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A polymer network can absorb a solvent and swell, forming an elastomeric gel. The model of ideal

elastomeric gels is based on two assumptions. First, the volume of a gel is the sum of the volume of the

dry network and that of the solvent. Second, the free energy of the gel is the sum of the free energy due

to stretching the network and that due to mixing the polymer and the solvent. These assumptions lead

to a set of equations of state, which can be tested experimentally without invoking any specific models

of statistical mechanics. Here we test the model of ideal elastomeric gels by conducting experiments

with polyacrylamide hydrogels, and by extracting from the literature four sets of data on

polyacrylamide hydrogels and polyacrylamide–water solutions. For an ideal elastomeric gel, the effect

of mixing the polymer and the solvent is represented by the osmotic pressure as a function of the

swelling ratio. We show that this function obtained by several distinct experimental methods is

consistent. Specifically, the function obtained from a gel under different states of applied stress is the

same, the function obtained from a free-swelling gel is the same as that obtained from the constrained-

swelling gel, the function is independent of the crosslink density, and the function obtained from the

gels is similar to that obtained from the solutions. We further show that the Flory–Huggins model of

mixing with a constant Flory–Huggins parameter does not fit the experimental data well, but does

capture the trend of the data over four orders of magnitude in the osmotic pressure.
1. Introduction

A polymer network can absorb a solvent and swell, forming an

elastomeric gel (Fig. 1). The amount of swelling depends on the

molecular interaction between the polymer and the solvent, and

changes greatly in response to environmental stimuli such as

temperature,1 pH2,3 and salinity.4 Such stimuli-responsive gels

are being developed as vehicles for drug delivery,5 sensors and

actuators in micro-devices,6,7 and packers in oilfields.8 The gels in
Fig. 1 A polymer network absorbs a solvent and swells, forming an

elastomeric gel.
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devices are typically constrained by hard materials. The devices

operate by exploiting the chemomechanical interaction of the

gels: how the mechanical constraint affects swelling and how

stimuli generate mechanical forces.

The chemomechanical interaction of gels has been described

by many theories.9,10 The classic theory of Flory and Rehner11

combines two models of statistical mechanics: the Gaussian-

chain model describes the elasticity of the network and the

Flory–Huggins model describes the mixing of the polymer and

the solvent.12,13 While these models of statistical mechanics relate

macroscopic behavior of gels to molecular processes of the

network and the solvent, the relation is inexact: the models are

often modified in various ways to fit experimental data.14,15

For applications of gels in devices, it is desirable to develop

experimental methods that characterize the chemomechanical

behavior of gels without being constrained by models of statis-

tical mechanics. In this connection, a commonly held notion is

useful: stresses applied on a gel are balanced by the elasticity of

the network and the osmosis of the solution. Cai and Suo16

showed that this notion can be developed from two basic

assumptions made in the Flory–Rehner theory. First, the volume

of a gel is assumed to be the sum of the volume of the dry

network and that of the solvent absorbed. Second, the free

energy of the gel is assumed to be the sum of two parts: the free

energy associated with stretching the network and the free energy

associated with mixing the polymer and the solvent. The first

assumption is known as molecular incompressibility,17 and the
Soft Matter
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second the Frenkel–Flory–Rehner (FFR) hypothesis.18–21 These

basic assumptions are independent of specific models of statis-

tical mechanics, and can be directly used to represent experi-

mental data. Specifically, the two assumptions lead to a set of

equations of state, which fit several sets of experimental data in

the literature remarkably well.16

Here we further develop the approach of Cai and Suo by

performing additional experiments on polyacrylamide hydrogels.

We choose this type of gels because they are widely used, and

because we can extract from the literature several sets of data on

polyacrylamide hydrogels and polyacrylamide–water solutions.

The combined datasets allow us to test the approach over a large

range of swelling ratio J (i.e., the volume of the gel over that of

the dry network). Within this approach, the effect of mixing the

polymer and the solvent is represented by the osmotic pressure as

a function of the swelling ratio, Pmix(J). A classic method to

determine Pmix(J) involves semipermeable membranes and is

limited by the strength of membranes, so that typical results are

obtained from solutions of low concentrations and low osmotic

pressure.22–24 This limitation is removed by determining the

function Pmix(J) by mechanical measurements performed on

gels. We show that these distinct methods yield a similar function

Pmix(J), that the function is independent of the crosslink density,

and that the gels have the samePmix(J) function as the solutions.

