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ABSTRACT. The contribution of glaciers to sea-level rise and their effects on landscape evolution
depend on the poorly known relationship between sliding speed and drag at the ice/bed interface.
Results from experiments with a new rotary laboratory device demonstrate empirically for the first time
a double-valued drag relationship like that suggested by some sliding theories: steady drag on a rigid,
sinusoidal bed increases, peaks and declines at progressively higher sliding speeds due to growth of
cavities in the lee sides of bed undulations. Drag decreases with increased sliding speed if cavities
extend beyond the inflection points of up-glacier facing surfaces, so that adverse bed slopes in contact
with ice diminish with further cavity growth. These results indicate that shear tractions on glacier beds
can potentially decrease due to increases in sliding speed driven by weather or climate variability,
promoting even more rapid glacier motion by requiring greater strain rates to produce resistive stresses.
Although a double-valued drag relationship has not yet been demonstrated for the complicated
geometries of real glacier beds, both its potential major implications and the characteristically convex
stoss surfaces of bumps on real glacier beds provide stimulus for exploring the effects of this
relationship in ice-sheet models.
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INTRODUCTION
Increases in the speeds of some outlet glaciers in Greenland
and West Antarctica in response to recent atmospheric and
oceanic warming highlight the important role of glacier
speed-ups in future sea-level rise (e.g. Stocker and others,
2013). The veracity of modeling efforts to simulate these
speed-ups (e.g. Larour and others, 2012; Nick and others,
2013) depends on accurately characterizing sliding speed.
Theories of glacier surging (e.g. Kamb, 1987; Fowler and
others, 2001) face the same challenge. Sliding speed also
controls the rate of bedrock erosion by glaciers (e.g. Hallet,
1979; Iverson, 2012) and thus needs to be calculated in
numerical models aimed at simulating the long-term topo-
graphic evolution of glaciated mountain belts and their
constituent landforms (Egholm and others, 2009; Herman
and others, 2011).

Intensive theoretical effort, beginning with Weertman
(1957), has gone into characterizing the relationship
between drag on the bed and sliding speed. Central to
recent theoretical efforts for the case of glacier sliding over a
rigid bed is separation of ice from leeward surfaces of bed
undulations. Resultant cavities between the ice and bed
initiate where the minimum compressive normal stresses on
surfaces associated with sliding are overcome by water
pressure (Lliboutry, 1987). For sinusoidal beds commonly
considered in theories (Lliboutry, 1968, 1979, 1987; Fowler,
1986, 1987; Kamb, 1987; Schoof, 2005), the point of
separation occurs at the inflection point of the leeward bed
surface (Lliboutry, 1987). At progressively higher steady
sliding speeds, cavities are larger, and drag on the bed
increases until cavities extend down-glacier beyond the
inflection point of the adjacent stoss (up-glacier-facing) bed
segment. The maximum drag that the bed can support –
commonly called Iken’s bound (Fowler, 1986, 1987;
Schoof, 2005) – is predicted to decrease if sliding speed

and cavity size increase further because the maximum drag
that a stoss segment of the bed can support is proportional to
its maximum slope in contact with ice (Iken, 1981; Schoof,
2005). For consistency with many past studies, we call this a
‘double-valued’ drag relationship, bearing in mind, of
course, that drag is double-valued only when it, rather than
sliding speed, is considered to be the independent variable.

Field studies of modern glaciers have not provided the
necessary test of this double-valued drag relationship or any
other sliding rule. In field studies both drag on the bed,
which generally differs locally from the glacier driving stress
(e.g. Cuffey and Paterson, 2010), and bed properties are
poorly known, even where boreholes allow access to the
bed. Bed conditions also vary in time and space. Thus,
efforts to empirically determine sliding rules from field
measurements have yielded inconsistent relationships (e.g.
Raymond and Harrison, 1987).

