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Experimental Determination of Stress Intensity Factors 
Due to Residual Stresses 

by H.-J. Schindler, W. Cheng and I. Finnie 

ABSTRACT-An experimental method is presented that en-
ables stress intensity factors due to residual stress to be de-
termined directly, without prior determination of the residual 
stress. The method is based on the crack compliance method, 
where a narrow cut is introduced progressively into the con-
sidered component, and the resulting strain change is mea-
sured by a strain gage. The required mathematical relations to 
determine stress intensity factors from strain measurements 
are established by means of some basic relations of linear 
elastic fracture mechanics. They are derived explicitly for two 
exemplary geometrical systems, which allowed for analytical 
treatment. Experimental data obtained in the case of a steel 
roller are presented and discussed. 

Introduction 

Residual stresses can affect the mechanical behavior of 
a component quite severely, particularly in cases where it is 
susceptible to subcritical crack growth, like fatigue or stress 
corrosion cracking. Thus, when performing a safety analysis 
or a lifetime prediction for such a component, one needs to 
know the stress intensity factor resulting from residual stress 
as a function of crack length. 

However, the experimental determination of residual 
stresses as a function of depth below surface is not a triv-
ial task. Traditional methods such as X-ray diffraction com-
bined with layer removal or hole drilling all have limitations. 
In recent years, the crack compliance method (CC method) 
as proposed originally1 and developed extensively by Cheng 
and Finnie was successfully applied to several problems of 
residual stress determination across a full cross section and 
near the surface. The same basic approach was presented 
later by Fett3 and Kang.4 In short, this method is based on 
the relaxation of-the residual stress by introducing a narrow 
cut or slit of progressively increasing length and measuring 
the corresponding strain changes at a suitable location by a 
strain gage. The advantage of using a narrow cut to relax 
the residual stress is twofold. First, only a small amount 
of material is removed, thereby minimizing the risk of caus-
ing local plastic deformation and avoiding additional residual 
stresses. Second, it enables one to apply the well-known 
theoretical relations of linear elastic fracture mechanics 
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to establish the mathematical relations between the original 
residual stress and the strain change at the location where the 
strain gage is mounted. 

In particular, if the stress intensity factor (SIF) is of inter-
est rather than the residual stress itself, then the CC method 
is most effective. It offers, as shown below, the possibility 
to obtain the SIF directly and precisely without prior knowl-
edge of the residual stress. In fact, it is the principle of the 
CC method to calculate the stresses from the SIF rather than 
vice versa (as it is the case in all other methods). 

In the present paper, this aspect of the CC method is high-
lighted. First, the general theoretical relations between the 
unknown stress intensity factor and the measured surface 
strains are developed. Then, methods of analytical and nu-
merical determination of the relevant functions are shown. 
Finally, the simplicity and suitability of this experimental 
technique is demonstrated for the case of a high-strength steel 
roller. 

Strain Change Due to Cutting 

It is the principle of all mechanical methods of residual 
stress measurement to remove a certain amount of material 
and to measure the resulting deformation of the body in terms 
of displacements, stresses or strains. As mentioned in the in-
troduction, the basic idea of the CC method is to introduce 
a narrow slit into the considered body along the plane of in-
terest. This causes a redistribution of the residual stress field 
within the entire body. Thus, the strain change at any arbi-
trary location in or at the surface of the body due to cutting 
contains information about the stresses that are released at 
the cut plane. Knowing the theoretical relationship between 
these two functions, it is possible to determine the residual 
stress distribution on the cut plane by the strain measured as 
a function of cut depth. Because a narrow slit, in an over-
all consideration of the elastic system, is nearly equivalent 
to a perfect crack, the well-known equations of linear elas-
tic fracture mechanics can be used to establish the required 
mathematical relations. 

In this section, the general relationship between the SIF 
of a crack in a two-dimensional residual stress field and the 
strain change at an arbitrary point on the surface due to crack 
extension is established. Consider, therefore, an arbitrary 
body that contains a surface crack of length a and unknown 
residual stresses (Fig. 1 ). Now, we assume that the crack is 
extended by a small increment oa. At an arbitrary point M 
on the surface, the change of the surface strain OEM due to the 
crack extension can be measured by a strain gage. Follow-
ing the derivation in Ref. 2, the strain increment OEM can be 



expressed by means of the theorem of Castigliano5 as 

1 a2 
8 u I 8EM = --- . (1) 

