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Abstract—Experimental gate capacitance (Cg) versus gate
voltage data for InAs0.8Sb0.2 quantum-well MOSFET (QW-
MOSFET) is analyzed using a physics-based analytical model
to obtain the quantum capacitance (CQ) and centroid capac-
itance (Ccent). The nonparabolic electronic band structure of
the InAs0.8Sb0.2 QW is incorporated in the model. The effec-
tive mass extracted from Shubnikov–de Haas magnetotransport
measurements is in excellent agreement with that extracted from
capacitance measurements. Our analysis confirms that in the op-
erational range of InAs0.8Sb0.2 QW-MOSFETs, quantization and
nonparabolicity in the QW enhance CQ and Ccent. Our quanti-
tative model also provides an accurate estimate of the various con-
tributing factors toward Cg scaling in future arsenide–antimonide
MOSFETs.

Index Terms—Effective mass, high-κ dielectric, InAsSb,
interface states, nonparabolicity, quantum capacitance, split
capacitance–voltage.

I. INTRODUCTION

M IXED-ANION InAsySb1−y quantum wells (QWs) with

high electron mobility are candidates for direct inte-

gration with high hole mobility InxGa1−xSb QW for ultra-

low-power complementary applications [1], [2]. However, as

a direct consequence of the low effective mass for electrons

in the Γ-valley, InAsySb1−y QW-MOSFETs can suffer from

the so-called density of states (DOS) bottleneck that may limit

the effective ON-current and adversely affect switching in fixed
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load capacitance dominated digital circuits [3]. The capacitance

associated with the QW in InAsySb1−y QW-MOSFET depends

on the 2-D DOS (quantum capacitance CQ) as well as the elec-

tron wave function distribution (centroid capacitance Ccent) in

the QW [4]. Even though the low effective mass limits the CQ,

quantization and nonparabolicity enhance the CQ and the Ccent

of the InAs0.8Sb0.2 QW [5]. Incorporation of a gate dielectric

within the InAsySb1−y QW-MOSFET, together with finite ca-

pacitance Cbarrier arising from the upper semiconductor barrier

layer, further increases the equivalent oxide thickness (EOT) in

a QW-MOSFET. Hence, it is imperative to understand how the

different components of capacitance (CQ, Ccent, Cbarrier, and

Cox) affect the overall gate capacitance and scalability of this

device.

In this paper, we present a physics-based analytical model

to analyze the experimental gate capacitance (Cg) versus gate

voltage (Vg) data for an InAs0.8Sb0.2 QW-MOSFET with a

composite high-κ gate stack (5.5 nm Al2O3–1 nm GaSb) and to

systematically extract the quantum capacitance of the channel

including the nonparabolicity effect, as well as the centroid

capacitance associated with the spread of the electron wave

function in the QW. The significance of this work lies in the

fact that accurate quantification of the quantum capacitance in

high mobility channel MOSFETs is critical to future device

scaling. A small-signal equivalent circuit model is utilized to

correct the measured gate capacitance data from the impact

of the interface state density Dit. In a previous work done

by Jin et al. [6], the quantum capacitance of a Schottky-gated

InAs QWFET was analyzed, but without considering the effect

of nonparabolicity in the band structure and the impact of

interface states. Jin et al. used a single effective mass higher

than the Γ-valley mass of bulk InAs to account for the increase

in CQ due to quantization and nonparabolicity. In this paper,

we incorporate the nonparabolicity in the InAs0.8Sb0.2 band

structure using the nonparabolicity factor α, which captures the

energy dependence of both the 2-D DOS and the effective mass.

The effective mass obtained from the capacitance modeling was

further verified using Shubnikov–de Haas (SdH) magnetotrans-

port measurements at a low temperature (2–15 K) and a high

magnetic field (0–9 T). We also present an EOT scalability

study that shows that for InAs0.8Sb0.2 QW-MOSFET with thin

0018-9383/$26.00 © 2011 IEEE
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Fig. 1. Schematic of the InAs0.8Sb0.2 QW-MOSFET with composite high-κ
dielectric (5.5 nm Al2O3–1 nm GaSb).