We further show that the Flory–Huggins model of mixing with

a constant interaction parameter does not fit the experimental

data well, but does capture the trend of the data over four orders

of magnitude in osmotic pressure.
2. Ideal elastomeric gels

The two basic assumptions specify a model, which we call the

model of ideal elastomeric gels.16 To focus on the main ideas,

here we consider the deformation in principal directions (Fig. 2).

The equations of state for ideal elastomeric gels are derived by

following the same method as in previous papers.16,17 In the

reference state, the block is a unit cube of a dry polymer network,

containing no solvent and subject to no applied force. In the

current state, submerged in a solvent-containing environment

and subject to applied forces, the network absorbs C number of

solvent molecules and stretches into a rectangular block of

dimensions l1, l2 and l3. The ratio of the volume of the gel to
Fig. 2 In the reference state, a unit cube of a dry polymer network

contains no solvent and is subject to no applied stress. In the current

state, immersed in a solvent-containing environment and subject to

applied stresses, the network absorbs the solvent and is stretched into

a rectangular block.

Soft Matter
that of the dry network, J, known as the swelling ratio, relates to

the dimensions of the rectangular block by J ¼ l1l2l3.

Recall the two basic assumptions of ideal elastomeric gels.

First, the gel is a soft material; when subject to the applied forces,

the gel changes its shape readily, but the volumes of individual

polymer chains and individual solvent molecules remain nearly

unchanged. As an idealization, the volume of the gel is assumed

to equal the sum of the volume of the dry network and that of the

solvent:

J ¼ 1 + UC (1)

where U is the volume per solvent molecule. This assumption is

known as the assumption of molecular incompressibility.17 In

reality, when a polymer and a solvent mix, the volume of the

mixture differs somewhat from the sum of the volumes of the

polymer and solvent. The effect of the volume of mixing has been

considered in the model of ideal elastomeric gels,16 but will be

neglected in this paper.

Second, the density of crosslinks in the gel is typically very low;

each polymer chain consists of a large number of monomers, so

that crosslinks negligibly affect the molecular interaction

between the polymer and the solvent. As an idealization, the

Helmholtz free energy of the gel is assumed to be the sum of the

free energy due to the stretching of the network and that due to

the mixing of the polymer and the solvent:

W ¼ Wstretch(l1,l2,l3) + Wmix(J). (2)

This assumption is known as the Frenkel–Flory–Rehner

(FFR) hypothesis.18–21 The free energy of the gel,W, is defined as

the excess in the gel relative to the sum of its constituents—that

is, W is the free energy of the gel minus that of the polymer and

that of the pure solvent. The free energy due to the stretching of

the network, Wstretch(l1,l2,l3), is a function of the stretches, and

depends on the crosslink density. The free energy due to the

mixing of the polymer and the solvent, Wmix(J), is a function of

the swelling ratio, but is independent of the crosslink density.

When a dry network is submerged in a solvent-containing

environment and subject to applied forces, the network takes

some time to absorb the solvent and attain a state of thermo-

dynamic equilibrium. The condition of equilibrium is formulated

as follows. Define the stresses s1, s2 and s3 as the applied forces

divided by the areas of the faces of the rectangular block. Thus,

the forces applied on the faces of the rectangular block are

s1l2l3, s2l3l1 and s3l1l2. The applied forces can be represented

by hanging weights. Associated with a small change in the

dimensions of the rectangular block, the potential energy of the

hanging weights changes by �s1l2l3dl1 � s2l3l1dl2 �
s3l1l2dl3. The gel is immersed in a solvent-containing environ-

ment such that the gel and the environment can only exchange

one species of molecules: the solvent. The chemical potential of

the solvent in a saturated mixture of the pure liquid and its vapor

is set to be zero. Let m be the chemical potential of the solvent in

the environment—that is, m is the increase of the Helmholtz free

energy when the environment gains one solvent molecule from

the pure solvent in the state of liquid–vapor mixture. Associated

with the transfer of dC number of solvent molecules from the

environment to the gel, the free energy of the environment
This journal is ª The Royal Society of Chemistry 2012
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changes by �mdC. The gel, the hanging weights and the envi-

ronment together form a composite thermodynamic system.

