
ARTICLE OPEN

Experimental detection of entanglement polytopes via local

filters
Yuan-Yuan Zhao1,2, Markus Grassl3, Bei Zeng4,5, Guo-Yong Xiang1,2, Chao Zhang1,2, Chuan-Feng Li1,2 and Guang-Can Guo1,2

Quantum entanglement, resulting in correlations between subsystems that are stronger than any possible classical correlation, is
one of the mysteries of quantum mechanics. Entanglement cannot be increased by any local operation, and for a sufficiently large
many-body quantum system there exist infinitely many different entanglement classes, i.e., states that are not related by stochastic
local operations and classical communications. On the other hand, the method of entanglement polytopes results in finitely many
coarse-grained types of entanglement that can be detected by only measuring single-particle spectra. We find, however, that with
high probability the local spectra lie in more than one polytope, hence providing only partial information about the entanglement
type. To overcome this problem, we propose to additionally use so-called local filters, which are non-unitary local operations. We
experimentally demonstrate the detection of entanglement polytopes in a four-qubit system. Using local filters we can distinguish
the entanglement type of states with the same single particle spectra, but which belong to different polytopes.
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INTRODUCTION

Entanglement is an important resource in quantum information
processing tasks, such as quantum teleportation, quantum error-
correction, and quantum computing.1 Its amazing properties are
very different from those of classical correlations, and many
researches have been done to understand them.2 Essentially,
entanglement comes from the tensor product structure of the
Hilbert space of N systems—qubits in our case. An N-qubit
quantum state |ΨN〉 is entangled if it cannot be factored into
products of quantum states of each of the qubits.
One central question regarding entanglement is that in which

way |ΨN〉 may be entangled and how to detect that feature in
practice. An obvious fact is that the number of parameters needed
to specify |ΨN〉 grows exponentially with N. A natural idea to
eliminate some of the free parameters is to consider two states
|ΨN〉 and |ΦN〉 to have similar entanglement features if they can be
connected by some single-qubit operations. For instance, if ΨNj i ¼
�n

i¼1Ui ΦNj i with each Ui a unitary operation on qubit i, then |ΨN〉

and |ΦN〉 are said to be equivalent under local unitary (LU)
transformation.3–5 And if ΨNj i ¼ �n

i¼1Mi ΦNj iwith each Mi an
invertible operation on qubit i, then |ΨN〉 and |ΦN〉 are said to
be equivalent under stochastic local operation and classical
communication (SLOCC).6–8

Relative to LU and SLOCC transformations, many-body entangle-
ment types can be classified up to local equivalence. That is, two
LU/SLOCC equivalent states have similar entanglement properties.
However, since the number of free parameters describing Ui (or Mi)
is linear in N, the number of entanglement classes still grows
exponentially with N. This exponential growth of parameters for
describing |ΨN〉 makes it hopeless to extract clear physical
meanings of these classifications. It is, therefore, highly desired to

coarse-grain these classes such that we can grasp the key features
of each entanglement type. The concept of entanglement
polytopes provides an elegant idea to meet this need.9 For each
N, it results in only a finite number of coarse-grained entanglement
classes, which we call entanglement types. More importantly, points
in the polytope space can be detected directly in experiment via
measuring only single-particle spectra of each qubit.9–11

To get a concrete idea about entanglement polytopes, we
consider a system of N qubits, and denote the single-particle
reduced density matrix of qubit i by ρi, where i = 1,…,N. For each

ρi, there are two eigenvalues λαi and λ
β
i , with λαi þ λ

β
i ¼ 1. Keeping

only the larger of the two eigenvalues of each reduced one-qubit

density matrix ρi (i.e., λ
max
i ¼ maxfλαi ; λ

β
i g), we obtain a vector

λ
!¼ ðλmax

1 ; λmax
2 ; ¼ ; λmax

N Þ in the N-dimensional real space ℝ
N,

which is the ambient space of the entanglement polytope. It turns

out that the vectors λ
!

