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Defining the gene products that play an essential role in an organism’s functional repertoire is vital to
understanding the system level organization of living cells. We used a genetic footprinting technique for a
genome-wide assessment of genes required for robust aerobic growth of Escherichia coli in rich media. We
identified 620 genes as essential and 3,126 genes as dispensable for growth under these conditions. Functional
context analysis of these data allows individual functional assignments to be refined. Evolutionary context
analysis demonstrates a significant tendency of essential E. coli genes to be preserved throughout the bacterial
kingdom. Projection of these data over metabolic subsystems reveals topologic modules with essential and
evolutionarily preserved enzymes with reduced capacity for error tolerance.

Sequencing and comparative analysis of multiple diverse
genomes is revolutionizing contemporary biology by providing
a framework for interpreting and predicting the physiologic
properties of an organism. A variety of emerging postgenomic
techniques such as genome-wide expression profiling and mon-
itoring of macromolecular complex formation can reveal the
detailed molecular compositions of cells. New computational
approaches to exploring the inherent organization of cellular
networks, the mode and dynamics of interactions among cel-
lular constituents, are in early stages of development (14, 22,
23). These techniques allow us to begin unraveling a major
paradigm of cellular biology: how biological properties arise
from the large number of components making up an individual
cell.

Defining which gene products play an essential role and
under what conditions is vital to understanding the complexity
of living organisms. Although methods to rapidly and system-
atically determine genome-wide gene essentiality are less ad-
vanced than other functional genomic techniques, a number of
essentiality surveys involving different species have been re-
ported. Many experimental approaches have been used to pro-
duce such data, including individual knockouts in Saccharomy-

ces cerevisiae (10, 38), Caenorhabditis elegans (21), and recently
B. subtilis (22a), RNA interference in C. elegans (20), and
whole-genome transposon mutagenesis studies with several
microorganisms. In the latter group, complete or extensive lists
of essential and dispensable genes are available for Myco-

plasma pneumoniae and Mycoplasma genitalium (15), Mycobac-

terium tuberculosis (31), Haemophilus influenzae (1), and S.

cerevisiae (30). However, as of yet relatively little effort has
been committed to a system level interpretation of these data
in terms of cellular function or evolutionary relationships with
other organisms (19).

Escherichia coli has historically been the focus of intense
biochemical, genetic, and physiologic scrutiny, but genomic
essentiality data for this organism have remained incomplete.
Systematic efforts to compile genome-wide collections of E.

coli deletion mutants are under way. Two groups have reported
Tn10 transposon-based genetic footprinting projects with E.

coli, but essentiality data were revealed only for a limited set of
genes (3, 13). Currently, the Profiling of E. coli Chromosome
database (available at http://www.shigen.nig.ac.jp/ecoli/pec) is
the most complete list of essential and dispensable genes in E.

coli. This list is not based on direct experimental evidence but
is derived from systematic review of the experimental litera-
ture. Although this compilation is of great value, the wide
variety of strains, conditions, and types of mutations used in
individual studies significantly complicates interpretation.

Here we report a genome-wide, comprehensive experimen-
tal assessment of the E. coli MG1655 genes necessary for
robust aerobic growth in a rich, tryptone-based medium. Of
the 4,291 protein-encoding genes in E. coli, we assessed the
essentiality of 3,746 genes (�87% of the total). Individual
assessments were projected onto a whole-cell functional recon-
struction model including both metabolic and nonmetabolic
systems. Distribution of conditionally essential and dispensable
E. coli genes within functional systems was analyzed with re-
spect to the occurrence of putative orthologs across a broad
range of diverse bacterial genomes. This analysis demonstrates
a significant tendency of experimentally identified essential E.

coli genes to be evolutionarily preserved throughout the bac-
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terial kingdom, especially a subset of genes representing key
cellular processes such as DNA replication and protein syn-
thesis. Finally, we analyzed the conditional essentiality of met-
abolic enzymes from the perspective of cellular system level
organization, demonstrating enrichment with those enzymes
that catalyze reactions within evolutionarily conserved topo-
logic modules in the complex metabolic web of E. coli.

MATERIALS AND METHODS

Transposon mutagenesis. E. coli strain MG1655 (F� �� ilvG rfb-50 rph-1) (16)

was used throughout this work. Genetic footprinting with the use of the plasmid

pMOD�MCS� containing the artificial transposon EZ::TN�KAN-2� (Epicen-

tre Technologies, Madison, Wis.) and identification of chromosomal insertion

sites were previously described (9) and are detailed in the supplementary data

(supplementary data for this paper are available at http://www.integratedgenomics

.com/online_material/gerdes and on the University of Notre Dame and North-

western University websites [http://www.umsl.edu/�balazsi/JBact2003/ and

http://www.oltvailab.northwestern.edu/Pubs/JBact2003/]). Cells were grown in an

enriched Luria-Bertani (LB) medium composed of 10 g of tryptone/liter, 5 g of

yeast extract/liter, 50 mM NaCl, 9.5 mM NH4Cl, 0.528 mM MgCl2, 0.276 mM

K2SO4, 0.01 mM FeSO4, 5 � 10�4 mM CaCl2, and 1.32 mM K2HPO4. The

growth medium also included the following micronutrients: 3 � 10�6 mM

(NH4)6(MoO7)24, 4 � 10�4 mM H3BO3, 3 � 10�5 mM CoCl2, 10�5 mM CuSO4,

8 � 10�5 mM MnCl2, and 10�5 mM ZnSO4. The following vitamins were added

(concentrations are in milligrams per liter): biotin, 0.12; riboflavin, 0.8; panto-

thenic acid, 10.8; niacinamide, 12.0; pyridoxine, 2.8; thiamine, 4.0; lipoic acid, 2.0;

folic acid, 0.08; and p-aminobenzoic acid, 1.37. Kanamycin was added to 10

�g/ml.