The Helmholtz free energy of the composite is the sum of the

Helmholtz free energy of the gel, the potential energy of the

weights, and the Helmholtz free energy of the environment. In

equilibrium, the change of the Helmholtz free energy of the

composite vanishes:

dW � s1l2l3dl1 � s2l3l1dl2 � s3l1l2dl3 � mdC ¼ 0. (3)

A combination of eqn (1)–(3) gives�
vWstretch

vl1
�
�
s1 þPmixðJÞ þ m

U

�
l2l3

�
d l1

þ
�
vWstretch

vl2
�
�
s2 þPmixðJÞ þ m

U

�
l3l1

�
d l2

þ
�
vWstretch

vl3
�
�
s3 þPmixðJÞ þ m

U

�
l1l2

�
d l3 ¼ 0

(4)

with

PmixðJÞ ¼ � dWmixðJÞ
dJ

: (5)

The network, the solvent and the applied forces equilibrate

when eqn (4) holds for arbitrary and independent small changes

in the three stretches, l1, l2 and l3. Consequently, the expression

in the bracket in front of each of the three terms in eqn (4) must

vanish individually, giving three independent equations:

s1 ¼ vWstretchðl1; l2; l3Þ
l2l3vl1

�PmixðJÞ � m

U
; (6a)

s2 ¼ vWstretchðl1; l2; l3Þ
l3l1vl2

�PmixðJÞ � m

U
; (6b)

s3 ¼ vWstretchðl1; l2; l3Þ
l1l2vl3

�PmixðJÞ � m

U
: (6c)

The quantity Pmix(J) is the osmotic pressure in the gel in

equilibrium with the pure solvent. The quantity m/U is the

additional osmotic pressure in the gel due to the chemical

potential of the solvent in the environment. The applied stresses

are balanced by the elasticity of the network, the osmosis due to

the mixing of the polymer and the solvent, and the osmosis due to

the chemical potential of the solvent in the environment. Eqn (1)

and (6) constitute four equations of state, relating the eight

thermodynamic variables: l1, l2, l3, C, s1, s2, s3 and m. (We do

not count the swelling ratio J as a distinct additional variable

because by definition J ¼ l1l2l3.)

The equations of state involve two functions: Wstretch(l1,l2,l3)

andPmix(J). The latter is derived fromWmix(J) through eqn (5). In

the Flory–Rehner theory,11 the two functions are specified by

models of statistical mechanics: the Gaussian-chainmodel gives the

free energy due to the stretching of the network, Wstretch(l1,l2,l3),

and the Flory–Huggins model gives the free energy due to the

mixing of the polymer and the solvent, Wmix(J). As an alternative

approach, one does not calculate the two functions from any

specific models of statistical mechanics; rather, one determines the

function Wstretch(l1,l2,l3) through experimental measurements of

stress–stretch curves, and determines the functionWmix(J) through
This journal is ª The Royal Society of Chemistry 2012
experimental measurements of osmotic pressure. One can also

adopt various combinations of models of statistical mechanics and

experimental measurements.

The function Pmix(J) connects solutions and gels of the same

polymer–solvent system. In the model of ideal elastomeric gels,

the function Pmix(J) is independent of the density of crosslinks.

In particular, when the density of crosslinks is so low that the free

energy of stretching is negligible, the gel is indistinguishable from

a solution, and eqn (6) reduces to s1¼ s2¼ s3¼�Pmix(J)� m/U.

The solution and the gel have the same chemistry because the

dilute crosslinks negligibly affect the molecular interaction

between the solvents and the polymer. The solution and the gel

have different mechanics because the solution is a liquid that can

sustain only hydrostatic stress in equilibrium, while the gel is

a solid that can sustain non-hydrostatic stress in equilibrium—an

attribute that significantly increases the number of distinct

methods to determine experimentally the function Pmix(J). In

particular, Pmix(J) can be determined by the free-swelling

experiment of gels of different crosslink densities (Method 1

below), and by subjecting gels to a state of non-hydrostatic

stresses (Methods 2 and 3 below). Furthermore, the function

Pmix(J) can be determined by allowing gels to swell under

stretches of different types, such as uniaxial tension, uniaxial

compression and equal biaxial tension.16

3. Experimental methods

We made polyacrylamide hydrogels by the following procedure.