associated with all pure states |ΨN〉 in the
closure of an orbit under SLOCC transformations form a polytope.
The vertices of those polytopes can be computed from so-called
covariants that do not vanish identically on the orbit (for details
see9, 11). Here, we only mention that the algebra of covariants is
finitely generated, which implies that there are only finitely many
vertices, and in turn finitely many different entanglement
polytopes. In general, computing a generating set for the algebra
of covariants and the entanglement polytopes is a non-trivial task.
For N = 2, the Schmidt decomposition tells us that, up to LU, any

pure state can be expressed as Ψ2j i ¼
ffiffiffiffiffi

λα1
p

00j i þ
ffiffiffiffiffi

λ
β
1

q

11j i with

λα1 þ λ
β
1¼ 1. Moreover, the eigenvalues of ρ2 are the same as that

of ρ1, i.e., λ
α
1 ¼ λα2 and λ

β
1 ¼ λ

β
2 . Different values of λmax

1 2 ½1=2; 1�
correspond to different LU classes of entanglement, which are in
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fact infinitely many. Up to SLOCC, however, there is only one (non-
trivial) class of entangled states, which contains the EPR pair with
λmax
1 ¼ 1=2. The entanglement polytope in this case is given by

λ
!¼ ðλmax

1 ; λmax
2 Þ, with the condition λmax

1 ¼ λmax
2 2 ½1=2; 1�, i.e., a

line connecting the points (1/2, 1/2) and (1, 1). The set of λ
!

forms
a polytope in ℝ

2, as illustrated in Fig. 1a, and there is only one
entanglement polytope for N = 2.
For N = 3, up to LU, there are infinitely many equivalence classes

that are described by 5 free parameters.3 Up to SLOCC, however,
there are only two types of three-qubit-entanglement: the Green-
berger-Horne-Zeilinger type (GHZ-type) and the W-type.6 These
two types can be distinguished by a quantity called 3-tangle,12

which is, however, not a single-copy observable and hence cannot
be directly measured in experiment (that is, to get the value of the
3-tangle, one either needs to measure jointly on multiple copies of
the states, or needs to perform state tomography).13

In the N = 3 case, the entanglement polytopes are given by the
values of the vectors λ

!¼ ðλmax
1 ; λmax

2 ; λmax
3 Þ. As illustrated in

Fig. 1b, there are two polytopes: one corresponds to the GHZ class
of entanglement, which is given by vertices (1/2, 1/2, 1/2), (1, 1/2,
1/2), (1/2, 1, 1/2), (1/2, 1/2, 1), (1, 1, 1), and a smaller polytope
inside that does not contain the vertex (1/2, 1/2, 1/2) corresponds
to the W class of entanglement.
For any N = 4, SLOCC no longer results in a finite number of

entanglement classes. In refs 7, 8 nine-different classes are
obtained (with some classes containing free parameters resulting
in fact in infinitely many-classes). However, there are only finite
number of entanglement polytopes, whose vertices can be
computed from those SLOCC classes and the covariants for four
qubits (see ref. 9 for details). Consequently, unlike the N = 2 and N
= 3 case where the polytopes give essentially the same entangle-
ment classes as the SLOCC classification, in general, entanglement

polytopes coarse-grain the SLOCC classification (that is, different
SLOCC classes may belong to the same entanglement polytope).
Different entanglement polytopes form a nested hierarchy,9–11

which typically only allows a one-sided discrimination of
entanglement types. Only if the local spectra of |ΨN〉 happen to
lie in a non-overlapping region, one can tell for certain which
polytope |ΨN〉 belongs to. As an example, in the N = 3 case, the W
class polytope sits inside the GHZ class polytope (as illustrated in
Fig. 1b, hence only if the local spectra of some state lie outside the
W class polytope one can tell that the state has GHZ-type
entanglement. This means that a point λ