To circumvent the complications of field measurements,
we have used a new laboratory device (Iverson and
Petersen, 2011) to provide the first test of modern sliding
theories that consider a rigid sinusoidal bed, no regelation,
and the effect of ice/bed separation. In doing so, we adopt
essentially the same reductionist viewpoint that has driven
pioneering theoreticians to formulate physically based
sliding models (e.g. Weertman, 1957, 1964; Lliboutry,
1968, 1979, 1987; Nye, 1969, 1970; Kamb, 1970; Morland,
1976; Fowler, 1981, 1986, 1987, 2010; Iken, 1981; Schoof,
2005): that secure understanding of slip over simplified beds
is a prerequisite for confident application of sliding rules to
realistic glacier beds. We begin by discussing past relevant
laboratory experiments, which have either not isolated the
important effects of regelation and ice/bed separation or
have been insufficient to yield steady-state relationships
among sliding speed, basal drag, effective pressure and ice/
bed separation.
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PREVIOUS EXPERIMENTAL STUDIES
There have been relatively few laboratory studies of sliding
and none that provides a test of recent sliding models (Fowler,
1986, 1987; Schoof, 2005; Gagliardini and others, 2007) that
emphasize ice/bed separation and neglect regelation. Motiv-
ation for emphasizing ice/bed separation comes from both
extensive evidence of cavities on formerly glaciated bedrock
(e.g. Walder and Hallet, 1979; Hallet and Anderson, 1980;
Hooyer and others, 2012) and their centrality in models of
glacier surging (Kamb and others, 1985; Kamb, 1987),
hydrology (Walder, 1986; Kamb, 1987; Schoof, 2010) and
bedrock erosion (Hallet, 1996; Iverson, 2012). Motivation for
neglecting regelation comes from the common scarcity on
formerly glaciated bedrock of obstacles sufficiently small to
be accommodated mainly by regelation (Kamb, 1970;
Hooke, 2005), which probably reflects the tendency for
small obstacles to be worn flat by abrasion (Hooke, 2005).

Two widely cited sets of laboratory experiments explored
relationships between shear stress, normal stress and sliding
speed for ice dragged over surfaces with irregular micro-
scopic to sub-centimeter roughness elements (Barnes and
others, 1971; Budd and others, 1979). Many of these
experiments were conducted at sub-freezing temperatures
(Barnes and others, 1971). In experiments with temperate
ice, partitioning between regelation and viscous deform-
ation of ice was unknown, but the small sizes of obstacles,
with thermal conductivities either equal to or greater than
rock, made regelation difficult to preclude, if not likely.
Cavity formation in Budd and others (1979), if it occurred,
was of unknown extent, and the degree to which water
pressure at the sliding interface may have reduced the
effective normal stress to values below the applied normal
stress was unknown. Worth noting is that Barnes and others
(1971) measured a double-valued sliding relationship, but
decreasing drag with increasing speed occurred at speeds
that greatly exceeded those relevant to glacier sliding and
for reasons unrelated to ice/bed separation.

In subsequent experiments with better temperature
control, larger, laterally adjacent streamlined obstacles
(15 mm high, 60 mm wide, 160 mm long) were pushed
under a temperate block of ice held fixed and under a steady

normal stress (Hooke and Iverson, 1985). Although there
was no regelation, heat transfer inward from the perimeter of
the apparatus caused melting on the up-glacier sides of the
bumps that accounted for 25% of the total motion. Although
cavities formed in lee of the obstacles, whether they reached
a steady size was unknown because the volume of the ice-
cavity system was not measured. In addition, the obstacles
were isolated longitudinally; thus, the fundamental inter-
action between cavities and the stoss surfaces of obstacles
immediately downstream, which gives rise to the double-
valued sliding relationship of some theoretical models
(Lliboutry, 1968, 1979, 1987; Fowler, 1986, 1987; Schoof,
2005), was not studied.

The most ambitious previous laboratory study of glacier
sliding used the Couette-type viscometer, ‘Penelope’, to
rotate a ring of ice around a central cylinder, which was
mildly elongated to form two diametrically opposed and
symmetrical bumps (�30 mm high with circumferential
lengths of �500 mm) (Brepson, 1979; Meyssonnier, 1989).
In experiments conducted with temperate ice (Brepson,
1979), cavities formed. Whether they reached a steady size
was unknown, and steady drags at a particular sliding speed
were not achieved. No relationship between sliding speed
and bed shear stress was determined. In later experiments
with the same device, steady cavity sizes and bed shear
stresses were achieved, but experiments were conducted at
sub-freezing temperatures (–0.5 to –1.0°C) (Meyssonnier,
1989). No relationship between sliding speed and bed shear
stress was reported.

