviously important if the runs are
time-consuming to carry out.

One fundamental question relates to the time frame of
your simulation runs.  Sometimes there is a natural or
obvious way to start the simulation, and an equally natural
or obvious way to terminate it.  For instance, a call center
might be open from 8A.M. to 8P.M. but continue to operate
as necessary after 8 P.M. to serve all calls on hold (in
queue) at 8 P.M.  In such a case, often called a terminating
simulation, there is no design question about starting or
stopping your simulation.

On the other hand, interest may be in the long-run
(also called infinite-horizon) behavior of the system, in
which case it is no longer clear how to start or stop the
simulation (though it seems clear that the run length will
have to be comparatively long).  Continuing the call-center
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example, perhaps its hours are going to expand to 24 hours
a day, seven days a week; in this case you would need a
steady-state simulation to estimate the relevant
performance measures.

Regardless of the time frame of the simulation, you
have to decide what aspects of the model�s outputs you
want.  In a stochastic simulation you�d really like to know
all about the output distributions, but that�s asking way too
much in terms of the number and maybe length of the runs.
So you usually have to settle for various summary
measures of the output distributions.  Traditionally, people
have focused on estimating the expected value (or mean) of
the output distribution, and this can be of great interest.
For instance, knowing something about the average hourly
production is obviously important.

But things other than means might be interesting as
well, like the standard deviation of hourly production, or
the probability that the machine utilization for the period of
the simulation will be above 0.80.  In another example you
might observe the maximum length of the queue of parts in
a buffer somewhere to plan the floor space; in this
connection it might be more reasonable to seek a value
(called a quantile) below which the maximum queue length
will fall with probability, say, 0.95.

Even if you want just simple averages, the specifics
can affect how your model is built.  For instance, if you
want just the time-average number of parts in a queue, you
would need to track the length of this queue but not the
times of entry of parts into the queue.  However, if you
want the average time parts spend in the queue, you do
need to note their time of entry in order to compute their
time in queue.

So think beforehand about precisely what you�d like to
get out of your simulation; it�s easier to ignore things you
have than go back and get things you forgot.

4 HOW SHOULD YOU USE AND ALLOCATE
THE UNDERLYING RANDOM NUMBERS?

Most simulations are stochastic, i.e., involve random inputs
from some distribution to represent things like service
times and interarrival times.  Simulation software has
facilities to generate observations from such distributions,
which rely at root on a random-number generator churning
out a sequence of values between 0 and 1 that are supposed
to behave as though they are independent and uniformly
distributed on the interval [0, 1].  Such generators are in
fact fixed, recursive formulas that always give you the
same sequence of �random� numbers in the same order
(provided that you don�t override the default seeds for
these generators).  The challenge in developing such
generators is that they behave as intended, in a statistical
sense, and that they have a long cycle length before they
double back on themselves and repeat the same sequence
over again.
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Obviously, it is important that a �good� random-
number generator be used.  And, from the experimental-
design viewpoint, you can then dispense with the issue of
randomizing experimental treatments to cases, which is
often a thorny problem in physical experiments.

But with such controllable random-number generators,
the possibility arises in computer-simulation experiments
to control the basic randomness, which is a fundamentally
different situation from what you encounter in physical
experiments.  Doing so carefully is one way of implement-
ing what are known as variance-reduction techniques,
which can sometimes sharpen the precision of your output
estimators without having to do more simulating.  The
basic question in doing so is planning how you are going to
allocate the underlying random numbers to generating the
various random inputs to your models.

Perhaps the first thought along these lines that seems
like a �good� idea is to ensure that all the random-number
usage is independent within your models as well as
between any alternative configurations you might run.
This is certainly a statistically valid way to proceed, and is
statistically the simplest approach.  However, it might not
be the most efficient approach, where �efficiency� could be
interpreted in either its statistical sense (i.e., low variance)
or in its computational sense (i.e., amount of computational
effort to produce results of adequate precision).  And at a
more practical level, it might actually take specific action
on your part to accomplish independence between
alternative configurations since most simulation software is
set up to start a new run (e.g., for the next model) with the
same random numbers as before.