Fig. 2. Measured and modeled (a) split Cg–Vg and (b) G−Vg characteristics
of an InAs0.8Sb0.2 QW-MOSFET at 77 K.

dielectric (0.7 nm EOT) and barrier (0.45 nm EOT), the oxide

and barrier capacitance has similar contribution to the gate ca-

pacitance (53% of 1/Cg) as that from the quantum capacitance

CQ (39% of 1/Cg) and the centroid capacitance Ccent (8% of

1/Cg) for a gate overdrive of 0.35 V (approximately two-thirds

of VDD = 0.5 V).

II. EXPERIMENTAL Cg–Vg MEASUREMENTS

AND CORRECTING FOR Dit

Fig. 1 shows the schematic of the fabricated InAs0.8Sb0.2

QW-MOSFET with 1 nm GaSb and 5.5 nm Al2O3 dielectric

that forms a composite gate stack on top of the barrier. The

fabrication details of the transistor are reported elsewhere [7].

A thin layer of GaSb (1 nm) is used as an interfacial layer with

the high-κ dielectric to reduce the interface state density [8].

Fig. 2(a) and (b) shows the measured and modeled split Cg–Vg

and G−Vg characteristics of InAs0.8Sb0.2 QW-MOSFET at

77 K and the frequency dispersion characteristics due to the in-

terface states. Similar analysis was done at 150 and 300 K (not

shown here). The Cg–Vg and G−Vg data were self-consistently

modeled using an equivalent circuit model that accounts for

the admittance contribution from the interface states at the

Al2O3–GaSb interface. The conductance response of the traps

(Gp/ω) versus frequency [7] shows positive slope with Vg ,

indicating electron capture/emission process. The technique for

Fig. 3. Cg–Vg curves corrected for Dit along with the measured Cg–Vg

characteristics for (a) 77 K and (b) 150 K.

extracting the interface state density (Dit), trap response time

(τ), and the frequency-independent semiconductor capacitance

using the equivalent circuit model is explained in detail in [9].

Fig. 3 shows the Cg–Vg curves corrected for Dit along with the

measured Cg–Vg characteristics for 77 and 150 K.

III. ANALYTICAL MODELING OF GATE CAPACITANCE OF

QW-MOSFET INCLUDING NONPARABOLICITY

The capacitance of the InAs0.8Sb0.2 QW (CS) can be ex-

pressed as a series combination of the quantum capacitance

(CQ), which is related to the 2-D DOS in the QW, and the

centroid capacitance (Ccent), which is related to the change in

the subband energy levels in the QW due to the sheet charge

density in the QW, as given by

CS =
∂(−QS)

∂ψS,QW

=
∑

i

q
∂NS,i
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∞
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Fig. 4. Equivalent circuit model of a QW-MOSFET showing the different
components of gate capacitance. CQ,i stands for quantum capacitance of the
ith subband, Ccent,i stands for centroid capacitance of the ith subband, C′

ox

stands for the series combination of oxide and barrier capacitance, and ΨS,QW

stands for the quantum well potential. Only two subbands are considered in the
model.

where, NS,i stands for charge density in the ith subband,

ΨS,QW stands for the QW potential, CQ,i stands for quantum

capacitance of the ith subband, Ccent,i stands for centroid

capacitance of the ith subband, Ei − EC stands for the position

of the ith subband with respect to the bottom of the conduction

band in the QW, EF − Ei stands for the Fermi level position

with respect to the ith subband, and f(E) is the Fermi–Dirac

distribution function.

The nonparabolicity of the InAs0.8Sb0.2 QW band structure

is included in the model by modifying the effective mass and

2-D DOS using the nonparabolicity factor α as follows:

m∗ =
�

2k

∂E/∂k
= mΓ(1 + 2αE) (9)

DOS2−D =
m∗

π�2
=

mΓ(1 + 2αE)

π�2
(10)

where mΓ is the effective mass at the bottom of the Γ-valley,

and E is the total energy with respect to the bottom of the

Γ-valley [10].