!2 PW fails to distinguish
W-type entanglement from GHZ-type entanglement. A recent
experiment has demonstrated the detection of entanglement
polytopes by measuring local spectra, where the states have been
chosen such that their local spectra lie in non-overlapping
regions.14 For a general use of the entanglement polytope
method, however, it is crucial to understand the relation between
the different polytopes and how large their overlaps can be.
In this work, we show that, unfortunately, the overlap is

considerably large. That is, in general, for a randomly chosen N-
qubit state |ΨN〉, with high probability the vector of local spectra
falls in some region of overlapping polytopes. For instance, in the
N = 3 case, for a uniformly random pure three-qubit state with
respect to the Haar measure, the resulting joint distribution of the
eigenvalues of the local density matrices has been computed in
ref. 15. From this results, one finds that the volume of the sub-
polytope PW with respect to the Haar measure is 203/216≈93.98%,
while its geometric volume is 1/3 of the full polytope (see Fig. 1b).
Hence the probability for a random three-qubit state to have a
vector of local spectra corresponding to a point outside the
polytope PW is only 13/216≈6.02%.
To overcome this difficulty, we propose to additionally use

SLOCC operations. That is, if the local spectra of |ΨN〉 lies in an
overlapping region, then after applying an SLOCC operation L, the

Fig. 1 N-qubit entanglement polytopes for N= 2,3,4. The coordinates λmax
i in a and b are given by the lager of the two eigenvalues of the

single-particle reduced density matrix of qubit i. a Two-qubit entanglement polytope (the red line). b Three-qubit entanglement polytopes.
The pink part represents the W-class, and the probability of a random state lying in this region is about 0.9398. c Nested structure of the
different types of four-qubit entanglement polytopes. Together with the label Pm

i for the various types of polytopes, we give the probability
that a random pure state lies in the that polytope (sampling 106 states, see Supplementary Material, Table 2)
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local spectra of the state L|ΨN〉 has some chance to fall into a non-
overlapping region. If not, we repeat this procedure again with a
different SLOCC operation. After several rounds with different
SLOCC operations, we either find a point that lies in a non-
overlapping region, or we assume that the state in fact lies in the
smaller polytope of the hierarchy.
We experimentally demonstrate the detection of entanglement

polytopes in a four-qubit optical system. We use the technique of
local filters (see, e.g., refs 16–21) to implement SLOCC operations.
For the states we tested, after several rounds, the local filters allow
to effectively distinguish states with the same single particle
spectra, but which belong to different polytopes. Our method
provides an effective way of detecting the entanglement type
based on only local filters and local spectra, which may shed light
on the techniques of entanglement detection in more general
settings.

RESULTS

Four-qubit polytopes

In the case of four-qubit pure states, there are infinitely many
SLOCC orbits, but only finitely many entanglement polytopes. The
full polytope, containing λ

!
for any four-qubit state, denoted by

Pfull, is spanned by the vertices (see ref. 9)
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Up to permutation of the qubits, there are six other polytopes
inside Pfull, which may also be mutually overlapping. A full list of
all these polytopes and their relationship can be found in Section
B of the supplementary material. The polytopes are labeled by Pm

i ,
where the index i = 1,…,7 denotes the seven different types of
polytopes (following the naming convention of ref. 9), and the
superscript m = a,b,…labels the polytopes that differ only by a
permutation of vertices, corresponding to permutations of the
qubits. We computed the local spectra of 106 random pure states
and determined which of the polytopes contains the vector of
local spectra. The results are summarized in Fig. 1c. For each of the
seven types of polytopes, only one representative Pa

i is shown
when the polytope is no invariant under permutations. Our results
demonstrate that, similar as in the N = 3 case, for a randomly
chosen pure four-qubit state, the chance that λ

!
lies in an

overlapping region is high. Therefore, we have to apply local
operations to ‘move’ λ

!
.