Acrylamide was dissolved in distilled water to 4.0 M in concen-

tration, along with ammonium persulfate (0.012 � the weight of

acrylamide) as polymerization initiators, N,N,N0,N0-tetrame-

thylethylenediamine (0.018 � the weight of acrylamide) as

crosslinking accelerators, and N,N-methylenebisacrylamide

(MBAA, 0.007, 0.012, 0.017, 0.024, 0.035 and 0.041 � the weight

of acrylamide) as crosslinkers. The MBAA-to-acrylamide ratio

was varied to form gels of different crosslink densities. For each

MBAA-to-acrylamide ratio, three batches of gels were prepared.

The gels were cured for 2 hours at room temperature. They were

then submerged in distilled water, subject to no force, and kept at

room temperature for a week, with a change of fresh distilled

water every 48 hours.

We measured the swelling ratio J by using the gravimetric

method. The gel was taken out of water, blotted with tissue paper

to remove the water on the surface carefully. The gel was then

immediately weighed on an analytical scale with an accuracy of

10�5 g to obtain the mass of the gel, mgel. For the mass of the dry

network mdry, the gel was dehydrated by the freeze-drying tech-

nique. A piece of the gel was frozen under�80 �C and transferred

to a freeze dry system (Labconco Corporation), whose collector

was kept a temperature of �50 �C and a vapor pressure of 0.040

mbar. The freeze-drying process took 3 days. The dry network

mdry was weighed on an analytical scale. We calculated J from

J ¼ 1þ
�
mgel �mdry

��
rwater

mdry=rPAAM

; (7)

where the density of water is rwater ¼ 1.000 g cm�3 and that of

polyacrylamide is rPAAM ¼ 1.443 g cm�3.22 We measured the

swelling ratio J after free swelling, as well as after the force–

relaxation experiment described below.
Soft Matter
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We measured viscoelastic moduli of the gels with a Q800

dynamic mechanical analyzer (TA Instruments). Cylindrical

samples were cut, 8 mm in diameter and 3 mm in thickness.

The applied amplitude was 50 mm, and the frequency ranged

0.01–10 Hz.

We used an AR-G2 rheometer (TA Instrument) to perform

uniaxial compression tests. A cylinder of the gel, 12 mm in

diameter and 9 mm in thickness, was placed between the stage

and plate made of steel, and submerged in distilled water (Fig. 3).

The plate approached the gel at a slow speed of 5 mm s�1 till the

force was detected to rise, indicating the contact between the

plate and the gel. Upon contact, the plate was quickly loaded to

a certain position within 90 s. During the loading process, both

the force and height were recorded. The duration of this exper-

iment was sufficiently short that the solvent had no time to

redistribute in the gel, so that the gel behaved as an incom-

pressible elastic material, and the experiment determined its

stress–stretch curve.

We also performed force–relaxation experiments by using the

AR-G2 rheometer. Cylindrical samples were cut, 3 mm in

diameter and 0.5 mm in thickness. In each run of the experiment,

a sample was placed between the stage and plate, and was

submerged in distilled water (Fig. 3). The gel was slippery, and

was free to expand laterally when compressed between the stage

and the plate. The gap between the stage and the plate was sealed

with mineral oil to prevent the evaporation of water surrounding

the gel. The plate was programmed to approach the gel at a speed

of 5 mm s�1. Once the contact between the plate and the gel was

detected as the force began to rise, the speed of the plate was

switched to 50 mm s�1. After a certain height was reached, the

plate was held stationary, and the force applied on the plate was

recorded as a function of time. After some time, the force–time

curve approached a plateau, indicating that the gel had reached

a state of equilibrium under the constraint of the plate. Using

a single sample, several force–time curves were obtained by

holding the plate at multiple positions. We labeled the direction

of the applied force as direction 3, and the two horizontal

directions as 1 and 2. The stretch in the vertical direction was

l3 ¼ h/H, where H was the thickness of the dry network, and h

was the thickness of the gel set by the spacing between the plate

and the stage. It was inconvenient to measure the diameter of the

gel in the force–relaxation experiment. Consequently, we used

the nominal stress s3, defined as the applied force divided by the
Fig. 3 The setup for the force–relaxation experiment. A cylindrical

sample of a gel is placed in water between a plate and a stage made of

steel, and is sealed with mineral oil. While the plate is pressed on the gel

and held at a fixed position, distance h above the stage, the force F applied

on the plate is recorded as a function of time until the gel equilibrates with

the force and the surrounding water. The experiment is run by adjusting

the plate to several positions in succession.