Fig. 4 shows the equivalent circuit model showing the dif-

ferent components of the gate capacitance. The extraction of

Ccent requires solving Schroedinger and Poisson equations

self-consistently to evaluate the subband energy levels (Ei −

EC) as a function of charge density. We have performed

Nextnano [11] simulations to obtain Ei − EC as a function of

EF − Ei. Using the QW capacitance evaluated from (6), the

gate capacitance is obtained using

1

Cg

=
1

Cox

+
1

Cbarrier

+
1

CS

(11)

where Cbarrier and Cox are the barrier and oxide capacitance,

respectively.

The gate capacitance obtained in (11) is a function of the

potential (ΨS,QW) in the QW. The applied gate potential is

calculated from ΨS,QW using the equivalent circuit model

shown in Fig. 4.

Fig. 5 shows analytical modeling of gate capacitance of

InAs0.8Sb0.2 QW-MOSFET with the numerical simulations

(Nextnano). The effective mass at the bottom of Γ-valley is

taken to be 0.018m0 for InAs0.8Sb0.2 [12]. The analytical

model shows excellent agreement with the numerical simula-

Fig. 5. Analytical modeling of gate capacitance of an InAs0.8Sb0.2

QW-MOSFET compared with numerical simulations (Nextnano).

Fig. 6. Effect of varying α on (a) the gate capacitance at 77 K and (b) the
quantum and centroid capacitance at 77 K. Best fit to the experimental data was
obtained with α = 2.5 eV−1.

tion. This validation was first done for a parabolic band struc-

ture case (α = 0). The subband positions for evaluating the

centroid capacitance were numerically obtained as a function

of the Fermi level from Nextnano simulations for all the cases

considered in this paper. Now, we incorporate the nonparabol-

icity of the band structure in our analytical calculations to

model and analyze the experimental Cg–Vg data obtained from

the InAs0.8Sb0.2 QW-MOSFET after Dit correction. Fig. 6(a)

shows the experimental Cg–Vg data corrected for Dit at

77 K, along with the analytical model. The effect of varying α
on the different components of gate capacitance is also shown

in Fig. 6. For single effective mass approximation (α = 0),
the quantum capacitance will not change with gate bias as the

Fermi level moves above the first subband in the QW. This

is due to the constant DOS in the QW, and CQ reaches the

quantum capacitance limit. Increasing α gives rise to increasing

CQ, even after the Fermi level moves above the first subband.

Hence, the CQ and the Ccent will keep increasing with gate

bias. The best fit to the experimental data was obtained with

α = 2.5 eV−1 at both 77 and 150 K. Fig. 7(a) and (b) shows

the different components of the gate capacitance for the 77 and

300 K Cg–Vg data. There is additional voltage stretch-out in the

300 K Cg–Vg data, even after correcting for Dit, most likely

due to hole accumulation in the GaSb barrier layer. Hence, we

modeled only a portion of the 300 K Cg–Vg data in Fig. 7(b).
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Fig. 7. Components of the gate capacitance for (a) the 77 K, and (b) the 300 K
Cg–Vg data. Additional voltage stretch-out in the 300 K Cg–Vg data, even
after correcting for Dit, is most likely due to accumulation of holes in the
Al0.8In0.2Sb barrier layer.

Fig. 8. Effective mass extracted from the Cg–Vg analysis as a function of
charge density in the QW.

Fig. 8 shows the effective mass extracted from the Cg–Vg

analysis as a function of charge density in the QW. For a charge

density of 2.0 × 1012 cm−2, the extracted effective mass is

0.042m0, which is 2.33 times higher than mΓ (0.018m0) due

to quantization and nonparabolicity. The nonparabolicity factor

extracted from Cg–Vg analysis (α = 2.5 eV−1) is similar to that

for the InAs/AlSb QW heterostructure (α = 2.5 eV−1) reported

from cyclotron resonance measurements [13].