METHODOLOGY
We have built and used a major new laboratory device to
study subglacial processes, with an initial focus on ice/bed
separation (Iverson and Petersen, 2011) during sliding and
the relationship between sliding speed and drag on the bed.
The device rotates a ring of ice at its pressure-melting
temperature across a rigid or sediment bed under a
prescribed effective pressure. Capabilities of the device
include unlimited slip displacement, temperature control of
the ice and bed to 0.01°C, free movement of ice normal to
the bed associated with ice/bed separation, and develop-
ment of ice with a structure like the basal ice of glaciers
(Iverson and Petersen, 2011). Either sliding speed or basal
drag is controlled while the other variable is measured. We
use the device in both of these modes to develop a drag rule
for glacier sliding over a rigid sinusoidal bed (Fig. 1) subject
to cavity formation in the lee sides of bed undulations and
negligible regelation. Also, a flat bed is used to measure
minor background drag resulting from boundary effects
unrelated to bed geometry.

Device
A ring of ice, 0.90 m in outside diameter, 0.20 m wide and
�0.21 m thick, is contained within a U-shaped chamber and
dragged at its upper surface across the bed (Fig. 1). A vertical
stress, held steady to within 2%, is applied to the ice with a
hydraulic ram, and the ram contracts or extends to accom-
modate cavity expansion or contraction, respectively, at the
bed. This extension or contraction is measured and allows
cavity volume to be determined. Cavities are connected to
drains that can be held open at atmospheric pressure or
closed, so that the bed can be pressurized with water. The
upper surface of the ice ring is rotated at either a constant

Fig. 1. Schematic of the ice ring and sinusoidal bed. An annular
plate with teeth grips the upper surface of the ring and drags it
across the bed. The ring also slides along smooth walls that confine
it along its sides. See Iverson and Petersen (2011) for more details.
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speed or a constant drag. Two video cameras look through
windows in the outside walls to track markers placed in the
ice that record sliding displacement and speed. The
apparatus resides in a cold room kept at 1�0.5°C. To keep
the ice ring at the pressure-melting temperature while
minimizing melting and thereby optimizing the durations
of experiments, the temperature of the ice chamber is
controlled to �0.01°C using a glycol/water mixture that
circulates in a bath around the chamber. A fluid circulator
outside the cold room both pumps the fluid and regulates its
temperature. Thermistors, calibrated to 0.01°C, record
temperatures in the bed and lateral walls of the chamber.
After sliding is finished and experiments are over, a winch
allows the ice ring to be withdrawn from the chamber fully
intact, so that the ice can be analyzed. Mechanical
components are held rigid in a 2.9 m high aluminum-and-
steel loading frame. Other details of the device and its
function can be found in Iverson and Petersen (2011).

Bed
The bed for these experiments is designed to test theories of
sliding that idealize glacier beds as sinusoids with wave-
lengths sufficiently large to make regelation negligible, so
that ice moves past undulations mainly by enhanced
creeping flow (Lliboutry, 1968, 1979; Fowler, 1986, 1987;
Schoof, 2005). At the center line of the experimental
sinusoidal bed, its wavelength is 183 mm and amplitude is
15.3 mm. To inhibit regelation past these undulations, the
bed is made of polyoxymethylene plastic (Delrin®), which
has a low thermal conductivity (0.33 W m–1 °C–1) relative to
rocks. Based on the sliding theory of Kamb (1970), the
controlling wavelength for the plastic bed, below which
regelation is expected to be dominant, is 6–55 mm, for
bounding sliding speeds of these experiments of 400–
0.5 m a–1, respectively, at the ice-ring center line. Thus,
minimal regelation is expected experimentally. The wave-
length and amplitude of the experimental bed decrease from
the outside to the inside wall of the annulus to keep the
slopes of the sinusoid uniform across the width of the
annulus. The slope of stoss surfaces controls the drag in
theories of glacier sliding with ice/bed separation (Iken,
1981; Schoof, 2005; Gagliardini and others, 2007).

