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Experimental determination of electron-hole pair creation energy in 4H-SiC
epitaxial layer: An absolute calibration approach

Sandeep K. Chaudhuri, Kelvin J. Zavalla, and Krishna C. Mandala)

Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

(Received 20 November 2012; accepted 2 January 2013; published online 23 January 2013)

Electron-hole pair creation energy (e) has been determined from alpha spectroscopy using 4H-SiC

epitaxial layer Schottky detectors and a pulser calibration technique. We report an experimentally

obtained e value of 7.28 eV in 4H-SiC. The obtained e value and theoretical models were used to

calculate a Fano factor of 0.128 for 5.48 MeV alpha particles. The contributions of different factors

to the ultimate alpha peak broadening in pulse-height spectra were determined using the calculated

e value and Monte-Carlo simulations. The determined e value was verified using a drift-diffusion

model of variation of charge collection efficiency with applied bias. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4776703]

Silicon carbide (SiC), because of its wide band-gap, radi-

ation hardness, and high breakdown field, stands as a very

suitable candidate for radiation detectors even in harsh condi-

tions such as high radiation background and hot and humid

environments.1–6 Among other polytypes, 4H-SiC suits best

for radiation detection requirements with a band-gap of the

order of 3.27 eV,7–9 smaller anisotropic conductivity10 and

smaller electron effective mass, or higher mobility.11 The

desired crystallinity and resistivity for detection purpose

are obtained by growing high-resistivity epitaxial layers on

4H-SiC substrates.

During a recent alpha spectroscopic measurement with

high resolution 4H-SiC n-type epitaxial layer detectors, we

used a widely accepted value of electron-hole pair creation

energy (e) of 7.7 eV (Ref. 12) for calibration purpose. We

found that this value of e overestimated the energy of the

5486 keV alpha particle peak in the pulse-height spectra by

several hundred keV. Spectroscopy using semiconductor

radiation detectors needs an accurate determination of the

energy required to create an electron-hole pair as the ulti-

mate energy resolution depends on the degree of correlation

in the number of ionization events.13 The accurate determi-

nation is generally hindered by the uncertainties involved in

the intermediate ionization and energy deposition processes

involved prior to the pair creation. It is worth-mentioning

here that there exists a considerable amount of disagreement

regarding the reported value of e in the literature.

e values as high as 9 eV for beta rays were reported by

Golubev et al.14 in 6H-SiC. An e value of 8.4 eV for alpha

particles was reported by Rogalla et al. in semi-insulating

4H-SiC.15 Lebedev et al.16 have reported e¼ 8.6 eV for

alpha particles in epitaxial n-type 4H-SiC. Slightly lesser

values have been reported in epitaxial n-type 4H-SiC by

Ivanov et al.17, e¼ 7.71 eV for alpha particles, and by Ber-

tuccio and Casiraghi,18 e¼ 7.8 eV for 59.5 keV gamma rays.

A similar value of 7.7 eV for alpha particles was reported by

Giudice et al.12 in n-type 4H-SiC. Even e value as low

as 5.05 eV has been reported by Chandrashekhar et al.19 in

4H-SiC and determined using scanning electron microscopy.

The above-mentioned reports involved experiments with ei-

ther SiC Schottky detectors with window thickness of the

order of 100 nm of high Z (atomic number) metal or standard

silicon detectors for calibration purpose. Thick entrance win-

dows of high Z metals can lead to considerable amount of

uncertainties in the observed incident radiation energy.1 On

the other hand, calibration with other detectors is a relative

calibration process and may ignore other losses in the cali-

bration detectors. These two factors may lead to considerable

uncertainties in the determination of e. Reiterating the

remark of Day et al.,20 it is very important that the study of

the ionization process in semiconductors be continued until

the theoretical and experimental discrepancies are resolved.

In this letter, we report a method of iterative determina-

tion of e value which involves an absolute calibration using a

precision pulser to match the alpha peak energy (5486 keV)

observed using a high resolution 4H-SiC n-type epitaxial

Schottky detector. The calculation scheme has been

explained in detail in the flowchart in Fig. 1. The absolute

calibration was accomplished by injecting pulses of various

known amplitudes, Vpulser (mV), from a precision pulser

(Ortec 419) through a calibrated feed-through capacitor,

C¼ 2.44 pF, to the preamplifier input and simultaneously

noting down the peak-positions of the shaped pulses in a

multi-channel analyzer (MCA). The SiC equivalent of the

pulse amplitudes, Epulser in keV was obtained using the fol-

lowing equation:

Epulser ¼
Vpulser � e� C

q
; (1)

q being the electronic charge. The MCA peak positions were

then plotted as a function of Epulser. A linear regression of

the data points gave the calibration parameters. The e value

we obtained using the given procedure was 7.28 eV. Figure 2

shows the calibration curve and the related parameters

obtained for our detector with the final value of e obtained

from the iteration cycle.