IV. SdH ANALYSIS FOR EFFECTIVE MASS EXTRACTION

The effective mass obtained from the capacitance modeling

was verified using SdH magnetotransport measurements on

an InAs0.8Sb0.2 QW heterostructure (without dielectric) at

low temperatures (2–15 K) and high magnetic fields (0–9 T).

The magnetotransport measurements, in standard four-probe

DC configuration, were carried out using Quantum Design

Model 6000 Physical Property Measurement System, with a

base temperature of 1.8 K and magnetic field in the range of

0–9 T. Fig. 9(a) and (b) shows the measured sheet resistance

(RXX) and Hall resistance (RXY) of the device from 0 to 9 T.

The insets in the figures show the configurations to measure

RXX and RXY. SdH oscillations are observed in RXX at

magnetic fields below 8 T. At fields above 8 T, the quantum Hall

plateaus appear in RXY, and RXX tends to zero resistance. The

Fig. 9. (a) Measured sheet resistance (RXX) and (b) Hall resistance (RXY)
of the InAs0.8Sb0.2 QW heterostructure from 0 to 9 T. Insets in the figures
show the configurations employed to measure RXX and RXY .

magnetic field and temperature dependence of sheet resistance

can be expressed as [14]–[16]

∆ρXX

ρ0

= RS

4χ

sinhχ
exp

(

−π

ωcτq

)

cos

(

2π
EF

�ωc

+ φ

)

(12)

where ρ0 is the sheet resistance at zero B, τq is the quantum

lifetime, χ = 2π2kT/�ωc, and ωc = eB/m∗ is the cyclotron

frequency. The prefactor Rs is associated with Zeeman splitting

and is assumed to be independent of the magnetic field in the

following analysis [14]. While extracting the effective mass

from SdH oscillations, the background magnetoresistance was

corrected as follows. The envelope of maxima (minima) of the

ρXX oscillations was evaluated from the peak (valley) in the

ρXX as a function of B. The average of the two envelopes gave

the background magnetoresistance that was subtracted from the

measured ρXX. Fig. 10 shows the periodic SdH oscillations in

∆ρXX/ρ0 (after removing the background contribution) as a

function of 1/B. FFT of ∆ρXX/ρ0 versus 1/B is shown in

Fig. 10 (inset). There is a well resolved peak at the fundamental

oscillation period B0 = 42.2 T. From the period of oscillation,

∆(1/B) = 0.024 T−1, the sheet carrier density can be obtained

as NS = 2q/h∆(1/B) = 2.01 × 1012 cm−2. The carrier den-

sity obtained from period of SdH oscillations is independent of

the device dimensions or QW thickness.

The analytical procedure to extract the effective mass

is as follows. From (12), a plot of ln(∆ρXX/ρ0) ver-

sus ln(χ/ sinh χ) gives a straight line with slope = 1.

ln(∆ρXX/ρ0) is from the experimentally measured magnetore-

sistance data as a function of temperature, and ln(χ/ sinh χ)
is calculated as a function of temperature using m∗ as an
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Fig. 10. Periodic SdH oscillations in ∆ρXX/ρ0 (after removing the back-
ground contribution) as a function of 1/B. Fast Fourier transform of ∆ρXX/ρ0

versus 1/B is shown in the inset.

Fig. 11. Plot of ln(∆ρXX/ρ0) versus ln(χ/ sinh χ) for (a) B = 2.54 T and
(b) B = 3.01 T to extract effective mass. Correct value of effective mass gives
a slope of 1 for the graph.

Fig. 12. Dingle plot used to extract quantum lifetime.

adjustable parameter. The correct value of m∗ gives a slope

of 1 for the graph. Fig. 11 shows the extraction procedure at

B = 2.54 T and B = 3.01 T. The extracted effective mass from

the analysis is 0.043m0 at a sheet carrier density of 2.01 ×

1012 cm−2 (from the period of SdH oscillations). Fig. 12 shows

the Dingle plot [17] of ln((∆ρXX/ρ0)(sinh χ/4χ)) versus 1/B
using m∗ = 0.043m0, which gives a universal straight line for

all temperatures, as given by (12). The slope of the line is

−πm∗/qτq, which yields a quantum lifetime of τq = 0.065 ps.