As with any high-throughput technique, genetic footprinting is subject to a

certain degree of experimental and analytical error. A variety of validation

techniques indicate the overall error rate of our assignments to be well within

10% (9). The actual experimental detection and insert mapping error rate is

much lower (within 1 to 2%). The major source of ambiguity is associated with

data interpretation (see below). In the supplementary data, we include the insert

distribution within each open reading frame (ORF) (raw data, including insert

distribution within intergenic regions, are available upon request).

Statistical analyses of transposon insertion frequency. Essential and ambig-

uous ORFs introduce a bias into the density of transposon insertions due to the

fact that they “lose” the insertions incorporated within them during selective

outgrowth. There were also unmapped genomic regions where transposon inser-

tions could not be detected. To reconstruct insert distribution prior to selective

outgrowth, and to account for the contribution of unmapped regions, we re-

moved from the E. coli chromosomal map every ORF with a function asserted to

be essential, ambiguous, or not determined, as well as the regions not covered by

the mapping process, and joined together the rest of the chromosome. We

analyzed the original and corrected insertion location data assuming that the

insertions appear as a result of a Poisson process with an overall rate r of

3.218/kb. Based on this hypothesis, the probability to find M insertions within a

DNA region of length L is given by

PM	L
 �

	rL
M

M!
� e�rL

The P values corresponding to this hypothesis for the corrected data were

calculated to estimate the statistical significance of the deviations from a Poisson

process, for a threshold of P of 10�5 (see Fig. 1).

If the insertion locations are approximated by a Poisson process, the statistical

reliability of essentiality calls depends on two factors: the overall insertion den-

sity r in the region where the ORF is located and the length L of the ORF. More

specifically, the probability that an ORF is missed by chance is given as follows:

P0(L) � e�rL, where r is the corrected density of insertions in the 10-kb region

centered on the ORF on the chromosome. For example, to assure that the

probability P0 that no transposon insertion is detected in the given gene by

chance alone is �0.5, we need the following: rL � log(2) � 0.639. In our case,

604 of the 620 genes asserted to be essential satisfy this condition with rL of

�0.639, indicating that �97% of all essential genes have a reliability of essen-

tiality calls expressed by a P0 of �0.5. The number of essential genes with P0

smaller than a fixed value is given in Table 1. A detailed list for each gene is

presented in the supplementary data (see Table S1).

Identification of putative orthologs of E. coli genes in diverse set of microbial

genomes. Putative orthologs of E. coli genes were identified by using the ERGO

database (http://ergo.integratedgenomics.com/ERGO/) (26). Protein families in

ERGO correspond to homologous ORFs with identical assigned functions (24).

With each update of the database, grouping of proteins into families is refigured

through a multistep process including (i) formation of a family core from pro-

teins corresponding to several ORFs that are bidirectional best FASTA hits for

one another in their respective genomes, (ii) family extension by adding proteins

with identical assigned functions and by performing FASTA searches (27) and

adding matches with expectation values of less than a preset threshold, as de-

scribed earlier (12), and (iii) refinement of a family grouping based on multiple

ClustalW alignments (36) of all included sequences. To identify putative or-

thologs of E. coli proteins, all protein families in ERGO were automatically

queried for the simultaneous presence of a protein(s) corresponding to an E. coli

ORF(s) and proteins corresponding to ORFs from the genomes of 32 diverse

bacterial species (Agrobacterium tumefaciens, Anabaena sp., Aquifex aeolicus,

Bacillus subtilis, Borrelia burgdorferi, Brucella melitensis, Buchnera sp., Campy-

lobacter jejuni, Caulobacter crescentus, Chlamydia trachomatis, Clostridium aceto-

butylicum, Corynebacterium glutamicum, Deinococcus radiodurans, Fusobacterium

nucleatum, Haemophilus influenzae, Helicobacter pylori, Listeria monocytogenes,

Mesorhizobium loti, Mycobacterium tuberculosis, Mycoplasma pneumoniae, Neis-

seria gonorrhoeae, Pseudomonas aeruginosa, Ralstonia solanacearum, Rickettsia

prowazekii, Sinorhizobium meliloti, Staphylococcus aureus, Streptococcus pneu-

moniae, Synechocystis sp., Thermotoga maritima, Treponema pallidum, Vibrio

cholerae, and Xylella fastidiosa). Results of this search were further supplemented

by addition of ORFs from each of these genomes that are bidirectional best

FASTA hits with corresponding E. coli genes.