Experiment protocol

In our experiment, two different four-qubit states |Ψ(1)〉 and |Ψ(2)〉
are prepared, where

Ψ
ð1Þ�

�

E

¼
ffiffiffi

3
p

3
ð HHHHj i þ VVVVj iÞ þ

ffiffiffi

3
p

6
ð HVj i þ VHj iÞð HVj i þ VHj iÞ;

ð1Þ
and |Ψ(2)〉 is the four-qubit GHZ state

Ψ
ð2Þ�

�

E

¼
ffiffiffi

2
p

2
ð HHHHj i þ VVVVj iÞ: ð2Þ

The qubits are encoded by horizontal |H〉 and vertical |V〉
polarization. The goal is to determine the entanglement type for
each of the input states using the entanglement polytope

method. For both |Ψ(1)〉 and |Ψ(2)〉, we have λ
!¼ ð12 ; 12 ; 12 ; 12Þ, that

is, the local spectra do not tell the states apart. Hence local filter

operations are needed to ‘move’ λ
!
.

The closure of the SLOCC orbit of the four-qubit GHZ state |Ψ(2)〉
corresponds to the full polytope Pfull =P7. However, the state
|Ψ(1)〉 corresponds to a smaller polytope Ps =P4⊂Pfull with vertices
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The smaller polytope Ps =P4 is separated from the full polytope
Pfull by the additional constraint

f 1ð λ
!Þ ¼ �λmax

1 þ λmax
2 þ λmax

3 þ λmax
4 � 1 ð4Þ

and all permutations of it. Combining those four inequalities, we
have the equivalent conditions

f ð λ!Þ :¼ min
i¼1;2;3;4

f ið λ
!Þ � 1 ð5Þ

min
i¼1;2;3;4

X

4

j¼1

λmax
j

 !

� λmax
i � 1 ð6Þ

X

4

j¼1

λmax
j

 !

� max
i¼1;2;3;4

λmax
i � 1 ð7Þ

A state lies outside of the smaller polytope when the left hand
side f ð λ!Þ of those conditions is strictly smaller than 1.
While the polytope P4 corresponding to the state |Ψ(1)〉 of our

experiment is fairly low in the hierarchy of polytopes (see Fig. 1c),
the local spectra of only 9522 out of one million random states
violate the discriminating inequalities (4). Hence, the chance for a
random four-qubit state to have local spectra that lie outside of P4

is only about 0.95%. This clearly indicates that one has to apply
local filters in order to have a chance to get information about the
entanglement polytopes.
Note that after measuring the first qubit of the state and post-

selection on the measurement outcome, we have a four-qubit
state that factors into a single qubit and a three-qubit state. The
first component λmax

1 ¼ 1 is fixed, and we can map the polytope P4

to a three-qubit polytope. From the vertices in (3) we select those
with λmax

1 ¼ 1 and project onto the last three coordinates. Thereby
we obtain the four vertices

ð1; 1; 1Þ; ð1; 1=2; 1=2Þ; ð1=2; 1; 1=2Þ; ð1=2; 1=2; 1Þ
spanning the three-qubit W-polytope PW, which has a volume of
about 94%. Hence the local measurement and post-selection
increase the chance for a random state to lie outside the smaller
polytope from less than one percent to about six percent. As
λmax
1 ¼ 1 achieves the maximum value, the separating conditions
reduce to the single condition

f ð λ!Þ ¼ λmax
2 þ λmax

3 þ λmax
4 � 1 � 1: ð8Þ

Set-up

Our experiment demonstrates the preparation and detection of
entanglement types of four-qubit states. We use non-unitary
SLOCC operations, so-called local filters,16 to move λ

!
. (Note that

these operations are different from, e.g., narrow-band frequency
filters for photons used in experimental set-ups.) The proposed
experiment is given by the diagram in Fig. 2.
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Here ϑi for i = 1,2 denotes a unitary local transformation Uϑi
of

the form

Uϑi
¼ cos ϑi � sin ϑi

sin ϑi cos ϑi

� �

1 0

0 � 1

� �

cos ϑi sin ϑi

� sin ϑi cos ϑi

� �

;

and γ denotes a non-unitary local transformation

Aγ ¼
1 0

0 γ

� �

;

In Fig. 2, two of the qubits encounter non-unitary local
transformations: qubit 1 is measured in some basis and post-
selected, corresponding to the limit γ→0 for Aγ and resulting in
λmax
1 ¼ 1; qubit 4 is going through a filter operation given by Aγ. In
the most general case, one can also apply local filter operations (or
measurements) on the other qubits. However, a single filter (or
measurement) may already suffice to ‘move’ λ

!
to non-overlapping

regions of the polytopes, depending on the input state |Ψ(i)〉.