The assumption that Rs is independent of the magnetic field is

justified from Figs. 11 and 12, which give good straight lines

as expected from (12). The ratio of transport time τ = 0.5 ps

obtained from QW electron mobility at 2 K to the quantum scat-

tering time is ∼7.5. This indicates that the dominant scattering

mechanism in the InAs0.8Sb0.2 QW heterostructure (without a

dielectric) at low temperatures is due to the ionized impurities

Fig. 13. (a) Components of the gate capacitance of InAs0.8Sb0.2

QW-MOSFET with a scaled dielectric and barrier and (b) percentage contri-
bution of various components of gate capacitance to 1/Cg .

in the In0.2Al0.8Sb barrier or interface charge at the barrier–QW

interface, as observed in the case of the GaAs/AlxGa1−xAs QW

heterostructure [18].

V. QW-MOSFET GATE CAPACITANCE

SCALING PROJECTION

In this section, we provide a quantitative estimate of the

various factors determining gate capacitance scaling in future

arsenide–antimonide QW-MOSFETs. As shown in the previous

sections, both the quantization and the nonparabolicity increase

the effective mass in the QW, which increases the quantum

capacitance CQ and the centroid capacitance Ccent. As we

scale the gate length of future generation QW-MOSFETs, we

need to scale the thickness of the semiconductor barrier and

the QW. Thinner QWs will exhibit higher Ccent due to less

change in the subband energy levels with Fermi level posi-

tion [19], and higher CQ as well due to increased DOS at

higher energy, for a given sheet carrier density Ns in the QW.

Fig. 13(a) and (b) shows the various components of the gate

capacitance of InAs0.8Sb0.2 QW-MOSFET, with a 5-nm-thick

QW, a 1.5-nm-thick In0.2Al0.8Sb barrier (0.45 nm EOT), and

a thin high-κ dielectric (0.7 nm EOT) on top of the barrier.

For a gate overdrive of 0.35 V (approximately two-thirds

of VDD = 0.5 V), the oxide and barrier capacitance together

contribute to about half (53%) of 1/Cg , whereas the quantum

and centroid capacitance contribute to the remaining half, with

CQ (39% of 1/Cg) being a more limiting factor than Ccent

(8% of 1/Cg). The charge density in the QW for 0.35 V gate

overdrive is ∼3.5 × 1012 cm−2 (Fig. 14). This implies that the

oxide and barrier capacitance are as significant as quantum
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Fig. 14. Sheet charge density in the quantum well as a function of gate
overdrive for InAs0.8Sb0.2 QW-MOSFET with a scaled oxide and barrier. The
threshold voltage is defined at the gate bias for which Ns = 5 × 1010 cm−2.

capacitance for gate capacitance scaling in MOS-QWFETs in

the arsenide–antimonide material system.

VI. CONCLUSION

In this paper, we have presented a physics-based analytical

model to extract the quantum capacitance and nonparabolicity

factor in InAs0.8Sb0.2 QW-MOSFET. The effective mass ex-

tracted from Cg–Vg analysis is validated through SdH mea-

surements at low temperature (2–15 K) and high magnetic

field (0–9 T). The effective mass of 0.043m0 was obtained at

Ns = 2.0 × 1012 cm−2 (from SdH as well as Cg–Vg analysis),

which is 2.33 times higher than the Γ-valley mass of bulk

InAs0.8Sb0.2. A nonparabolicity factor of 2.5 eV−1 was ob-

tained from Cg–Vg modeling. Gate capacitance scaling study of

InAs0.8Sb0.2 QW-MOSFET, with a 5-nm-thick QW, a 1.5-nm-

thick In0.2Al0.8Sb barrier (0.45 nm EOT), and a thin high-κ
oxide (0.7 nm EOT) shows that the oxide and barrier capac-

itance limit the gate capacitance (53% of 1/Cg) more than

the CQ (39% of 1/Cg) and the Ccent (8% of 1/Cg) for a

gate overdrive of 0.35 V (approximately two-thirds of VDD =
0.5 V).
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