The detectors used for this study were fabricated on

20 lm n-type 4H-SiC epilayer grown on a highly doped

a)Author to whom correspondence should be addressed. Electronic mail:

mandalk@cec.sc.edu.
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4H-SiC substrate and 4� off-cut towards the [11-20] direc-

tion. The crystal dimensions were 8� 8 mm2 which were

diced from a 76.2 mm diameter parent wafer. A micropipe

density less than 1 cm�2 was evaluated in the epilayer. The

Schottky barrier was accomplished by depositing �10 nm

thick nickel contacts on the epilayer surface. The effective

doping concentration in the epilayer was determined to be

2.4� 1014 cm�3 from capacitance-voltage measurements.

Figure 3 shows the cross-sectional schematic of the detector

geometry and a photograph of the detector used in this study

mounted on a printed circuit board. Because of the thinner

entrance window, the uncertainties (standard deviation) in

the 5486 keV incident radiations from a 241Am source were

calculated to be only 0.436 keV using a Monte-Carlo simula-

tion code (SRIM 2012).21 Another source of uncertainty in

the incident energy could be due to the variation of the angle

of incidence of the alpha radiations. In our experiment, with

a source-detector distance of 12 mm, active source diameter

of 7 mm and a detector window diameter of �3.8 mm, the

deviation in the incident energy was found to be negligible

based on SRIM 2012 calculations. Yet another source of

uncertainty could arise from the self-absorption in the

source. The source calibration data revealed a maximum

broadening of 20 keV in the 5486 keV alphas. This uncer-

tainty has been taken into consideration during the calcula-

tions by including it as a tolerance.

The determined value of e can be used to find other

parameters of interest in SiC by using existing theoretical

models of electron-hole pair creation. Klein’s phenomeno-

logical model13 suggests that the average energy required to

generate one electron-hole pair is given by the sum of the

bandgap (EG) plus two loss terms viz. phonon-loss (ER) and

thermalization-loss (EK). In his theoretical work, Klein used

two dimensionless parameters called the radiation-ionization

efficiency Y and the relative phonon loss K, given by

Y � EG=�; K � ER=EG: (2)

Following Shockley’s model of electron-hole pair creation

energy,22 these two quantities can be related as

Y ¼ ð2:80þKÞ�1
(3)

and Klein’s formulation in a first approximation leads to the

relation between Y, K, and Fano factor F given by

F ¼ ðK2 þ 0:315ÞY2: (4)

Using e¼ 7.28 eV, EG¼ 3.26 eV, and Eqs. (2) to (4), we

obtained a value of F¼ 0.128 which is higher than the upper

limit, F¼ 0.04, estimated by Phlips et al. from x-/gamma ray

line width in an 241Am pulse-height spectrum.23 There is no

other value of Fano factor of 4H-SiC detectors reported in the

literature. However, Bertuccio and Casiraghi used an F value

of 0.12 in one of their works for Fano noise calculations.18

The obtained value of F can be applied to calculate the

contribution to the ultimate broadening of peaks in a pulse

height spectrum. Figure 4 shows a pulse-height spectrum

comprising of 5486 keV alpha-peak and a test pulser peak

obtained using our detector. The broadening of a peak

(FWHMpeak) in terms of full width at half maximum (FWHM)

in SiC is given by the quadrature sum of all the contributing

broadening factors as shown in the following equation:1,24

FIG. 1. Flow-chart showing the calculation scheme of electron-hole pair cre-

ation energy in 4H-SiC n-type epitaxial Schottky detector.

FIG. 2. (a) Pulse height spectra showing variation of pulser peak position as

a function of pulser energy. Inset shows a magnified pulser peak. (b) Cali-

bration curve plotted using the e value obtained after the final iteration.
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FWHM2
peak ¼ FWHM2

elec þ FWHM2
leakage þ FWHM2

stat

þ FWHM2
other þ FWHM2

SiC: (5)

The FWHMpeak was found to be 19.8 keV for the 5486 keV

alpha particles. FWHMelec, the broadening due to the noise

from the front-end electronics, and FWHMleakage, the broad-

ening due to the detector leakage current, can be collectively

obtained from the width of a pulser peak recorded simultane-

ously with the alpha pulse height spectrum acquisition by

injecting a pulser signal to the test input of the pre-amplifier.