Experimental results

We first perform tomography on each single qubit to obtain the
corresponding single-qubit density matrices and calculate their
local spectra for both states. As shown in Table 1a, the local

spectra of |Ψ(1)〉 and |Ψ(2)〉 are almost identical, so we cannot
distinguish their entanglement polytopes.
To distinguish the entanglement polytopes of |Ψ(1)〉and |Ψ(2)〉,

we try to move λ
!

out of the smaller polytope Ps using local filters,
as illustrated in Fig. 2. We fix ϑ2 = −π/8, and then measure the first
qubit in the computational basis. By post-selection, we have
λmax
1 ¼ 1. For each setting of ϑ1and γ, we perform tomography of
the qubits 2, 3, and 4 to determine the values of λmax

2 , λmax
3 , and

λmax
4 (see Table 1b and Supplementary Material, Table 3). The
smaller polytope Ps is characterized by f ð λ!Þ � 1.
The results are illustrated in Fig. 3. The data is shown in the

three-dimensional polytope for λmax
2 , λmax

3 , λmax
4 as by post-selection

of the first qubit, λmax
1 ¼ 1. As discussed above, the smaller

polytope Ps is mapped to the three-qubit polytope PW, while the
image of the full polytope Pfull has an additional vertex (1/2,1/2,
1/2). The data point f of the state |Ψ(2)〉 outside of PW shows that
|Ψ(2)〉 is not in Ps. In contrast, the data points a,b,c,d,e obtained
from |Ψ(1)〉 all lie in PW, which indicates that |Ψ(1)〉 belongs to Ps.
This shows that |Ψ(1)〉 and |Ψ(2)〉 have different entanglement
types. To further support the assumption that |Ψ(1)〉 belongs to Ps,
we obtain more data points for |Ψ(1)〉, using different local filters.
The results are shown as dark dots in Fig. 3.
In Fig. 4, the original spectra of the four-qubit state |Ψ(1)〉 and

|Ψ(2)〉 are plotted with red and blue circles, respectively. The
horizontal axis corresponds to λmax

4 , while the vertical axes gives
the value of �λmax

1 þ λmax
2 þ λmax

3 . We can see that the two local
spectra are at almost the same position outside the shaded region,
and we cannot distinguish their entanglement polytopes. Using
local filters to move λ

!
, the results are plotted with dots in

different colors. The blue dot in the cyan region violates the
constraint (4). This implies that the state |Ψ(2)〉 is not in Ps. In
contrast, all the red dots obtained for |Ψ(1)〉 satisfy f ð λ!Þ � 1,
which indicates that |Ψ(1)〉 belongs to Ps.
Since the first photon of the four-qubit state is post-selected

and the last photon goes through a non-unitary filter, there is a
finite probability to obtain a data point: for example, the
probability of success is 0.153, 0.231, 0.205, 0.279, 0.5, and 0.5
for our experimental data ‘a~f,’ respectively.

Experimental error analysis

Since the birefringence of the ordinary and extra-ordinary light (o-
light and e-light) in the down-converter creating a photon pair
(BBO crystal) cannot be compensated completely, because of the

Fig. 2 Circuit diagram of the experimental set-up. The box labeled
|Ψ

(i)〉(i = 1,2) stands for the preparation of the corresponding input
state. The elements with the label ϑi(i = 1,2) denote local unitary
transformation Uϑi

on qubit 1 and 4. The element labeled γ
corresponds to the non-unitary transformation Aγ (detailed forms
can be found in Section Set-up). At the end, qubit 1 is measured in
the computational basis, and only cases with the outcome |0〉 are
considered (post-selection). For the other three qubits, local
tomography yields the maximal eigenvalue λmax

i

Table 1. Local spectra of the original four qubit states and the spectra after applying local operations