2 a Fas F=() 
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Herein, 8U denotes the difference in stored elastic energy 
before and after the crack extension, F is a virtual line force 
per unit thickness acting tangential on the surface at M and 
s is the distance between F and M. The reaction forces to F 
can be introduced arbitrarily; often, it is suitable to do it by a 
second line force acting at the same distance from M at the 
opposite side of F, as shown in Fig. 1. Irwin's6 fundamental 
equation of linear elastic fracture mechanics (LEFM) allows 
8U to be expressed as 

B { 2 2} 8U = E' [K1rs + K1F] + [K11rs + K11F] 8a, (2) 

where K /rs and K 1 /rs denote the SIF due to the residual stress 
and K 1 F denotes the SIF due to the virtual force F. B is 
the thickness of the component (which should be essentially 
plane) and E' is the generalized Young's modulus, which 
means E' = E for plane stress conditions (i.e., thin plate 
with respect to the distance between the crack tip and M) 
and E' = E/(1 - v2) for plane strain. Because K1F is a 
linear function of F and K1rs is independent of s, eq (2) 
inserted in eq (I) can be simplified to 

B [ aK1FI aK11FI J 8EM = -,- Kirs-- + K11rs __ _ 
E F as s = 0 as s = 0 

8a. 

(3) 

In the following, we restrict ourselves, for the sake of 
simplicity, to systems in which either K 11ForK1 /rs vanish, 
which is the case either for symmetrical systems with respect 
to the crack plane or if the forces F do not produce shearing 
stresses at the plane y = 0. Replacing the quotient 8E/8a by 
the corresponding derivative, one obtains the desired relation 
between the strain change at M and the SIF at the incremen-
tally prolonged crack or cut tip to be 

K a_~. dEM 
/rs( ) - Z(a) da ' (4a) 

where 

Z(a) = - -- . ---- B (aK1F I ) 
F as s =O 

(4b) 

Thus, the SIF of a surface crack in a residual stress field 
can be experimentally determined by measuring the strain 
change with respect to cut prolongation dEM /da resulting 
from progressive cutting-provided that the function Z(a) as 
introduced in Ref. 7 and defined in eq (4b) is known. Z(a), 
referred to as the influence function, is a unique function that 
depends on the component geometry, the cut plane and the 
measurement point M but not on the residual stress distribu-
tion. It characterizes the sensitivity of the measurement point 
M with respect to the stress intensity factor and the stresses 
on the cut plane; the bigger the value of IZ(a)I, the more 
sensitive is the measurement. 

If the SIF along the entire cross section is to be deter-
mined, then it is in general advisable to consider two points 

y 

F 

Fig. 1-Mechanical system considered to establish the rela-
tionship between the stress intensity factor and the strain at 
the measurement point M 

M for strain measurements: one at the front surface, near 
the crack mouth, and another at the rear surface, at or near 
its intersection with the cut plane.2 The first one is sensitive 
to the residual stresses in a surface layer with a depth of the 
same order of magnitude as the distance from the cut mouth 
(up to about 5 to 10 percent of the cross section), the second 
is sensitive to the remaining main part of the cross section. 

Determination of Influence Functions 

Because the influence function Z(a) is independent of the 
stress distribution, it needs to be determined only once for a 
certain geomehy. In the following, analytical and numeri-
cal methods for its determination are presented. According 
to eq (4b), Z(a) is essentially given by the derivative of the 
stress intensity factor of an edge crack due to the line force F 
with respect to the tangent of the surface at the measurement 
point M. Accordingly, the SIF for this special load case as a 
function of s has to be determined. In general, the solution 
cannot be found in handbooks of stress intensity factors. A 
suitable general technique to obtain K 1 F is by weight func-
tions as introduced by Biickner.8 The stress intensity factor 
of any crack can be calculated by 

a 

K1(a) = f h(x, a)· ay(x) · dx. 

0 

(5) 

Herein, av (x) is the stress distribution acting on the x-axis in 
the uncracked state, and h (x' a) is the weight function, which 
is a universal function depending on the geometry but not the 
loading conditions of the considered plane body. It can be de-
termined relatively easily by approximation techni~ues9- 11 

or, for some cases, can be found in the literature. 2 Using 
the weight function technique [ eq (5)] to calculate stress in-
tensity factors is particularly suitable when different loading 
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conditions, including for instance the residual stress, have to 
be considered. 