Densities of essential genes and evolutionary retention indexes (ERIs) along

the chromosome. The densities of essential genes along the E. coli chromosome

(see Fig. 1B) were calculated within overlapping 100-kb regions displaced 1 kb

from one another. For each 100-kb region, the essentiality was defined as the

ratio of the number of essential genes to the total number of genes found in the

region (NE/NT). The significance of essentiality for each 100-kb region was

determined based on the hypergeometric distribution. Given that 620 of 4,291 E.

coli genes were found to be essential, the probability of having NE essential genes

out of a total number of NT genes within a 100-kb region is given by

P �

�620
NE
� � 3,671

NT � NE
�

�4,291
NT

�

where �a
b� denotes the number of ways to choose b out of a elements.

We determined the ERI for each of the 4,291 E. coli ORFs by calculating the

fraction of genomes in the group that have an ortholog of the given ORF, with

the number of representative organisms (NO) equal to 33. Thus, if the number of

organisms that contain an ortholog of the E. coli ORF is NC, the ERI is given by

the following formula: ERI � NC/NO. The ERIs along the E. coli chromosome

were calculated within overlapping 100-kb chromosomal regions, displaced 1 kb

from one another (see Fig. 1C). The ERI of each 100-kb region was determined

by calculating the average of the ERIs for all ORFs located completely inside the

region.

Data analysis within the context of system level metabolic organization. Using

the information about the E. coli enzymes for all metabolic reactions available in

the ERGO database, together with the essentiality data for the corresponding

genes, we analyzed the correlation of enzyme essentialities within the known

hierarchical structure of the E. coli metabolic organization. We have previously

established a global topologic representation of the E. coli metabolic network, in

which each branch on the hierarchical tree corresponds to a group of metabolites

that are at its endpoints. Thus, each junction represents the module made up of

the substrates that were clustered together up to that stage (28). For each branch,

we can define an essentiality ratio based on the metabolic reactions present

among the group of metabolites it represents.

To treat each reaction equally, we considered all links present between any two

metabolites in the group, and for each of these links we took into account all the

reactions that created the link. Specifically, for all pairs in the group, we included

those metabolic reactions that transformed one of the substrates into another,

according to a reaction list in which generic donor and acceptor moieties, such as

H2O and ATP, are not considered (see reference 28 for details) and to which an

unambiguous insertion phenotype has been assigned (NRall). Next, we counted

those reactions whose corresponding catalytic enzymes proved to be essential

(NRlethal). Note that since the hierarchical tree is constructed according to a

two-step network complexity reduction procedure (28), there can be arcs be-

tween pairs of substrates that the tally does not include. To account for these, we
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examined each metabolic reaction with a known catalytic enzyme insertion phe-

notype on these internal arcs and incorporated them into the analysis. The

essentiality of the branch (or module) is given by the fraction NRlethal/NRall and

represents the fraction of essential enzymes of all biochemical reactions within a

given metabolic module (branch). For additional details, see the supplementary

data.

RESULTS

Genome-scale genetic footprinting in E. coli. Genetic foot-

printing was first introduced for analysis of gene essentiality in

S. cerevisiae (33). A modification of this technique using a

Tn5-based in vitro transposome system (11) in E. coli was

previously described, and gene essentiality within three cofac-

tor biosynthetic pathways has been analyzed (9). Here we have

extended this pilot analysis to the whole-genome level by using

the same standardized growth conditions. The general exper-

imental scheme is illustrated in the supplementary data.

Briefly, following transposon mutagenesis, a population of �2

� 105 independent mutants was grown aerobically for 23 dou-

blings in enriched LB medium supplemented with kanamycin.

Genomic DNA was isolated from the whole population and

used to map individual transposon inserts with a nested PCR

approach.

Distribution of the 1.8 � 104 distinct insert locations de-

tected along the E. coli chromosome is illustrated in Fig. 1A.

FIG. 1. Distribution of transposon insertion densities, densities of essential genes, and ERIs along the E. coli chromosome. (A) Gray lines show
the transposon insertion densities calculated as the number of transposition events per 100-kb sliding window over the entire E. coli MG1655
chromosome. Values indicated by the blue lines were computed in a similar manner, except that all chromosomal regions corresponding to
essential and ambiguous genes were excluded from the calculations in order to reconstruct insert distribution prior to selective outgrowth (see also
Materials and Methods). Gaps in the data (chromosomal regions where transposition events could not be detected due to technical reasons) are
indicated by short vertical lines along the x axis. These regions were excluded from all analyses. Nucleotide positions of the E. coli genome sequence
correspond to those in reference 4. The regions where the distributions of transposition events significantly deviate (P � 0.01) from a Poisson
process are marked by horizontal green lines. oriC shows the origin of chromosomal replication, and dif denotes the dif locus within the replication
termination area. (B) Distribution of essential genes along the E. coli chromosome, defined as a percentage of essential genes in the total number
of genes within a 100-kb-long chromosomal region (calculated per sliding window as described above). The regions where the numbers of essential
genes significantly deviate (P � 0.01) from values that could arise by chance are marked by horizontal green lines. (C) ERIs along the E. coli
chromosome, defined as the average ERI for all genes within each 100-kb region. The ERI for a gene is defined as the fraction of organisms in
a diverse set of 33 bacterial species which contain an ortholog of the gene in their genomes.