Soft Matter
area of the dry network. The nominal stress s3 relates to the true

stress s3 by s3 ¼ s3l1l2 ¼ s3J/l3.
4. Results and discussion

It is known that experimentally determined stress–stretch curves

of polyacrylamide gels fit the Gaussian-chain model well.16 The

free energy derived from the Gaussian-chain model is11

Wstretchðl1; l2; l3Þ ¼ 1

2
NkT

h
l1

2 þ l2
2 þ l3

2 � 3� 2logðl1l2l3Þ
i
;

(8)

where N is the number of polymer chains per unit volume, and

kT the temperature in the unit of energy. As stated previously,

chemomechanical interaction is specific to the polymer and

solvent, and can be very complex. For the time being we do not

specify any form of the function Wmix(J). Inserting eqn (8) into

(6), one obtains

s1 ¼ NkT

J

�
l1

2 � 1
��PmixðJÞ � m

U
; (9a)

s2 ¼ NkT

J

�
l2

2 � 1
��PmixðJÞ � m

U
; (9b)

s3 ¼ NkT

J

�
l3

2 � 1
��PmixðJÞ � m

U
; (9c)

Thus, a gel is fully characterized by a scalar NkT and a single-

variable functionPmix(J).
16 Once NkT andPmix(J) are obtained,

the four equations of state, (1), (9a), (9b) and (9c), connect the

eight thermodynamic variables: l1, l2, l3, C, s1, s2, s3 and m.

Submerged in pure water and subject to no applied forces, the

gel attains a state of equilibrium—the free-swelling state—

characterized by isotropic stretches, l1 ¼ l2 ¼ l3 ¼ l0. When the

gel is subject to a force, in a short time the solvent in the gel has

no time to redistribute, so that the concentration of the solvent in

the gel remains fixed, and the gel behaves like an incompressible

material. The gel changes its shape to a state of stretches l1, l2,

and l3, but the volume of the gel remains unchanged, so that J0¼
l1l2l3 ¼ l0

3. Experimental data are often reported in terms of

stretches relative to the free-swelling state, l1/l0, l2/l0 and l3/l0.

In terms of these relative stretches, eqn (9) is written as

s3 � s1 ¼ NkT

l0

"	
l3

l0


2
�
	
l1

l0


2#
; (10a)

s3 � s2 ¼ NkT

l0

"	
l3

l0


2
�
	
l2

l0


2#
: (10b)

These are the stress–stretch relations of a gel when the

concentration of the solvent in the gel is fixed. The stress–stretch

relations are the same as those of the neo-Hookean model

commonly used for incompressible elastomers. The pre-factor in

eqn (10) defines the shear modulus,

G ¼ NkT/l0. (11)

Fig. 4 illustrates the shear modulus G characterized with the

dynamic mechanical analysis (DMA) and compression tests. Our
This journal is ª The Royal Society of Chemistry 2012
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viscoelastic measurements show that the polyacrylamide gels are

highly elastic, with small viscous damping (Fig. 4a and b). The

storage modulus is denoted by G0 and the loss modulus by G0 0.

The magnitude jGj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG 0 Þ2 þ ðG00Þ2

q
increases with the

concentration of the crosslinkers. The modulus remains nearly

a constant and the ratio of the loss modulus to the storage

modulusG0 0/G0 remains low over the range of low frequency (0.01

Hz < f < 1 Hz). The increase of the modulus and loss at high

frequency may be due to the entanglement of the polymer chains.

These increases do not concern us here because we will focus on

the behavior of gels in equilibrium, so that only the modulus

determined at low frequency will be used. The stress–stretch

curves determined by the compression test fit the neo-Hookean

model (eqn (10)) very well (Fig. 4c). Furthermore, the shear

moduli measured by two techniques—dynamic mechanical

analysis (DMA) and compression tests—match well over the

entire range of the MBAA-to-acrylamide ratio (Fig. 4d).