Using eq (5), the stress intensity factor due to the virtual 
line force F is given by 

a 

K1F(s) = f h(x, a)· ayF(X, s) · dx, 

0 

(6) 

where a y F (x, s) is the distribution of the normal stress along 
the x-axis due to F in the uncracked body. By eq (6), the 
influence function defined in eq ( 4b) can be brought to the 
simple form 

a 

Z(a)=- h(x,a)·-Y-(x,s=O)dx. Bf aa F 

F as (7) 

0 

Thus, to determine Z(a), one only has to have the stress dis-
tribution ayF(X, s) due to the single force F and the weight 
function h(x, a) where the latter has to be known anyway 
when dealing with stress intensity factors due to residual 
stress. 

In several cases, as shown in Ref. 13 and by examples in the 
next section, the desired analytical solutions forayF (x, s) and 
their derivative with respect to s, respectively, can be obtained 
relatively easily. However, for many complex geometrical 
shapes of the component, this will be a difficult task. In these 
cases, it is recommended to determine Z (a) numerically, e.g., 
by using the finite element method as follows. The relation 
( 4a) between the stress intensity factor and the strain change 
at a certain point M holds not only for residual stress fields 
but for any arbitrary load case of the considered geometrical 
system. Thus, Z(a) can be obtained directly from eq (4a) 
by calculating numerically K 1 and the corresponding strain 
increment /'<;.EM at M due to a crack length change [).a for 
an arbitrary loading of the body, referred to as the reference 
load case, i.e., 

E' ~£ 
Z(a) = . Mref (a). 

K1ref(a) /'<;.a 
(8) 

Ki ref and /'<;.EMref denote the stress intensity factor and the 
strain change at M, respectively, for the reference load case, 
which may be chosen to be as simple as possible. To reduce 
the number of calq1li1tions of these quantities for different 
crack lengths, it often is desirable to determine, by curve 
fitting on the basis of some numerical data, first an algebraic 
function EMre/a) to approximate EMref(a). Then, Z(a) is 
obtained by 

E' dE* 
Z(a) = · Mref (a). (8a) 

K1ref(a) da 

Examples 
Short Surface Cut 

When applying the CC method, the cut is in general in-
troduced starting at the surface of the body. As mentioned 
above, it is advisable in these cases to choose a first measure-
ment point near the cut at the front surface. As long as the cut 
length a and the distance c between the strain gage and the cut 
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Fig. 2-Mechanical system to determine the influence func-
tion for a short surface cut 

are small compared to the width W of the cross section, the 
system can be considered a half-space (Fig. 2). Accordingly, 
the solution derived subsequently for these conditions are 
valid for any geometry if c « W and a « W (which means 
practically less than 5 to 10 percent of the cross section). In-
troducing the virtual force F and its reaction of forces acting 
at distances ±s from the measurement point M, one obtains 
according to Ref. 5 for the required stress distribution on the 
cut plane 

2F ( (c+s)3 
UyF(X, S) = - · 2 
· nB [x2+(c+s)2] 

(c-s)3 I 
- 2 . 

[x 2 + (c - sf] 

(9) 

The weight function h(x, a) for an edge crack in a semi-
infinite plate is given in Ref. 12 to be 

[ 
2 

h(x, a)= · -- + 0.9788 + 1.1101 · (1 - ~) 
1 - ~ 

- 0.3194. (1 - ~)2 - 0.1017. (1 - ~)3 ]' 
(10) 

where~ = x/a. Introducing the nondimensional distance 
y = c/a and inserting eq (10) and eq (9) in eq (7) results in 

1 
4 f 2 3(~2 + y2 - 4y2 

Z(c/a) = - · h(~) · y · d~. 
. n . a (~2 + y2)3 

(11) 

0 

This influence function is graphically represented in Fig. 3. 
Note that there is a maximum at about c/a = 4/3, which 
means that there is maximum sensitivity at the corresponding 
cut depth. Whereas the sensitivity for shorter cuts is gradually 
decreasing, it falls steeply for deeper cuts. According to this 
behavior of the influence function, the optimal location for 
strain measurements at the front surface is often in a distance 
of about 0.05 W (i.e., 5 percent of the cross-section width) 
from the cut mouth, since the above solution, which strictly 
holds only for a semi-infinite plate, is restricted to cut depths 
of about a < 0.1 W when applied to bodies of finite widths. 
Influence functions for finite plate widths are given in Ref. 
14. 