But actually, that feature of simulation software can be
to your advantage, provided that you plan carefully for
exactly how the random numbers will be re-used.  By using
the same random numbers for the same purposes between
different alternative configurations you are running them
under the same or similar external conditions, like exactly
what the service and interarrival times are.  In this way, any
differences you see in performance can be attributed to
differences in the model structures or parameter settings
rather than to differences in what random numbers you
happened to get.  This idea is usually called common
random numbers, and can sometimes greatly reduce the
variance in your estimators of the difference in performance
between alternative configurations.  To implement it
properly, though, you need to take deliberate steps to make
sure that your use of the common random numbers is
synchronized between the systems, or else the variance-
reducing effect will diluted or maybe even largely lost.
Often, utilizing fixed streams of the random-number
generator, which are really just particular subsequences, can
facilitate maintaining proper synchronization.

There are several other variance-reduction techniques
that also rely on (carefully) re-using previously used
random numbers, such as antithetic variates.  Most of these
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techniques also rely on some kind of careful planning for
synchronization of their use.

5 HOW SENSITIVE ARE YOUR OUTPUTS
TO CHANGES IN YOUR INPUTS?

As part of building a simulation model, you have to specify
a variety of input factors.  These include quantitative factors
like the mean interarrival time, the number of servers, and
the probabilities of different job types.  Other input factors
are more logical or structural in nature, like whether
failure/feedback loops are present, and whether a queue is
processed first-in-first-out or shortest-job-first.  There can
also be factors that are somewhere between being purely
quantitative and purely logical/structural, like whether the
service-time distribution is exponential or uniform.

Another classification dimension of input factors is
whether they are (in reality) controllable or not.  However,
when exercising a simulation model, all input factors are
controllable, whether or not they can in reality be set or
changed at will.  For instance, you can�t just cause the arriv-
al rate to a call center to double, but you�d have no problem
doing so in your simulation model of that call center.

In any case, exactly how you specify each input factor
will presumably have some effect on the output perfor-
mance measures.  Accordingly, it is sometimes helpful to
think of the simulation as a function that transforms inputs
into outputs:

Output1 = f1(Input1, Input2, ...)
Output2 = f2(Input1, Input2, ...)

.

.

.

where the functions f1, f2, ... represent the simulation model
itself.

It is often of interest to estimate how a change in an
input factor affects an output performance measure, i.e.,
how sensitive an output is to a change in an input.  If you
knew the form of the simulation functions f1, f2, ..., this
would essentially be a question of finding the partial
derivative of the output of interest with respect to the input
of interest.

But of course you don�t know the form of the simula-
tion functions�otherwise you wouldn�t be simulating.
Accordingly, there are several different strategies for
estimating the sensitivities of outputs to changes in inputs.
These strategies have their own advantages, disadvantages,
realms of appropriate application, and extra information they
might provide you.  In the remainder of this section I�ll
mention some of these, describe them in general terms, and
give references for further details.
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5.1 Classical Experimental Design

A wide variety of approaches, methods, and analysis
techniques, known collectively as experimental design, has
been around for many decades and is well documented in
books like Box, Hunter, and Hunter (1978) or Montgomery
(1997).  One of the principal goals of experimental design
is to estimate how changes in input factors affect the
results, or responses, of the experiment.

While these methods were developed with physical
experiments in mind (like agricultural or industrial
applications), they can fairly easily be used in computer-
simulation experiments as well, as described in more detail
in chapter 12 of Law and Kelton (2000).  In fact, using
them in simulation presents several opportunities for
improvement that are difficult or impossible to use in
physical experiments.

As a basic example of such techniques, suppose that
you can identify just two values, or levels, of each of your
input factors.  There is no general prescription on how to
set these levels, but you should set them to be �opposite� in
nature but not so extreme that they are unrealistic.  If you
have k input factors, there are thus 2k different
combinations of the input factors, each defining a different
configuration of the model; this is called a 2k factorial
design.  Referring to the two levels of each factor as the
��� and �+� level, you can form what is called a design
matrix describing exactly what each of the 2k different
model configurations are in terms of their input factor
levels.  For instance, if there are k = 3 factors, you would
have 23 = 8 configurations, and the design matrix would be
as in Table 1, with Ri denoting the simulation response
from the ith configuration.