In the case of our detector, the collective broadening was

found to be 15.9 keV. FWHMstat is the statistical fluctuation

in the number of charge carriers produced by an alpha parti-

cle which is given by the Fano factor as shown in the follow-

ing equation:

FWHMstat ¼ 2:355
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e:F:Ealpha

p
: (6)

Ealpha being the incident alpha energy. Using the calculated

values of e and F, FWHMstat was calculated to be 5.3 keV.

FWHMother is the broadening due to variation of energy due to

the entrance window, the angle of incidence, self-absorption

in the source, etc., and was calculated to be 0.436 using Monte

Carlo simulations as mentioned before. FWHMSiC is the

broadening due to inherent charge collection property of SiC

and using all the above-mentioned FWHM values, FWHMSiC

was found to be �10.5 keV which is lower compared to the

value (�20 keV) reported by Ruddy et al.1 probably due to

superior charge collection in our 4H-SiC epilayer.

The determined e value was also put into test by deter-

mining the alpha particle induced charge collection

efficiency (CCEobs) and comparing those values with a drift-

diffusion model of charge collection (CCEtheory).25 Charge

collection efficiencies were measured using an alpha source

as the ratio of energy deposited in the detector to the actual

energy of particles 5486 keV emitted by the source as a

function of different bias voltages. According to the drift-

diffusion model, CCEtheory can be represented by the follow-

ing equation:

CCEtheory ¼
1

Ealpha

ðd

0

dE

dx

� �
dx

þ 1

Ep

ðxr

d

dE

dx

� �
� exp �ðx� dÞ

Ld

� �� �
dx

¼ CCEdepletion þ CCEdif f usion; (7)

where d is the depletion width at the particular bias, dE/dx is

the electronic stopping power of the alpha particles calcu-

lated using SRIM 2012, xr is the projected range of the alpha

particles with energy Ep, and Ld is the diffusion length of the

minority carriers. The first term of Eq. (7), CCEdepletion, gives

the contribution to the total CCE of charge generated within

the depletion region and the second term, CCEdiffusion, gives

that from the charge carriers created in the region behind the

depletion region and diffused to the depletion region. We

calculated CCEdepletion as a function of bias voltage. Figure 5

shows the variation of CCEobs and CCEdepletion as a function

of bias voltage. It can be noticed from the figure that

CCEdepletion had a larger deviation from CCEobs for bias vol-

tages below 80 V as the corresponding depletion widths were

smaller than or comparable to the alpha penetration

depth (�18 lm) and hence the contribution of CCEdepletion to

CCEtheory is partial. For bias voltages above 80 V, CCEdepletion

values were seen to match CCEobs value as the detector was

depleted to� 19 lm (greater than alpha penetration depth) at

and above 80 V and hence the total contribution to the CCEobs

was from CCEdepletion. Very close agreement of the experi-

mentally determined values of CCEobs with the calculated

FIG. 3. Cross-sectional schematic of the detec-

tor structure used in our studies and a top-view

photograph of an actual detector mounted on a

printed circuit board.

FIG. 4. A pulse-height spectrum obtained using a 4H-SiC n-type epitaxial

Schottky detector and a 241Am alpha source. A pulser spectrum was also

acquired simultaneously to study the contribution of noise to the ultimate

alpha peak width.
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CCEdepletion values supports the e value obtained from our

experiments. As a further test, the experiment was repeated

with another detector of similar kind fabricated from a wafer

randomly chosen from the 76 mm parent wafer and the results

were found to be perfectly repeatable.

To conclude, we have reported in this letter an experi-

mentally determined electron-hole pair creation energy value

of 7.28 eV in order to solve an ambiguity raised during an

alpha spectroscopy measurement on using the existing e val-

ues. We have also calculated a Fano factor value of 0.128

using Klein’s formalism which is higher than the previously

estimated upper limit of 0.04 in 4H-SiC. The determined e
value has been used to calculate the CCE which matches

very well with the CCE values calculated using a drift-

diffusion theoretical model of CCE.

One of the authors (K.C.M.) acknowledges partial finan-

cial support provided by Los Alamos National Laboratory/

DOE (Grant No. 143479). The authors are thankful to Dr. J.

Russell Terry of Los Alamos National Laboratory for C-V

measurements.
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