(a) The local spectra λmax
1 , λmax

2 , λmax
3 , λmax

4 together with f ð λ!Þ for the states |Ψ(1)〉 and |Ψ
(2)〉

State λmax
1 λmax

2 λmax
3 λmax

4 f ð λ!Þ

|Ψ
(1)〉 0.549(4) 0.540(4) 0.532(4) 0.531(4) 1.054(8)

|Ψ
(2)〉 0.529(4) 0.515(4) 0.546(4) 0.522(4) 1.020(8)

(b) Setting of the parameters ϑ1 (‘none’ means that HWP2 was removed) and γ for the data points labeled ‘a~f’, together with the measured local
spectra λmax

2 , λmax
3 , λmax

4 , as well as the resulting value of f ð λ!Þ

ϑ1 γ λmax
2 λmax

3 λmax
4 f ð λ!Þ

a π/8 1
ffiffiffi

6
p

0.634(8) 0.887(8) 0.566(8) 1.087(15)

b 3π/32 1
ffiffiffi

3
p

0.619(9) 0.852(8) 0.665(8) 1.137(15)

c 0.44 1
ffiffiffiffiffiffiffi

3:5
p

0.549(9) 0.869(8) 0.610(9) 1.027(16)

d 3π/16 1
ffiffiffiffiffiffiffi

2:5
p

0.652(9) 0.834(9) 0.755(9) 1.241(16)

e None 1 0.659(10) 0.819(9) 0.823(9) 1.301(17)

f None 1 0.525(9) 0.544(10) 0.516(8) 0.584(18)

The uncertainties inside the brackets are obtained by Monte Carlo simulation (1000 runs)
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high-term noise from the spontaneous parametric down-
conversion process, and some mode mismatch, we do not obtain
the pure states |Ψ(1)〉and |Ψ(2)〉, but some noisy version of them.
The errors of the local filters are mainly due to non-perfect beam
alignment and angle-settings of half-wave plates (HWPs).

Nevertheless, for each setting of ϑ1 and γ, the fidelity of the
post-selected three-qubit state is over 0.90. The coincidence
counts of the photon pairs generated in the BBO obey a Poisson
distribution, the parameters of which we estimate from the
experimental data. We use Monte Carlo simulation to estimate the

Fig. 3 Three-dimensional polytopes. The pink region represents the
W class, and the union of the pink region and the green region is the
GHZ class. The red stars and the dark dots are for the state |Ψ

(1)〉,
while the blue star ‘f ’ is for the state |Ψ

(2)〉. Detailed values for the
data points a, b, c, d, e, and f can be found in Table 1b; for the rest
see Supplementary Material, Table 3

Fig. 4 Experimental results. The red and the blue circle are the local
spectra of the original four qubit states. After applying local
operations, the spectra are shown as the red and blue dots for
|Ψ

(1)〉 and |Ψ
(2)〉, respectively. The data points in the cyan region do

not meet the constraint (4). Error bars are obtained by Monte Carlo
simulation (1000 runs)

Fig. 5 Experimental set-up. Detailed configurations for preparing the states |Ψ(1)〉 and |Ψ
(2)〉 and for realizing the operator Aγ are shown in the

corresponding boxes. The unitary operator Uϑ1
is realized by HWP2 at specific angles. A quarter-wave plate (QWP) and a half-wave plate (HWP)

in front of a polarization beam splitter (PBS) in each mode are used to implement the measurement in different bases for the standard state
tomography. All the photons are detected by avalanche photo-diodes (APD). Post-selection in some basis of qubit 1 (the state of the photon
in mode ‘3’) is realized by collecting only photons in one of the output modes of the PBS. The indices in the figure denote the spatial modes
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errors of the results. Firstly, we generate 1000 groups of random
numbers from the Poisson distribution with the original experi-
mental data as mean parameters, then we calculate the
corresponding spectra for each group of generated data and
obtain the standard deviation.