As expected, the swelling ratio J0 of the freely swollen gel,

determined by the gravimetric method, decreases as the

concentration of the crosslinker increases (Fig. 5a). We calculate

the free-swelling stretch l0 ¼ J0
1/3, and the number of chains per

unit volume of the dry network from eqn (11) using the storage

modulus determined at low frequency (0.01 Hz < f < 1 Hz). As

expected, the value of NkT rises with the increasing concentra-

tion of the crosslinkers (Fig. 5b).

In the force–relaxation experiment, once the plate is adjusted

to a position, the force relaxes to attain a new state of equilibrium

after some time (Fig. 6a). When the position of the plate is high,

the gel is not much deformed from the free-swelling state, so that

the force applied on the plate is small. In such a case, a certain
Fig. 4 (a) Viscoelastic moduli for gels of various values of the MBAA-to-ac

jGj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

0 2 þ G002p
. (b) The ratio of the loss modulus to the storage modu

compression is fitted with eqn (10), as shown by red dashed lines. (d) Compa

This journal is ª The Royal Society of Chemistry 2012
slope of the force–time is observed in the experiment, possibly

due to drift of the equipment. The force–relaxation curves do

become flat when the gel is compressed significantly. It takes

about tD ¼ 2 h to reach the state of equilibrium. For a sample of

radius R ¼ 1.5 mm, the effective diffusivity of water in the

polyacrylamide gel is estimated to be on the order of D z R2/tD
z 10�10 m2 s�1, which is consistent with the literature.26 The

measured nominal stresses in equilibrium are plotted against the

stretches set by the positions of the plate (Fig. 6b).

As pointed out by Cai and Suo,16 the function Pmix(J) can be

determined by multiple distinct experimental methods. Here we

illustrate several methods using our experimental data. To

determine a function of a single variable, Pmix(J), one needs to

run an experiment that contains at least one independent vari-

able. In Method 1, the independent variable is chosen as the

MBAA-to-acrylamide ratio. By a combination of the compres-

sion test, gravimetric experiment and free-swelling experiment,

we have already obtainedNkT and J0 as functions of theMBAA-

to-acrylamide ratio (Fig. 5). When a gel swells freely in pure

water, the stresses and the chemical potential vanish, s1 ¼ s2 ¼
s3 ¼ 0 and m ¼ 0. In equilibrium the stretches are isotropic and

homogeneous in the gel, l1 ¼ l2 ¼ l3 ¼ l0. Eqn (9) reduces to

Pmix ¼ NkT

l0
3

�
l0

2 � 1
�
: (12)

This equation gives the osmotic pressure for a free-swelling gel.

Consequently, we can determine pairs of the values (J,Pmix) for

gels of different values of the MBAA-to-acrylamide ratio.

In Method 2, the independent variable is chosen to be the

position of the plate in the force–relaxation experiment. When
rylamide ratio over a range of frequency. The amplitude of the modulus,

lus, G0 0/G0. (c) The stress–stretch curve measured under unidirectional

rison of the modulus obtained from DMA and compression tests.
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Fig. 5 Properties of freely swollen gels of several values of MBAA-to-acrylamide ratio. (a) The values of the swelling ratio J0. (b) The values of NkT.
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a disk of a gel reaches a state of equilibrium in distilled water and

subject to the constraint of the plate and stage, J can be deter-

mined by the gravimetric experiment, and l3 can be determined

by the position of the plate. The lateral stresses and the chemical

potential vanish, s1 ¼ s2 ¼ 0 and m ¼ 0. Recall that the lateral

stretches are l1 ¼ l2 ¼
ffiffiffiffiffiffiffiffiffiffi
J=l3

p
. Eqn (9a) reduces to

Pmix ¼ NkT

J

	
J

l3
� 1



: (13)

This equation gives the osmotic pressure in the gel in equilibrium

with the pure solvent and subject to the constraint of the plate

and the stage.

In Method 3, the independent variable is still chosen to be the

position of the plate in the force–relaxation experiment, but we

now use the measured stress in equilibrium. Subtracting eqn (9b)

from (9c), and recalling that l2
2 ¼ J/l3 and s3 ¼ s1J/l3, we obtain

that

J ¼ l3
3 � s3l3

2

NkT
: (14)

Once we determine NkT as before, and determine s3 and l3 upon

equilibrium from constrained swelling, we calculate J from eqn

(14), and Pmix(J) from eqn (13).