Procedure
An ice ring is constructed by adding millimeter-scale,
crushed deionized ice particles in successive layers
(�15 mm thick) to the chamber and saturating each layer
with deionized water, so that randomly oriented crystals
grow as the water in each layer is allowed to freeze
(Brepson, 1979; Iverson and Petersen, 2011). Plastic beads
are frozen into the ice to track its displacement and internal
deformation during sliding. Once the ice ring is built, a
toothed, horizontal polyoxymethylene plate (upper platen)
is lowered onto the ring’s upper surface and frozen into
place. A vertical stress of �250 kPa is applied to the ice, and
over a period of �4 days the ice ring is brought to the
pressure-melting temperature by incrementally fine-tuning
the temperature of the circulating glycol/water mixture.
Once temperatures recorded by thermistors and contraction
of the ice chamber induced by melting indicate that the ice
is at the pressure-melting temperature, the vertical stress is
then increased to its ultimate value: 500 kPa in these
experiments. The associated decrease in temperatures
recorded by thermistors in the bed and chamber walls

provides independent confirmation that the ice is at the
pressure-melting temperature (Cuffey and Paterson, 2010;
Iverson and Petersen, 2011).

Sliding is started by rotating the upper platen either at a
steady rate, while recording the associated bed shear stress
with a torque sensor, or at a steady bed shear stress, while
measuring rotation rate and the associated sliding speed. The
device can operate in rate-controlled mode down to center-
line sliding speeds of 7.25 m a–1; at lower speeds, bed shear
stress is controlled and speed is measured. Two to 14 days
elapse as the uncontrolled variable – bed shear stress or slid-
ing speed – approaches a steady time-averaged value (Fig. 2).
Expansion of the ice chamber due to cavity growth during the
transient phase halts once steady cavity sizes are achieved, as
indicated by a slow, steady rate of ice-chamber contraction
due only to melting of the ice-ring perimeter. Valves that
regulate water flow from the bed are left open in these
experiments, so that water pressure in cavities is atmospheric,
and effective stress is equal to the total vertical stress. Once
steady-state sliding at a steady cavity size is achieved, either
the rotation rate or bed shear stress is again incremented,
followed by the eventual attainment of a new steady state.
Sliding speed is sometimes decremented to demonstrate that
subsequent steady-state values of bed shear stress are not
dependent on the sign of the change in sliding speed.

After experimental durations of 2–3 months, sliding is
stopped, the upper platen retracted, and the ice ring
withdrawn from the chamber for analyses. Total strain in
the basal ice is measured from displacements of beads. The
geometry of the sole of the ice ring is measured along
circumferential transects to evaluate the steady cavity
geometry that persisted during the final phase of the
experiment. Ice is cut into thin sections for crystal-fabric
analyses with a universal stage (Langway, 1958). A total of
three experiments were necessary to gather these data with
development of the apparatus over the previous 6 years.

RESULTS
In experiments, depending upon whether sliding speed or
shear stress is controlled, either steady shear stresses (Fig. 2)
or steady sliding speeds develop with sufficient sliding
displacement as cavities attain a steady size. At higher
sliding speeds, steady cavities are larger and extend farther
up the stoss bed segment immediately downstream (Fig. 3).
In some cases, cavities extend well beyond the point of
maximum slope of the stoss surface (Fig. 3), within the range
in which Iken’s bound on drag should decrease with

Fig. 2. Evolution to a steady shear stress. Raw data demonstrating
the development of steady drag following an increase in sliding
speed from 14.5 m a–1 to 29 m a–1. After an increase in speed
(denoted by the arrow), there is a sudden increase in shear stress,
with an additional 2–14 days to evolve to a new steady value.
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increasing sliding speed. At the ends of experiments cavity
geometry is measured directly and predicted well using the
ice/bed separation theory of Kamb (1987) (Fig. 3), as
adapted for an appropriate power-law ice rheology. This
theory, therefore, provides the basis for estimating cavity
shapes and positions in Figure 3 from measured volumes of
cavities (see Appendix).