TABLE 1. Number of essential genes with P0 smaller than a
fixed value

P0
No. of

essential genes
% of

essential genes

�0.01 159 26
�0.05 281 45
�0.1 367 59
�0.2 476 77
�0.3 550 89
�0.4 587 95
�0.5 604 97
�0.6 610 98
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The densities of transposon insertion events are randomly dis-
tributed, with two notable exceptions: an overall maximum
around the origin of replication (oriC) and a minimum around
the terminus (dif). This may reflect increased target copy num-
ber at the origin of replication in the actively dividing bacterial
population used in this experiment. The overall insertion den-
sity is 3.218/kb, without appreciable variation between coding
(3.221/kb) and noncoding (3.193/kb) regions.

Assessment of conditional gene essentiality based on genetic

footprinting data. Unambiguous essentiality assessments were
made for 3,746 (or 87% of the total) E. coli protein-encoding
genes or ORFs (Table 2). Of these, 620 (14%) were asserted to
be essential, and 3,126 (73%) were asserted to be nonessential
(dispensable) based on the occurrence of transposon inserts
within each ORF and the overall insertion density in the local
environment, as described in the supplementary data. The
complete essentiality list is reported in the supplementary data
(see Table S1). No assertions could be made for 327 genes for
technical reasons, such as limited efficiency of PCRs in certain
regions of the E. coli chromosome or nonspecific primer an-
nealing in areas of DNA repeats. For 218 genes, we considered
the evidence to be insufficient for a specific conclusion about
essentiality. These genes were systematically called ambiguous,
according to the criteria listed in the supplementary data. For
example, ORFs shorter than 240 bp (�80 aa) and with no
inserts were consistently classified as ambiguous rather than
essential. In certain cases, relatively long ORFs (�900 bp)
containing only a single transposon were designated ambigu-
ous rather than nonessential.

Our results are generally consistent with previously pub-
lished data on individual genes and with data from currently
available collections of systematic gene deletions in E. coli. For
example, of the 1,379 individual gene deletion mutants listed at
the University of Wisconsin E. coli Genome Project website
(http://www.genome.wisc.edu/functional/tnmutagenesis.htm),
only 12% produced apparently conflicting designations of
genes as essential (for a detailed list of the discrepancies, see

Table S2 in the supplementary data). Although we have not

attempted to reconcile each individual case, several reasons for

discrepancies can be envisioned. Most importantly, the term

essential, which intuitively suggests an absolute requirement

for cell viability, also applies to any gene that imparts a sub-

stantial fitness advantage. Thus, mutants lacking gene products

necessary for maintaining vigorous growth fall into the same

category as those with “true lethal” mutations. Therefore, cer-

tain genes may be classified as essential by genetic footprinting,

yet corresponding viable deletion mutants may be obtained. In

addition, differences in medium compositions, aeration levels,

temperatures, and cell densities may account for many incon-

sistencies. Surprisingly, polar effects, in which transposon in-

sertion into dispensable genes disrupts transcription of essen-

tial genes, are relatively rare in genetic footprinting. This may

be due to the presence of weakly active promoter-like se-

quences within the transposon used in these experiments (9,

11). Most examples of polar effects are associated with genes

that may require high levels of expression to sustain rapid

growth rates.

Discrepancies resulting from inserts detected in the genes

otherwise considered to be essential also occur. In some cases,

single inserts occur close to protein termini or in interdomain

boundary regions in multidomain proteins. For proteins con-

sisting of two or more independently functioning domains,

inserts may be tolerated within the 3� portion of the gene if the

C-terminal domain of the protein it encodes is associated with

a dispensable function. This can occur even when a function

associated with the N-terminal domain (from the 5� region of

the gene) is genuinely essential (as with ftsX [9]). Small, local-

ized chromosomal duplications may account for inserts in

genes otherwise recognized as essential (2). In this scenario,

one copy of a duplicated gene provides the essential function

while the other copy containing the transposon is stabilized by

selection for kanamycin resistance. Large genes with only a

small number of inserts may fall into this category since the

TABLE 2. Distribution of essential and nonessential genes and average ERIs in selected functional categoriesa

Functional
category

Description
Total no. of

ORFs
No. E No. N No. ? No. ND % E Mean ERI

AAM Amino acid metabolism 138 21 108 1 8 15 0.5
CHM Carbohydrate metabolism 219 21 178 3 17 10 0.4
NCM Nucleotide and cofactor metabolism 181 53 119 2 7 29 0.5
LPC Lipid, lipopolysaccharide, lipoprotein, peptidoglycan,

and cell wall biosynthesis
126 34 73 5 14 27 0.5

NAM Nucleic acid metabolism 156 43 96 5 12 28 0.6
PMS Protein metabolism and secretion 167 80 57 18 12 48 0.7
MSM Miscellaneous metabolism 94 14 72 2 6 15 0.4
BEN Bioenergetics 100 15 75 4 6 15 0.3
SMC Signaling, motility, and chemotaxis 153 12 125 3 13 8 0.3
RCD Expression regulation and cell cycle and division 177 30 118 13 16 17 0.2
MTR Membrane transport 276 22 244 3 7 8 0.3
PHT Phage- and transposase-related processes 62 12 35 2 13 19 0.3

CAT All categorized 1,849 357 1,300 61 131 19 0.4
UNC Uncategorized 2,442 263 1,826 157 196 11 0.2

Total Categorized and uncategorized 4,291 620 3,126 218 327 14 0.3

a Abbreviations are as follows: E, essential; N, nonessential; ND, not determined; ?, ambiguous.
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total number of specific duplications within the population
prior to transformation is probably very small (25).