Table 1:  Design Matrix for a 23 Factorial Experiment
Run (i) Factor 1 Factor 2 Factor 3 Response

1 � � � R1
2 + � � R2
3 � + � R3
4 + + � R4
5 � � + R5
6 + � + R6
7 � + + R7
8 + + + R8

The results from such an experiment can be used in
many ways.  For instance, the main effect of Factor 2 in the
above example is defined as the average difference in
response when this factor moves from its ��� level to its
�+� level; it can be computed by applying the signs in the
Factor 2 column to the corresponding responses, adding,
and then dividing by 2k�1 = 4:

(� R1 � R 2 + R 3 + R 4 � R 5 � R 6 + R 7 + R 8)/4.
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The main effects of the other factors are computed
similarly.

Further, you can ask whether the effect of one factor
might depend in some way on the level of one or more
other factors, which would be called interaction between
the factors if it seems to be present.  To compute the
interactions from the experimental results, you �multiply�
the columns of the involved factors row by row (like signs
multiply to �+,� unlike signs multiply to ���), apply the
resulting signs to the corresponding responses, add, and
divide by 2k�1 = 4.  For instance, the interaction between
Factors 1 and 3 would be

(+R 1 � R 2 + R 3 � R 4 � R 5 + R 6 � R 7 + R 8)/4.

If an interaction is present between two factors, then the
main effect of those factors cannot be interpreted in
isolation.

Which brings up the issue of limitations of these kinds
of designs.  There is a regression model underlying designs
like these, which have present an independent-variable
term involving each factor on its own (linearly), and then
possible cross-products between the factor levels, repre-
senting interactions.  As suggested, significant interactions
cloud the interpretation of main effects, since presence of
the cross product causes the main effect no longer to be an
accurate measure of the effect of moving this factor from
its ��� level to its �+� level.  One way around this
limitation is to specify a more elaborate and more general
underlying regression model, and allow for more than just
two levels for each input factor.  This gives rise to more
complex designs, which must be set up and analyzed in
more sophisticated ways.

Another difficulty with full-factorial designs is that if
the number of factors becomes even moderately large, the
number of runs explodes (it is, after all, literally
exponential in the number of factors).  A way around this
is to use what are known as fractional-factorial designs in
which only a fraction (sometimes just a small fraction) of
all the possible factor-combinations are run.  You must
take care, however, to pick the subset of the runs very
carefully, and there are specific prescriptions on how to do
this in the references cited earlier.  The downside of doing
only a fraction of the runs is that you have to give up the
ability to estimate at least some of the potential
interactions, and the smaller the number of runs the fewer
the number of interactions you can estimate.

A final limitation of these kinds of designs is that the
responses are random variables, as are all outputs from
stochastic simulations.  Thus, your estimates of things like
main effects and interactions are subject to possibly-
considerable variance.  Unlike physical experiments,
though, you have the luxury in simulation of replicating
(independently repeating) the runs many times to reduce
this variance, or perhaps replicating the whole design many
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times to get many estimates of main effects and
interactions, which could then be combined to form, say, a
confidence interval on the expected main effects and
interactions in the usual way.  This is a good approach for
determining whether a main effect or interaction is really
present�if the confidence interval for it does not contain
zero, then it appears that it is really present.

There are certainly many other kinds of more
sophisticated factorial designs than what I have described
here; see the references cited earlier for examples.

5.2 Which Inputs are Important?
Which are Not?

As mentioned above, if the number of factors is even
moderately large, the number of possible factor-level
combinations simply explodes far beyond anything
remotely practical.  It is unlikely, though, that all of your
input factors are really important in terms of having a
major impact on the outputs.  At the very least, there will
be big differences among your factors in terms of their
impact on your responses.

Since it is the number of factors that causes the
explosion in the number of combinations, it would be most
helpful to identify early in the course of experimentation
which factors are important and which are not.  The
unimportant factors can then be fixed at some reasonable
value and dropped from consideration, and further
investigation can be done on the important factors, which
will be fewer in number.  There are several such factor-
screening designs in the literature (see the references cited
earlier), and they can be extremely helpful in transforming
a rather hopelessly large number of runs into something
that is eminently manageable.