Measured values of steady shear stress (bed-parallel drag
force divided by bed area) supported by the sinusoidal bed
demonstrate a double-valued drag response as a function of
sliding speed (Fig. 4). At low sliding speeds (<7.3 m a–1)
cavities are small (Fig. 3), and drag increases with speed. At
progressively larger steady speeds (up to 350 m a–1) and
cavity sizes, there is a marked decrease in drag, of up to
50% if cavities cover �93% of the bed (Fig. 3). Cavity size at
the speed at which drag peaks (Fig. 3) is close to the threshold size at which Iken’s bound is predicted to start

declining with further increases in speed (Schoof, 2005).
Background drag measured with a flat bed is small (�9 kPa)
and independent of sliding speed (Fig. 4).

Highly deformed ice near the bed exhibits fabrics with
preferentially aligned c-axes, as expected for ice at the
pressure-melting temperature subjected to strain approxi-
mating simple shear (Cuffey and Paterson, 2010) (Fig. 5).
The c-axis orientations have a unimodal distribution around
the vector normal to the roughly horizontal shear plane.
Initially c-axes were nearly randomly oriented and likely
developed preferred orientation at low strains (<1) (Iverson
and Petersen, 2011). The grains have an average diameter of
7 mm and have undergone extensive recrystallization, as
demonstrated by their polygonal shape and triple-point
junctions (Alley and others, 1995). Thus, although the
experimental ice is synthetic, at strains required for steady-
state sliding ice has begun tertiary creep and is structurally
similar to ice near glacier beds.

DISCUSSION
Theory
Although many theories of glacier sliding address ice/bed
separation (Lliboutry, 1968, 1979, 1987; Fowler, 1986,

Fig. 3. Cavities at the bed due to sliding. Longitudinal profiles of
cavities at the ice-ring center line at sliding speeds of 2.6, 7.25 and
290 m a–1 (gray lines), under a total vertical stress of 500 kPa and
atmospheric pressure in cavities. Cavity geometry at 290 m a–1 was
both measured directly (crosses) and fitted (gray line) using the
theory of Kamb (1987), as described in the Appendix. Error bars
indicate �1� of variability based on measurements of multiple
cavities. Note the exaggerated vertical scale.

Fig. 4. Drag on the bed. Mean steady shear stress as a function of
sliding speed for a sinusoidal bed and a flat bed. Error bars indicate
�1� from the mean, once a time-averaged steady stress or speed
was reached (e.g. Fig. 2). The speeds (2.6, 7.25 and 290 m a–1)
correspond to the cavity geometries of Figure 3. The solid line is the
sum of the shear stress estimated using a theory of sliding in the
presence of cavities (Lliboutry, 1968, 1979) and the background
shear stress measured with the flat bed.

Fig. 5. Ice crystal fabric. (a) A horizontal thin section of ice from an
experiment, under cross-polarized lenses. Ice was collected from
�1 mm above the cavity ceiling after a total sliding displacement at
the ice-ring center line of 6.51 m. The grid squares are 10 mm.
(b) The c-axis orientations of 150 crystals on a lower-hemisphere,
equal-area plot, with a contour interval of 20�. The c-axes are
centered on the vector normal to the shear plane. Both panels are
oriented with respect to the sense of shear indicated.
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1987; Schoof, 2005), we use the analysis of Lliboutry
because he first emphasized the effect of ice/bed separation
on sliding (Lliboutry, 1959, 1965) and provided an explicit
estimation of drag on a single sinusoid (Lliboutry, 1968,
1979). A sinusoid of amplitude a is considered, of sufficient
wavelength, �, that regelation is negligible and a� �, as in
our experiments. The sinusoid is considered to be smooth,
and the ice is considered to contain no rock debris, so that
the local slope of the bed supports only stresses normal to it.
The bed considered is two-dimensional (2-D), so it differs
from the bed of the experiment that has amplitude
increasing towards the outer wall of the sample chamber
(Fig. 1). However, the key variable that influences drag – the
local bed slope – is uniform radially in the experiment, so
the 2-D theory should approximate the relationship between
drag and speed at the ice-chamber center line.