The functions Pmix(J) determined by the three methods are

indistinguishable (Fig. 7). This agreement supports the hypoth-

esis that polyacrylamide hydrogels are ideal elastomeric gels. The

osmotic pressure due to mixing, Pmix, decreases as the swelling

ratio J increases. Note that some data were obtained from the

free-swelling gels, and others were obtained from the force–

relaxation experiment. In the free-swelling experiment, the

swelling ratio was varied by varying the crosslink density (i.e., by

varying the MBAA-to-acrylamide ratio). In the force–relaxation
Fig. 6 Data obtained from force–relaxation experiment. (a) Three stress–rela

For gels of various MBAA-to-acrylamide ratios, the nominal stress s3 in equ

Soft Matter
experiment, the swelling ratio is varied by both the crosslink

density and the compression of the plate. The agreement indi-

cates that the functionPmix(J) is independent of how the swelling

ratio is varied.

Our data are plotted in Fig. 8 along with the data marked

as Konda,27 which was extracted by using Methods 2 and 3 from

the tensile tests of polyacrylamide hydrogels. The two sets of

data were for different ranges of the swelling ratio, but both

were obtained by using more than one method to determine

the osmotic pressure. Thus, the function Pmix(J) is

independent of the methods of its determination over a range

of swelling ratios typical in the applications of polyacrylamide

gels.

These two sets of data are further compared with three other

sets of data extracted from the literature (Fig. 9). The data

marked as Day22 and Livney28 were obtained by measuring the

osmotic pressure of polyacrylamide–water solutions enclosed in

semipermeable membranes. Relatively mono-dispersed poly-

acrylamide chains were used in the two experiments with

molecular weights 100 000 g mol�1 and 237 000 g mol�1 respec-

tively. The data marked as Mallam29 were measured by placing

a polyacrylamide gel in a semipermeable bag submerged in

certain polymer (e.g. polystyrene or polyvinyl acetate) solutions.

By changing the concentration of the polymer in the aqueous

solution outside the bag, the chemical potential of water in the

external solution was changed. (The relation between the

chemical potential of water and the concentration of the polymer

was determined in a separate experiment.25) The semipermeable

bag was only permeable to water. When the gel inside the bag

and the solution outside the bag attain the equilibrium,

the chemical potential of water inside equals that outside. Setting

s1 ¼ s2 ¼ s3 ¼ 0 in eqn (9), we obtain
xation curves for a gel with a MBAA-to-acrylamide ratio of 2.4 wt%. (b)

ilibrium is plotted against the stretch l3.

This journal is ª The Royal Society of Chemistry 2012
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Fig. 7 The function Pmix(J) determined by the three methods. Data

points obtained with gels of different MBAA-to-acrylamide ratios are

differentiated by symbols. Date points obtained by the three methods are

differentiated by colors.

Fig. 8 To fit the experimentally determined osmotic pressure over

a range of swelling ratios to the Flory–Huggins theory (dashed lines),

different values of the Flory–Huggins parameter c are required.

Fig. 9 Comparison of the function Pmix(J) determined by various

methods. The data are fitted to the Flory–Huggins theory. The fitting

curves, as shown by dashed lines, are differentiated by colors, red for

eqn (17), brown for eqn (17) with a ¼ N, and black for eqn (18).
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Pmix ¼ NkT

l3

�
l2 � 1

�� m

U
: (15)

Mallam et al. used the gravimetric method to determine J ¼ l3

for gels equilibrated with solutions of several values of the

chemical potential of water, m.29 Meanwhile, they did uniaxial
This journal is ª The Royal Society of Chemistry 2012
compression measurements on the fully swollen gels for the shear

modulus, where we can recalculate NkT with eqn (11). Once l,

NKT and m are known, Pmix can be calculated with eqn (15).

All the data overlap over a range of the swelling ratio, within

which the osmotic pressures measured by various methods agree.

This agreement indicates that the functionPmix(J) is the same for

polyacrylamide hydrogels and polyacrylamide–water solutions.

The agreement further confirms that crosslinks negligibly affect

the functionPmix(J). The data of Day and Robb22 were obtained

for dilute solutions, and lie beyond the range of the four other

sets of data.