5.3 Response-Surface Methods
and Metamodels

Most experimental designs, including those mentioned
above, are based on an algebraic regression-model
assumption about the way the input factors affect the
outputs.  For instance, if there are two factors (X1 and X2,
say) that are thought to affect an output response Y, you
might approximate this relationship by the regression model

Y = β0 + β1X1 + β2X2 + β3X1X2 + β4X1
2 + β5X2

2 + ε

where the βj coefficients are unknown and must be
estimated somehow, and ε is a random error term
representing whatever inaccuracy such a model might have
in approximating the actual simulation-model response Y.
Since in this case the above regression model is an
approximation to another model (your simulation model),
the regression is a �model of a model� and so is sometimes
called a metamodel.  And since a plot of the above
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situation (with two independent input variables) would be a
three-dimensional surface representing the simulation
responses, this is also called a response surface.

The parameters of the model are estimated by making
simulation runs at various input values for the Xj�s, record-
ing the corresponding responses, and then using standard
least-squares regression to estimate the coefficients.
Exactly which sets of input values are used to make the
runs to generate the �data� for the regression fit is itself an
experimental-design question, and there are numerous
methods in the references cited above.  A more compre-
hensive reference on this subject is Box and Draper (1987).

In simulation, an estimated response-surface meta-
model can serve several different purposes.  You could
(literally) take partial derivatives of it to estimate the effect
of small changes in the factors on the output response, and
any interactions that might be present as modeled would
show up naturally.  You could also use the estimated
metamodel as a proxy for the simulation, and very quickly
explore many different input-factor-level combinations
without having to run the simulation.  And you could try to
optimize (maximize or minimize, as appropriate) the fitted
model to give you a sense of where the best input-factor-
combinations might be.

An obvious caution on the use of response surfaces,
though, is that they are estimated from simulation-
generated data, and so are themselves subject to variation.
This uncertainty can then have effects on your estimates of
unsimulated models, derivatives, and optimizers.  The
references cited above discuss these issues, which are
important in terms of understanding and interpreting your
results and estimates realistically.

5.4 Other Techniques

The discussion above focuses on general approaches that
originated in physical, non-simulation contexts, but
nevertheless can be applied in simulation experiments as
well.  There are a variety of other methods that are more
specific to simulation, including frequency-domain methods
and perturbation analysis.  For discussions of these ideas,
see advanced or state-of-the-art tutorials in this or recent
Proceedings of the Winter Simulation Conference.

6 WHAT IS THE �BEST�
COMBINATION OF INPUTS?

Sometimes you have a single output performance measure
that is of overriding importance in comparison with the
other outputs (different outputs can conflict with each
other, like the desirability of both high machine utilization
and short queues).  This might be a measure of direct
economic importance, like profit or cost.  If you have such
a measure, you would probably like to look for an input-
factor combination that optimizes this measure (e.g.,
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maximizes profit or minimizes cost).  Mathematically, this
can take the form of some kind of search through the space
of possible factor combinations.  For a recent review of the
underlying methods, see Andradóttir (1998).

This is a tall order, from any of several perspectives.  If
there are a lot of input factors, the dimension of the search
space is high, requiring a lot of simulations at a lot of
different points.  And in stochastic simulation, the responses
are subject to uncertainty, which must be taken into account
when deciding how best to proceed with your search.

Fortunately, several heuristic search methods have
been developed that �move� you from one point to a more
promising one, and make these decisions based on a host of
information that is available.  And we are now beginning to
see some of these methods coded into commercial-grade
software and even integrated in with some simulation-
software products.  For example, see Glover, Kelly, and
Laguna (1999).

7 CONCLUSIONS

My purpose here has been to make you aware of the issues
in conducting simulation experiments that deserve your
close attention.  An unplanned, hit-or-miss course of
experimentation with a simulation model can often be
frustrating, inefficient, and ultimately unhelpful.  On the
other hand carefully planned simulation studies can yield
valuable information without an undue amount of
computational effort or (more importantly) your time.
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