For a sinusoid of angular frequency (i.e. wavenumber),
!= 2�/�, and in a direction, x, parallel to the regional bed
slope, the bed shear stress (drag force per unit bed area),
� , is

� ¼
a!
2

N� ð1Þ

(Lliboutry, 1979, eqn 88). N is equal to the effective pressure
of the experiments, and � is a coefficient dependent on the
fraction, s, of the bed in contact with ice and on the position,
xc, where ice separates from the bed:

� ¼
�s � 1

2 sinð2�sÞ
� �

sinð�s � !xcÞ

sinð�sÞ � �s cosð�sÞ
, ð2Þ

with xc obtained from

xc ¼
1
!

cot� 1 2�ð1 � sÞ þ sinð2�sÞ
1 � cosð2�sÞ

� �

ð3Þ

(Lliboutry, 1968, modified from eqns 14 and 9, respectively,
therein). We estimate s in these equations as a function of
sliding speed using the theory of Kamb (1987), as described
in the Appendix.

Lliboutry’s theory, together with Kamb’s (1987) model to
estimate ice/bed separation, provides an approximate fit to
the experimental double-valued drag relationship (Fig. 4).
Parameter values of the experimental bed at the center line
of the ice-chamber annulus and flow-law parameter values
for temperate ice used in the theory are listed in Table 1. The
background drag measured with the flat bed, resulting from
boundary effects unrelated to drag on the sinusoid, was
added to the theoretical result to allow an appropriate
comparison with the measured drag on the sinusoid.

IMPLICATIONS
This demonstration of a double-valued drag relationship
(Fig. 4) reinforces results of some analytical and numerical
sliding models, including those that incorporate more
complex 2-D bed geometries (Lliboutry, 1968, 1979,
1987; Fowler, 1986, 1987; Schoof, 2005; Gagliardini and
others, 2007): above a certain sliding speed, any further
increase in speed will result in a reduction in basal drag. The
sliding speed at which drag begins to decrease will, of
course, increase with increasing effective pressure. This
‘rate-weakening’ is in contrast with the Weertman-style
sliding rule that is commonly used in numerical models of
glaciers and ice sheets (Huybrechts, 1993; Pattyn and
others, 2008), in which basal drag is assumed to increase
monotonically with increasing sliding speed (Weertman,

1957; Fowler, 2010). Thus, if changes in glacier boundary
conditions, such as break-up of ice shelves (Scambos and
others, 2004) or decreases in effective pressure at the bed
due to increased surface-water input (Zwally and others,
2002; Bartholomaus and others, 2011), drive increases in
sliding speed, models do not generally account for
potentially increased ‘slipperiness’ of beds or bed patches
consisting of either rock or rigid, immobile sediment.

An obvious and important question is whether more
realistic bed geometries would also result in a double-
valued drag relationship. The rate weakening of this
relationship ultimately requires that higher sliding speeds
and larger cavities cause ice to be in contact with
progressively lower sloping stoss surfaces. Given that the
stoss surfaces of bumps on deglaciated bedrock surfaces are
usually convex (e.g. Benn and Evans, 2010), larger cavities
will indeed tend to cause ice to be in contact with
generally smaller local slopes at higher sliding speeds, even
for major departures from a sinusoidal geometry. On the
other hand, the three-dimensionality of real glacier beds
will tend to reduce the degree to which bumps line up
along a flowline, thereby limiting the degree to which
cavities ‘drown’ stoss surfaces immediately down-glacier.
This effect, applied to bumps with convex stoss surfaces,
will likely reduce the degree of rate weakening from that
displayed in Figure 4 but not eliminate it. Another
complexity of real glacier beds is that a variety of
wavelengths is present, unlike in the experiments, but
Schoof (2005) has shown that this variety does not
eliminate rate-weakening drag. Thus, there is reason to
believe that a double-valued drag rule, albeit possibly
different in its details from the one in Figure 4, might apply
to real glacier beds or parts of them.