Functional context analyses of essentiality data. The inter-
pretation of genomic essentiality data can be approached in a
number of alternate ways, such as by using chromosomal (po-
sitional), functional (system level), or phylogenetic (evolution-
ary) context analysis. In addition to refining initial essentiality
assignments and reconciling apparent discrepancies with exist-
ing knowledge, such analyses can improve and expand existing
understanding of the systemic behavior of the cell at various
levels. Without attempting a comprehensive analysis, we have
limited the scope of our efforts to (i) prototyping and illustrat-
ing such analysis by using selected examples from various func-
tional systems, (ii) evaluating the internal consistency of our
data, and (iii) developing preliminary observations at the sys-
tem level, as presented below.

Initially, we analyzed the data in a functional context, which
involved dividing the overall physiology of the organism into
smaller, internally coherent subsystems such as amino acid
biosynthesis, nucleotide metabolism, and other broad func-
tional categories (Table 2). This approach mirrors the standard
didactic subdivision of microbial biochemistry and physiology.
It also provides an organizational framework with which to
analyze total genomic data and allows specific metabolic ques-
tions to be addressed.

For consistency, our functional analysis is based exclusively
on SWISS-PROT functional annotations (8). Each of the 1,849
gene products with specific SWISS-PROT annotations and
defined biochemical functions supported by solid experimental
evidence was placed into one of the 12 functional categories
(Table 2 and supplementary data [see Table S1]). Among the
remaining 2,242 uncategorized protein-encoding genes, many
have been tentatively annotated in SWISS-PROT and other
databases, but most of these annotations either fall short of
giving a specific testable function or have not been confirmed
by direct experiments. As expected, the ratios of essential
genes within various functional categories are rather uneven
(Table 2). Categories that include gene products involved with
key aspects of cellular metabolism (such as nucleic acid and
protein metabolism) contain a substantially higher percentage
of essential genes (28 and 48%, respectively) than the average
for the entire genome (14%). The percentages of essential
genes in categories such as signaling, motility, and chemotaxis
(8%) and membrane transport (8%) are substantially below
the whole-genome benchmark. The average essentiality for the
subset of 2,242 uncategorized genes (11%) is substantially
lower than the average for the subset of categorized genes
(19%). Several representative metabolic and nonmetabolic sys-
tems (7 of 12 functional categories) were selected for use as
examples of functional context analysis and for evaluation of
the internal consistency of the data. Here we describe one such
analysis, with additional detailed interpretations presented in
the supplementary data.

Amino acid metabolism: lysine biosynthesis. Most of the
genes responsible for biosynthesis of various amino acids were
expected to be nonessential since the medium contains most of
the amino acids required for growth. With a few notable ex-
ceptions, this expectation was confirmed by our results. Of the
91 genes with specific SWISS-PROT annotations indicating
involvement in amino acid biosynthesis, only 16 appear to be

essential (Fig. 2A). Six of these genes are involved in lysine
biosynthesis. E. coli produces lysine from aspartate via the
nine-step pathway (Fig. 2B). Although lysine is available in the
growth medium, its immediate precursor, diaminopimelate
(DAP), which is required for cell wall biosynthesis, is not. The
lysA gene encoding the enzyme that converts DAP to lysine at
the last step of this pathway is dispensable. Analysis of DAP-
lysine biosynthesis provides an example of refining pathway
reconstruction and individual functional assignments based on
genome-scale essentiality data. Genes (asd, dapA, dapB, dapD,
dapE, and dapF) encoding most of the enzymes leading
to DAP production are essential. The first gene in this path-
way (lysC), encoding aspartokinase III, is dispensable due to
the functional redundancy of the additional aspartokinase
isozymes (encoded by metL and thrA). In contrast, the asd and
dapA genes involved with the second and the third steps of
DAP-lysine biosynthesis are essential in spite of the existence
of apparent paralogs. Proteins encoded by the yjhH and yagE

functionally uncharacterized genes are often annotated as po-
tential dihydrodipicolinate synthases based on their high se-
quence similarities with the dapA gene product (BLAST E
scores of 4e�33 and 2e�28, respectively). However, genetic
footprinting data suggest that under our experimental condi-
tions neither is capable of complementing loss of the essential
dapA function. The opposite situation is observed with succi-
nyl-DAP aminotransferase (encoded by argD), which is firmly
defined as dispensable in our data. This apparent inconsistency
can be resolved by assuming functional complementation by
the argM gene product. The argM gene is known to encode
succinyl-ornithine transaminase, which is primarily involved in
arginine biosynthesis. However, this enzyme is closely related
to succinyl-DAP aminotransferase by sequence, and the ami-
notransferases are known to possess rather broad substrate
specificities, especially for structurally similar substrates (such
as succinyl-DAP and succinyl-ornithine). Overexpression of
the argM gene has been demonstrated to suppress an argD