DISCUSSION

The experimental data points clearly show that |Ψ(2)〉 is outside of
the smaller polytope, while for the state |Ψ(1)〉 they indicate that it
lies inside the smaller polytope, i.e., the two pure states have
different types of entanglement. Clearly, a single point outside the
pink region in Fig. 3 suffices to show that |Ψ(2)〉 does not belong to
Ps. The five data points in the pink region for the state |Ψ(1)〉
suggest that it belongs to Ps. Recall that the criteria based on
entanglement polytopes are in general only one-sided, and in
order to get a conclusive answer about the entanglement type for
all states, one has to perform full state tomography.22

We perform a full state tomography to reconstruct the density
matrix of |Ψ(1)〉 and |Ψ(2)〉 with Pauli measurements and using an
efficient linear regression estimation algorithm.23 The fidelities of
the states in the experiment are 0.951 ± 0.004 and 0.900 ± 0.004,
respectively. In Supplementary Material, Fig. 2, we compare the
ideal state with the state prepared in the experiment.
In summary, we experimentally demonstrate the detection of

entanglement polytopes in a four-qubit system. We use local
filters to effectively distinguish states with the same single-particle
spectra, but which belong to different polytopes. This provides a
new tool to experimental detection of entanglement in a multi-
qubit system using only local operations.

METHODS

Experimental state preparation
Our experimental set-up for the preparation of the states |Ψ(1)〉 and |Ψ(2)〉 is
shown in Fig. 5. A 390 nm femto-second pump light, frequency-doubled
from a 780 nm mode-locked Ti:sapphire pulsed laser (with a pulse width of
about 150 fs and repetition rate 76 MHz), is used to pump the respective
down-converter. For the preparation of |Ψ(1)〉, a 2 mm type-II phase-
matched BBO crystal is used as down-converter to produce two pairs of
entangled photons,24 1

2 ð HVj i þ VHj iÞ � ð HVj i þ VHj iÞ, and two 1mm BBO
crystals are used to compensate the birefringence of o-light and e-light in
the 2mm BBO. HWP1 rotates the polarization of the photons in path ‘2’
(horizontal to vertical and vertical to horizontal). After the beam splitters,
we post-select the case that each outport has only one photon, then the
above two pairs of entangled photons are transformed into the state |Ψ(1)〉.
For the four-qubit GHZ state |Ψ(2)〉 shown in the right part of Fig. 5, a
cascaded sandwich beam-like BBO entangled source25 is used, where the
LiNbO3 crystals are for spatial compensations and the YVO4 crystals are for
temporal compensations. The ultra-fast pump beam passes through the
two sandwich BBO crystals to generate two pairs of entangled photons,
1
2 ð HVj i þ VHj iÞ � ð HVj i þ VHj iÞ, and a polarizing beam splitter (PBS)
combines the photons from modes ‘1’ and ‘2’ through a Hong-Ou-
Mandel interferometer. The PBS acts as a parity check gate HHj i HHh j þ
VVj i VVh j when we collect the two photons from two different outports. We
will get the four-qubit GHZ state |Ψ(2)〉 if there is one photon in each of the
modes ‘3’, ‘4’, ‘5’, and ‘6’ (ref. 26).

Local filter
We use two beam displacers (BD) and three half-wave plates (HWP3,
HWP4, and HWP5) to construct the local filter operations Aγ. The three
HWPs are rotated by 1

2 ðarcsin γÞ, π4, and π
4, respectively. The designed BD we

use does not displace the vertically polarized photons, but makes the
horizontally polarized ones undergo a 4mm lateral displacement. The π

4
HWPs are used to change the polarization from H to V (from V to H). For
the horizontally polarized photons, they all pass through BD1, HWP4, and
BD2, and then they are collected by the fibers. However, for the vertically
polarized photons, after BD1 and HWP3, only a part of them undergoes the
lateral displacement and is collected. To ensure that the photons from

different paths of BD2 are all collected by the multimode fibers, we adjust
a Mach-Zehnder type interferometer whose visibility is about 98%.
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