Polyacrylamide gels are known to be temperature sensitive.30

In this study we focus on isothermal processes. All the experi-

ments were performed at room temperature, as well as those in

the literature re-analyzed here to extract the function

Pmix(J).
22,27–29
5. Comparison of experimental data with the Flory–
Huggins model

To highlight the model of ideal elastomeric gels, we have so far

avoided invoking the Flory–Huggins model of mixing. We now

discuss how the Flory–Huggins model fits the experimental data

of polyacrylamide hydrogels and polyacrylamide–water solu-

tions. The free energy of mixing derived from the Flory–Huggins

model is12,13

WmixðJÞ ¼ kT

U

�
ðJ � 1Þlog

	
1� 1

J



� 1

a
log J þ c

	
1� 1

J


�
:

(16)

The first two terms in the bracket are due to the entropy of

mixing, and the third term is due to the enthalpy of mixing. For

uncrosslinked polymer chains, a is the volume per polymer chain

divided by the volume per solvent molecule. The Flory–Huggins

parameter c is a dimensionless measure of the enthalpy of mix-

ing. Inserting eqn (16) into (5), one obtains the osmotic pressure

due to mixing:

PmixðJÞ ¼ � kT

U

�
1

J
þ log

	
1� 1

J



� 1

aJ
þ c

J2

�
: (17)

For a crosslinked polymer network, setting a ¼ N leaves only

a single parameter c to fit experimental data. We plot eqn (17)

with two values of c, indicating that the Flory–Huggins theory

does not fit the experimental data with any constant value of c

(Fig. 8). A common practice is to fit eqn (17) to experimental data

by allowing c to be a function of J, which will not be pursued

here.

The Flory–Huggins model, however, does capture the trend of

the large range of data on the log–log plot (Fig. 9). We use the

Flory–Huggins eqn (17) to fit the five sets of data, giving c ¼
0.4986 and a ¼ 3927. This value of a may be compared with the

following estimate. By definition, a ¼ UPAAM/U, where the

volume per water molecule is U ¼ 2.99 � 10�29 m3, and the

volume per polyacrylamide chain is estimated by UPAAM ¼
xUAAM, where UAAM ¼ 8.21 � 10�29 m3 is the volume per

acrylamide monomer,22 and x is the number of acrylamide

monomer per polyacrylamide chain (x ¼ 1400 for the data of ref.

22). This estimate gives a ¼ 3840. Also plotted is eqn (17) with
Soft Matter
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c¼ 0.49 and a¼N, indicating that the finite value of a is needed

to fit the data of dilute solutions.

The effect of the finite chain length of the polymer in a dilute

solution is better appreciated as follows. Recall the Taylor series

log(1 � x) ¼ �x � 0.5x2 � . and write eqn (17) as

PmixðJÞ ¼ kT

U

	
1

aJ
þ 0:5� c

J2



: (18)

This approximation retains the leading terms of the power series.

The term of J�1 comes from the entropy of mixing when the

polymer chains are of finite length, and the term of J�2 comes

from the entropy of mixing and enthalpy of mixing. In a gel, the

polymers are crosslinked, a¼N, and the term of J�1 vanishes. In

a solution, a < N; for a dilute solution the term of J�1 can be

significant compared to the term of J�2. Eqn (18) represents the

dilute solution well, but not for gels with small values of the

swelling ratio (Fig. 9).

6. Concluding remarks

For an ideal elastomeric gel, the stresses applied on the gel are

balanced by the elasticity of the network, the osmosis due to

mixing the polymer and the solvent, and the osmosis due to the

solvent-containing environment outside the gel. The osmotic

pressure due to mixing is a function of the swelling ratio,Pmix(J).

We show that this function obtained by several distinct experi-

mental methods is consistent. Specifically, the function Pmix(J)

obtained from a gel under different states of applied stress is the

same,16 the function obtained from a free-swelling gel is the same

as that obtained from the constrained-swelling gel, the function is

independent of crosslink density, and the function obtained from

the gels is similar to that obtained from the solutions. We further

show that the Flory–Huggins model of polymer solutions with

a constant Flory–Huggins parameter does not fit the experi-

mental data well, but does capture the trend of the data over four

orders of magnitude in the osmotic pressure. It is hoped that the

other elastomeric gels will be examined to ascertain the range of

applicability of the model of ideal elastomeric gels. It is also of

great interest to extend this approach to gels sensitive to various

stimuli, such as temperature, pH, and salt concentration.
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