mutation in E. coli (32).
Phylogenetic analysis of essentiality data within functional

groups. To assess the data set from an evolutionary perspec-
tive, we examined the distribution of conditionally essential
and dispensable E. coli genes with respect to the occurrence of
putative orthologs across a broad range of diverse bacterial
genomes. Putative orthologs within a reference set of 32 com-
plete bacterial genomes chosen to represent maximum phylo-
genetic diversity were identified based on protein families,
supplemented by bidirectional best hits (see Materials and
Methods). For this analysis we introduce a simple parameter:
an ERI computed for each E. coli gene as the fraction of
genomes from the reference set containing a putative ortholog
of the gene. ERI values varying from 0 (for genes unique to E.

coli) to 1.0 (for omnipresent genes) are provided in the sup-
plementary data (see Table S1). In a recent study, the Profiling
of E. coli Chromosome data (http://www.shigen.nig.ac.jp/ecoli
/pec) were used to demonstrate a remarkable tendency of
essential gene sequences to be more evolutionarily conserved
than those of nonessential genes (19). In our analysis, we used
ERI values to focus on occurrence of essential and nonessen-
tial genes (preservation of orthologs) rather than on conserva-
tion of their respective sequences.

Figure 3A depicts the overall number of E. coli genes in
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FIG. 2. Essentiality of genes controlling amino acid biosynthesis in E. coli. (A) Functional overview of amino acid biosynthesis. Each block
represents one or more pathways leading to production of a particular amino acid or its key intermediates (shown in smaller boxes). Within each
block, stacked bars represent the gene products involved in the pathway (according to SWISS-PROT release of June 2002). Bars are colored
according to gene essentiality (green, nonessential; red, essential; gray, undefined). (B) Detailed representation of the lysine biosynthetic pathway.
Genes predicted in the ERGO database to be paralogs in this pathway are shown, in addition to genes whose roles in the biosynthesis of lysine
have been experimentally verified (in bold).
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decreasing order over the range of ERI values. An initial sharp
decrease in the number of preserved genes (�40%) occurs
over a rather small phylogenetic distance of less than four
genomes in our reference set (ERI � 0.1). Further decay is at
much lower rates, and orthologs of �10% of E. coli genes are
preserved in at least 25 diverse genomes (ERI � 0.8). This
reflects a nonrandom ortholog preservation pattern, character-
ized by a highly conserved core group of genes. This core is
highly enriched by genes identified as essential in our study.
The tendency of essential genes to be evolutionarily preserved
is also reflected in Fig. 1, demonstrating a significantly positive
correlation (0.5240) between essentiality (Fig. 1B) and ERIs
(Fig. 1C) along the E. coli chromosome. Similarly, plotting the
fraction of essential genes at different ERI values demon-
strates that the relationship between the two parameters has

the following form: y � yo � aebx, implying that the essentiality
of genes with a given ERI is due partly to a very strong ten-
dency of essential genes to be retained by evolution (the ex-
ponential behavior dominant above an ERI of 0.6) and partly
to an essential gene fraction of �10% that is present among
genes within any ERI value group (Fig. 3B).

Comparison of average essentiality and ERI values between
different functional categories reveals significant correlation
(Table 2). Functional categories including highly specialized
proteins such as transporters, regulators, and signaling mole-
cules are characterized by average ERI values close to the
average for the whole genome (�0.3). Average essentiality
within these groups also does not exceed an overall whole-
genome level (�14%). The least essential group of all uncat-
egorized proteins with historically elusive functions has the
lowest average ERI, �0.2. Therefore, many of these proteins
are likely to be specific to the environmental and phylogenetic
niches of E. coli. On the other hand, the bulk of cellular
intermediary metabolism (categories AAM, CHM, NCM,
LPC, and MSM [Table 2]) is associated with ERI values of 0.4
to 0.5. Essentiality within these metabolic categories varies
depending on the levels of functional redundancy of their con-
stituents in rich medium. Not surprisingly, the highest ERI
values (up to 0.7) as well as the highest ratio of essential genes
(up to 48%) occurs in functional categories that include rep-
lication, transcription, and translation, i.e., cellular processes
that are conserved and unconditionally essential in most or-
ganisms.

Figure 4 illustrates the changes in distribution of essential
genes between functional categories depending on their ten-
dencies to be evolutionarily preserved. An initial bias in dis-
tribution of all categorized essential genes towards those in-
volved with synthesis and processing of informational
macromolecules increases dramatically at higher ERI values.
The fraction of all essential genes contributed jointly by the
functional categories PMS and NAM (Table 2) (�30%) in-
creases almost twofold (up to �60%) for a subset of essential
genes with ERIs of �0.8, ultimately exceeding 90% as the ERI
approaches 1.0.