Implications of this decreased drag with increasing
sliding speed could be profound (Schoof, 2005; Cuffey
and Paterson, 2010). For a glacier with the downslope
component of its weight resisted solely by drag on a rough,
rigid bed, a spatially uniform increase in sliding speed could
promote unbounded glacier acceleration and associated ice
avalanching, which occurs but rarely (e.g. Iken, 1977).
Much more commonly the gravitational driving force for
flow must be supported elsewhere, such as by slow-moving
ice or valley walls at the glacier’s sides, by ice shelves, or by
other parts of the bed that for geometrical or hydrological
reasons can support increased drag. The result of this stress
transfer will be increased strain rates balanced by larger
longitudinal and lateral deviatoric stresses that will promote
even more rapid glacier flow. Thus, given this potential
importance of rate-weakening drag at the bed and the
possibility that it applies to realistic bed geometries,
experimenting with double-valued drag rules in ice-sheet
models seems well motivated.

Table. 1. Parameter values from the experiment

Parameter Value

� 183 mm

a 15.3 mm

N 500 kPa

B 6.3� 107 Pa s1/3

n 3
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APPENDIX: ICE/BED SEPARATION
Cavity geometries for two bed types, stepped (staircase-like
with horizontal treads) and sinusoidal, can be estimated
using the models of Kamb (1987). The models balance
closure rate of cavities by ice creep with their opening by
sliding to estimate their steady geometries. Estimates for
each bed type were compared with the geometries of
cavities measured at the completion of sliding.

Estimates derived from Kamb’s sinusoidal-bed model
result in a poor fit between predicted and measured cavity
geometries (rms misfit = 0.006), whereas Kamb’s cavity
model for a stepped bed, adapted approximately for a
nonlinear ice rheology, provides an order-of-magnitude
improvement to the fit with measured data (rms misfit =
0.0002) (Fig. 3). For the case of a cavity in the lee of an
isolated step, Kamb determined the cavity height g(x) as
function of the bump height, h, and cavity length, l, where x
is the distance downstream from the step riser along the
horizontal bed:

gðxÞ ¼ h
1
2
�

1
�

sin� 1 2x � l
l
�

2ð2x � lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðl � xÞ

p

�l2

 !

, ðA1Þ

where 0 < x < l. Kamb determined the cavity length for the
case of a linear-viscous rheology but suggested an approxi-
mation for the power-law rheology of ice. For the case of
negligible melting of cavity roofs by water – applicable to
the experimental results – the approximation is

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8vh
�

B
N

� �n
s

, ðA2Þ

where v is the sliding speed, N is the effective pressure
(ambient ice pressure minus cavity water pressure) and B is
the viscosity parameter in Glen’s power-law flow rule for ice
creep, with stress exponent n (Iverson and Petersen, 2011).
Equations (A1) and (A2) are used to estimate cavity geometry
for the sinusoidal bed of the experiment by considering h to
be twice the amplitude of the sinusoid and extending the
cavity roof as predicted by Eqn (A1) until it is truncated by
the ascending limb of the sinusoid immediately down-
stream. Thus, the cavity lengths for the sinusoidal bed
(Fig. 3) are smaller than indicated by Eqn (2), which applies
to a flat, horizontal tread. Parameter values from the
experiment (Table 1) are h = 30.6 mm and N = 500 kPa, with
n = 3, the widely accepted value (Cuffey and Patterson,
2010), and B = 6.3�107 Pa s1/3, a value that optimizes the fit
of Eqn (A1) to measured cavity roofs and is close to the value
advocated for clean, glacier ice at its pressure-melting
temperature (B = 7.5�107 Pa s1/3; Cuffey and Paterson,
2010).

The Kamb stepped-bed model of cavities provides a
better fit to the data likely because, unlike the sinusoidal-
bed model, it is not predicated on an assumption about the
distribution of normal stress between ice and the bed where
they are in contact. Given the good fit to the data provided
by the stepped-bed model (Fig. 3), it is used to determine
cavity shape and position from measured volumes of
cavities prior to the ends of experiments when cavity
geometries could not be measured directly. As such, it is
also used to estimate drag on the bed from the theory of
Lliboutry (1968, 1979).
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