Radial Cut in Circular Disk 

In the case of a disk or solid cylinder, the derivation given 
in the foregoing section holds only for a « D and s « D, 
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Fig. 3-lnfluence function Z for a short edge cut as a function 
of cut depth 

where D is denoting the diameter. It has been recognized 
before2 that the remaining 90 to 95 percent of the cross sec-
tion can be monitored by a strain gage measurement on the 
rear surface, the most sensitive location being in general at 
the intersection with the cut plane. Consider, therefore, the 
system shown in Fig. 4. In order to calculate the strain EM, 
a pair of virtual forces F is assumed to act tangentially at 
points y = ±s, where s « D is assumed. cry(x) can be 
obtained from the general exact solution given in Ref. 5 to be 

2F [ s
3 

2s l O'yF(x,s) = -- · - - . 
TC • B [ (D - x)2 + s2J2 D2 

(12) 

Inserting eq (12) into eq (7) leads to 

a 

Z(a) = -~! h(x,a)dx. (13) 
TC. D 

0 

According to eq (13), Z(a) is proportional to the integral of 
h(x, a). The same integral appears when the stress intensity 
for a load case consisting of a homogeneous pressure act-
ing on the crack surface is calculated by the weight function 
technique. Thus, it is possible to obtain the integral in ques-
tion from the stress intensity factor of this load case. For 
the present geometry, an exact solution for the SIF due to a 
homogeneous pressure p acting on the crack surface is given 
in Refs. 15 and 16: 

K1 =l.988·p· ~· y (1 - %)3 
(14) 

The same K 1 can also be obtained by inserting a y (x) = p in 
cq (5). Comparing the resulting expression with eq ( 4) yields 

j h(x, a)dx ~ 1.988) (I : !L J'. (15) 
0 D 

Using cg (15) in eq (13) and inserting them into cq ( 4b) leads 
to 

7.952 {cJ;~ Z a - - · 
( ) - TC • D3/2 (1 - % )3. (16) 

D 

x 

Fig. 4-Circular disk containing a radial edge crack 

It is interesting to note that this remarkably simple result is 
an exact solution; thus, there is no theoretical restriction con-
cerning the crack or cut length. It applies for the whole range 
of cut depths. However, there are some practical restrictions: 
for very short cuts (less than about 5 percent of the diameter) 
the sensitivity is too low, and for very deep cracks, the cut 
width may be too large compared with the ligament, so the 
cut can no longer be regarded as an ideal crack. 

Experimental Results 

As an example, the residual stress and the corresponding 
SIF in a roller used in a bridge support is considered. Made of 
high-strength steel, these rollers exhibited large cracks after 
some years of,scrvice. 17·18 Because the service load is pre-
dominantly compressive, there was evidence that the residual 
stresses played an important role in causing this damage. To 
quantify their influence, a fracture mechanics analysis was 
performed, 17· 18 which means that the SIF due to the residual 
stresses has to be determined. For this purpose, an uncracked 
roller of the same type, which was in service for about 15 
years, was used as a representative test specimen. The roller 
in question had a diameter of 140 mm and an overall length 
of about 600 mm. The material is quenched and tempered 
tool steel. 

For facilitating the handling of the test specimen during 
the experimental procedure, a slice of 6.4 mm thickness was 
cut from the roller, forming a disk of 6.4 mm thickness and 
140 mm diameter. Thereby the axial residual stresses arc 
released, changing the stress state from one of essentially 
plane strain to one of plane stress, which has to be taken into 
account in the subsequent fracture mechanics analysis (sec 
discussion in the next session). To avoid additional resid-
ual stress, the slicing and the subsequent progressive radial 
cutting was done by means of an electric discharge wire ma-
chine. The width of the cut was about 0.5 mm. 

The strain change was measured by strain gages at the two 
locations indicated by Ml (2.25 mm from the crack mouth) 
and M2 (at the opposite side) in Fig. 5. The measured strains 
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factor of 1.64 is reported for the case of a water-quenched 
steel cylinder. Hence, it seems that a factor of 1.46 can be 
regarded as a best guess, but it can vary probably in a range 
of about ± 20 percent. 

Physical Significance of the SIF Due to Residual 
Stresses for the Considered Roller 

According to the discussion above, the values of SIF given 
in Fig. 7 have to be multiplied by a factor of about 1.43 to 
characterize the loading state of a crack in the considered 
steel roller. The plane strain fracture toughness of the high-
strength steel that they are made of is about 41 MPa..jm (1300 
N/mm312). Thus, considering the SIF due to the residual 
stresses (Fig. 7), the critical SIF is reached at a crack depth 
of about 0.05 D (7 mm). For deeper cracks, the SIF is higher 
than K 1 c. which means that there is unstable crack growth 
up to a crack depth of about a = 0.35D, where the SIF is 
falling back to lower values than K le· Thus, crack arrest is 
likely to occur in this range of crack depths. The subsequent 
crack growth is subcritical again, with a decreasing growth 
rate according to the decreasing SIF. As shown in Ref. 17, the 
contribution of the external load to the SIF is relatively small 
in the present case, leaving the maximum K1 essentially un-
changed, but reducing the crack depth of crack arrest from 
0.35 D to about 0.25 D (depending on the crack orientations 
with respect to the vertical external load. This behavior ex-
plains why in the investigated rollers many cracks with depths 
between 0.3 D and 0.5 D were found, but hardly any deeper 
cracks or complete fractures. 