This analysis reveals two distinct classes of essential genes,
which may be referred to as broadly preserved essential genes
and species-specific essential genes. A subset of less than 180
genes (�4% of the genome) with ERIs of �0.8 accounts for
�25% of all of the essential genes revealed in this study, and
it appears to provide an approximation of broadly preserved
essential genes. Functional content analysis of this subset (Fig.
5) strongly supports the expectation that these genes represent
universally and unconditionally essential constituents of cellu-
lar central machinery. This notion is in good agreement with
available complete and partial gene essentiality datasets for
Mycoplasma pneumoniae and Mycoplasma genitalium (15),
Haemophilus influenzae (1), Staphylococcus aureus (7, 18), and
Streptococcus pneumoniae (35). The overwhelming majority
(70 to 87%) of assigned genes in these data, which correspond
to E. coli genes listed in Fig. 5, appear to be essential (see
Table S5 in the supplementary data for details). Of note, many
of these broadly preserved essential genes, including those with
yet undefined functions, may be considered potential broad-
spectrum anti-infective drug targets (9, 29).

In contrast, more than 75% of genes within the set of spe-

FIG. 3. Distribution of E. coli genes as a function of ERIs. (A) To-
tal number of genes with an ERI above the threshold plotted versus
the ERI threshold. Color coding within bars represents fractions of
essential (red), nonessential (green), ambiguous (yellow), and missing
(gray) genes for each incremental increase of ERI threshold (with 33
diverse genomes in the reference set). (B) Fractions of essential genes
at different ERI values. The data were fitted with the following func-
tion: y � yo�aebx, where yo is 12.0  0.9, a is 0.023  0.019, and b is 7.8
 0.8 (dashed red line). The dotted line represents the fractions of
essential genes for the whole genome. (The fractions plotted are de-
fined as the number of essential genes versus the number of essential
(E) and nonessential (N) genes. Unknown or ambiguous genes are not
taken into account.)
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cies-specific essential genes (which account for �30% of all

essential E. coli genes with ERI values of �0.1) encode uncat-

egorized proteins with poorly defined or completely unknown

functions. Many of the genes with known functions within this

class are related to transcription regulation, membrane trans-

port, signaling, and other cellular processes whose essentiality

is either strictly condition dependent or limited to a set of very

specific needs of E. coli and closely related species.

Among the 263 essential genes marked in our analysis as

uncategorized (see Table S1 in the supplementary data), 19

genes have specific functions assigned to them while 73 genes

have putative assignments (according to SWISS-PROT and

other public archives). Those include assignments indicating

just an element of possible function, such as “probable GTP-

binding protein” (ychF). For the remaining 171 genes, we were

unable to find any reliable functional assignments. These genes

may be qualified as essential unknowns (at least at the time

when this analysis was performed). The list of these genes

along with their respective ERI values is provided in the sup-

plementary data (see Table S6). Only 10 (yciL, yjeE, ybeY,

yebC, yjgF, ydeE, yoaB, yqgF, ycdK, and yhbC) of the essential

unknowns (�6%) are broadly conserved in bacteria (ERIs of

0.8 to 1). In contrast, more than 60% of genes in this set are

poorly conserved across our reference set of diverse genomes

(108 genes with ERIs of 0 to 0.1). Less than half of them (42

genes) are conserved in most Enterobacteriaceae, while others

are present only in E. coli and some closely related species.

System level analysis of essentiality data within topologic

modules of E. coli metabolism. It is widely recognized that the

thousands of components of a living cell are dynamically in-

terconnected, so that cellular functional properties are a result

of the complex intracellular web of molecular interactions

within the cell (14, 22, 23). This is perhaps most evident with

intermediary metabolism, in which hundreds of metabolic sub-

strates are densely integrated through biochemical reactions

(17). Metabolic networks are organized into many small, highly

connected topologic modules that combine in a hierarchical

manner into larger, less cohesive units, with their numbers and

degrees of clustering following a power law, as previously dem-

onstrated for 43 reference organisms (28). Within E. coli, hi-

erarchical modularity closely overlaps with known metabolic

functions (28).

To comprehend the results of individual gene essentiality

in the context of cellular system level functional organiza-

tion, we projected the essentiality phenotype of metabolic

enzymes onto a global topologic representation of the E. coli

metabolic network (28). As shown in Fig. 6, the overall

essentiality ratio of metabolic enzymes within the full met-

abolic network is relatively low, with essential enzymes lim-

ited to a subset of modules. Visual inspection of the figure

indicates that while many metabolic modules are almost

entirely nonessential, at the lowest hierarchical level several

branches corresponding to small topologic modules appear

to be essential, i.e., they are composed of biochemical re-

FIG. 4. Distribution of essential genes among functional categories as a function of ERI thresholds. Functional categories are color coded and
specified by three-letter designations as in Table 2. Within every threshold group, each bar represents the fraction (percent plotted on y axis) of
all categorized essential genes corresponding to the number of essential genes in a given category (x axis) with ERI values above the set threshold
(z axis).
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actions catalyzed by predominantly essential enzymes. Of
these, the largest fractions are within the topologic modules
related to nucleotide, coenzyme, and lipid metabolism. The
pyrimidine metabolic module appears to contain the highest
level of essential reactions.

A significant correlation between essentiality and ERI
values is apparent within metabolic modules, and many of
the highly essential modules also contain metabolic enzymes
with the highest ERI values (Fig. 6). Generally, essentiality
and evolutionary retention of metabolic enzymes correlate,
although exceptions are also evident as illustrated in detail
for the pyrimidine module (supplementary data [see Fig.
S3]). Pyrimidine metabolism, however, represents a special
case in E. coli MG1655, since the rph-1 mutation in this

strain depresses expression of the downstream pyrE gene
(16). This strain is prototrophic for pyrimidines but grows
significantly better in uracil-supplemented media. Although
our studies were performed with rich media containing sig-
nificant amounts of exogenous pyrimidines, the low level of
pyrE transcription may have affected the ability of cells to
efficiently adjust the relative levels of the pyrimidine nucle-
otides. This may explain the relatively high level of gene
essentiality within the pyrimidine-related topologic module.
These observations, however, may also reflect a hypothe-
sized generic feature of metabolic networks: their limited
ability to fully compensate for perturbations by reorganiza-
tion of metabolic fluxes within evolutionarily conserved to-
pologic modules.

FIG. 5. E. coli genes found to be essential and preserved in over 80% of diverse bacterial genomes (ERI � 0.8). These universal essential genes
are grouped by functional categories (described in Table 2). NTP, nucleotide triphosphate; FMN, flavin mononucleotide; FAD, flavin adenine
dinucleotide; CoA, coenzyme A; TCA, tricarboxylic acid cycle; PRPP, phosphoribosyl pyrophosphate.
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DISCUSSION

A genetic footprinting technique was used to assess gene
essentiality in E. coli K-12 across the entire genome under
uniform growth conditions (logarithmic aerobic growth of
strain MG1655 in enriched LB medium). This approach gen-
erated an internally coherent data set, which was examined at
increasingly abstract levels to refine models of cellular organi-
zation. At the finest level, individual gene essentiality reveals
basic physiologic information about cellular metabolism under
specific growth conditions. At a more abstract level, the data

can be used for focused comparative genomic analysis to define

the core bacterial genetic repertoire, while at the highest level

of abstraction, the data can be used to detect organizational

principles of cellular networks.

Functional context analysis based on projection of the gene

essentiality data across a whole-genome functional reconstruc-

tion (metabolic and nonmetabolic pathways and networks)

provides a powerful way to refine and interpret the results of

genetic footprinting. This type of analysis, previously described

only for a limited set of metabolic pathways (9) and extended

FIG. 6. The evolutionary retention and essentiality ratio of enzymes in the topologic modules of E. coli metabolism. The hierarchical tree
derived from the topologic overlap matrix of E. coli metabolism that quantifies the relation between the various modules is shown, as previously
described (28). The branches of the tree are color coded according to the fraction of essential enzymes (top panel) and the average ERI score of
enzymes (bottom panel) catalyzing the biochemical reactions within a given topologic module. Red indicates a 100% essentiality/conservation ratio
within a module. Note that essentiality is not uniformly distributed across all modules (branches), but we observe a few small modules with very
high fractions of essential enzymes, while the majority of modules contain no or only a few essential enzymes. A similar segregation of modules
with high evolutionary conservation is observed in the second panel, with their locations often correlating with those of the high essentiality
modules. The predominant biochemical classes of substrates used to group the metabolites are shown. Polysacch., polysaccharide; disacch.,
disaccharide; monosacch., monosaccharide; met. sugar alc., metabolic sugar alcohols.
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here to the whole-genome level, reveals a remarkable consis-

tency between experimental observations and our present un-

derstanding of biochemical pathways and individual gene func-

tions. Based on the overall consistency, one can resolve

ambiguities, reconcile conflicting essentiality data, and even

make tentative assignments for individual uncharacterized

genes if they occur within well-known functional contexts

(pathways).

Additionally, functional context analysis improves and ex-
tends our understanding of the systemic behavior of the cell at
all levels: from individual genes and gene products to large
functional systems and networks. Global projection of experi-
mentally determined gene essentiality over a functional recon-
struction model bridges the gap between two fundamentally
different but related concepts: essential functions and essential
genes. For example, essentiality data can distinguish functional
(mutually complementing) and nonfunctional (noncomple-
menting) paralogs of genes with essential functional roles.

Analysis of essentiality data in a physiological context as a
function of various factors and conditions, such as medium
composition, aeration, growth phase, and temperature, etc.,
provides an opportunity to connect large functional modules
with particular types of physiological states. Performing such
analyses for a variety of conditions will provide critical support
to systemic modeling efforts, such as flux-balance (6) and ele-
mentary mode analyses (34), and to our understanding of to-
pologic modules (28). In this respect, the unexpected number
of essential enzymes within the pyrimidine metabolic module
in a pyrE-challenged E. coli strain reveals a significantly re-
duced ability of this module to tolerate additional gene inac-
tivation, even in rich media. This suggests that the capacity for
reorganization of metabolic fluxes within evolutionarily con-
served, and presumably universally important, metabolic mod-
ules may be reduced, as a consequence either of their less
evolved connectivity (37) or the performance of their functions
at near optimality with corresponding innate fragility to un-
common error (5). The validity of these hypotheses will need
to be tested by future experiments.
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