Conclusions 
In applications where the stress intensity factors due to the 

residual stresses are required, the crack compliance method 
as outlined above is very straightforward, since it enables the 
SIF to be determined directly without prior determination of 
the residual stresses, guaranteeing high accuracy and relia-
bility. Experimentally, it is very simple: one only needs to 
introduce a narrow cut along the plane of interest and to mea-
sure the strain change due to the cutting at a certain location 
on the surface of the body. The desired stress intensity factor 
is proportional to the slope of the measured strain plotted as 
a function of the depth of the cut. The corresponding propor-
tionality factor is a unique function, the so-called influence 
function, that depends on the geometry of the considered 
component and the cut depth. Furthermore, from the deter-
mined stress intensity factor as a function of crack depth, it 
is possible to determine the residual stresses. 

The experimental simplicity and straightforwardness of 
this method to measure stress intensity factors and residual 
stresses is made possible by a trade-off with special efforts 
that have to be spent on the theoretical side. Establishing 
the required theoretical relations between the stress intensity 
factor and the strain change at the measurement point may 
require extensive computation. However, since the required 
influence functions are unique for a given component and cut 

geometry, this effort has to be spent only once for a certain 
class of component geometries. 
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factor of 1.64 is reported for the case of a water-quenched 
steel cylinder. Hence, it seems that a factor of 1.46 can be 
regarded as a best guess, but it can vary probably in a range 
of about ± 20 percent. 

Physical Significance of the SIF Due to Residual 
Stresses for the Considered Roller 

According to the discussion above, the values of SIF given 
in Fig. 7 have to be multiplied by a factor of about l.43 to 
characterize the loading state of a crack in the considered 
steel roller. The plane strain fracture toughness of the high-
strength steel that they are made of is about 41 MPaJm (1300 
N/mm312). Thus, considering the SIF due to the residual 
stresses (Fig. 7), the critical SIF is reached at a crack depth 
of about 0.05 D (7 mm). For deeper cracks, the SIF is higher 
than KJc, which means that there is unstable crack growth 
up to a crack depth of about a = 0.35D, where the SIF is 
falling back to lower values than K 1 c· Thus, crack arrest is 
likely to occur in this range of crack depths. The subsequent 
crack growth is subcritical again, with a decreasing growth 
rate according to the decreasing SIF. As shown in Ref. 17, the 
contribution of the external load to the SIF is relatively small 
in the present case, leaving the maximum K1 essentially un-
changed, but reducing the crack depth of crack arrest from 
0.35 D to about 0.25 D (depending on the crack orientations 
with respect to the vertical external load. This behavior ex-
plains why in the investigated rollers many cracks with depths 
between 0.3 D and 0.5 D were found, but hardly any deeper 
cracks or complete fractures. 

Conclusions 
In applications where the stress intensity factors due to the 

residual stresses are required, the crack compliance method 
as outlined above is very straightforward, since it enables the 
SIF to be determined directly without prior determination of 
the residual stresses, guaranteeing high accuracy and relia-
bility. Experimentally, it is very simple: one only needs to 
introduce a narrow cut along the plane of interest and to mea-
sure the strain change due to the cutting at a certain location 
on the surface of the body. The desired stress intensity factor 
is proportional to the slope of the measured strain plotted as 
a function of the depth of the cut. The corresponding propor-
tionality factor is a unique function, the so-called influence 
function, that depends on the geometry of the ~onsidered 
component and the cut depth. Furthermore, from the deter-
mined stress intensity factor as a function of crack depth, it 
is possible to determine the residual stresses. 

The experimental simplicity and straightforwardness of 
this method to measure stress intensity factors and residual 
stresses is made possible by a trade-off with special efforts 
that have to be spent on the theoretical side. Establishing 
the required theoretical relations between the stress intensity 
factor and the strain change at the measurement point may 
require extensive computation. However, since the required 
influence functions are unique for a given component and cut 

geometry, this effort has to be spent only once for a certain 
class of component geometries. 
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